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Preface

This book, like many textbooks, was inspired by teaching a class. The class in question
was a two-quarter (5 hours per week) introductory survey course in astrophysics. The
reader of this book, like the students in our course, is assumed to have studied a year
of calculus (including differential and integral calculus, basic vector calculus, and a
smattering of simple differential equations), as well as a year of calculus-based general
physics. We assume that the reader has only a remote acquaintance, if any, with quantum
physics, special relativity, or linear algebra.

Our fundamental goals for this book are twofold. First, we want to introduce students
with a serious interest in physical science to the breadth of astronomy, preparing them
for more advanced topical courses in the future. Second, we use astronomical examples
to reinforce the physics that the students have already learned. To this end, we use SI
(International System) units, which the students have already encountered in general
physics class, rather than the cgs (centimeter, gram, second) units that are frequently
encountered in the more advanced astronomical literature. Units that are peculiar to
astronomers, such as parsecs, magnitudes, solar luminosities, and solar masses, are
introduced as needed.

Our organization of the material is, in many respects, quite traditional. We start with
the kinematics and dynamics of the solar system; then, after discussing the interaction
of matter and light, we proceed to a discussion of the physical nature of objects in the
solar system. We conclude our discussion of solar system astronomy with an examination
of the solar system as illuminated by the exciting new field of exoplanets. The second
half of the book covers stellar, galactic, and extragalactic astronomy, followed by a brief
discussion of cosmology.

Our goals for the book, to some extent, dictate the relative emphasis placed on dif-
ferent fields of astronomy. Some particularly rich areas of astronomy, such as stellar
populations, globular clusters, and the large-scale structure of the universe, are only
briefly touched on. We regret the brevity with which we cover these and other fasci-
nating topics in astronomy. However, we had to balance our desire to make the book
of manageable size with our desire to cover thoroughly those topics that enhance un-
derstanding of important physical principles (such as blackbody radiation, physics of
non-LTE gases, and gravitational accretion).

Our text benefited from criticism by many individuals. Most important, the book
was shaped by several classes of undergraduate students at The Ohio State University,

xi



xii Preface

who provided detailed feedback on nearly every aspect of the book. In particular, most
end-of-chapter problems in this book have been heavily field-tested; our students never
hesitated to point out when a problem was clumsily or ambiguously worded. Many of
the remaining end-of-chapter problems are classic problems that appear in somewhat
similar form in earlier textbooks. The textbooks from which we have adopted and adapted
problems are cited in the Bibliography at the end of the textbook.

We are grateful for reviews of individual chapters by instructors with experience in
teaching astrophysics at this level, notably Byron D. Anderson, Phil Armitage, Don
Bord, Tereasa Brainerd, David Cohen, John Cowan, Richard A. Crowe, Carsten Denker,
George Djorgovski, Stephen Gottesman, Kim Griest, Peter H. Hauschildt, John Huchra,
Philip A. Hughes, Steven Kawaler, Jeremy King, Chip Kobulnicky, Donald G. Lutter-
moser, Kevin MacKay, Michael P. Merilan, Stan Owocki, Eric S. Perlman, Lawrence
S. Pinsky, Gary D. Schmidt, James Schombert, Horace Smith, Steven Stahler, Curtis
J. Struck, Paula Szkody, Dan Wilkins, Jeff Wilkerson, Richard M. Williamon, Gerard
Williger, Vincent Woolf, Kausar Yasmin, and Dennis Zaritsky, as well as a number of
anonymous reviewers. We incorporated much of the advice received from these individ-
uals.

We are especially grateful to friends and colleagues at The Ohio State University
who provided invaluable assistance. Richard Pogge provided help with both scientific
and technical issues. Jessica Orwig prepared many of the figures and tables. Marc
Pinsonneault, David Weinberg, and Molly Peebles provided information for figures.
Finally, the fact that this is a real book rather than a pile of incoherent notes and scrawled
drawings is due to our diligent production team at Pearson Addison-Wesley.



Physical Constants

Name Symbol Value Units

Gravitational constant G 6.673 × 10−11 m3 kg−1 s−2

Permittivity of the vacuum εo 8.854 × 10−12 C2 N−1 m−2

Permeability of the vacuum μo 4π × 10−7 W m

Elementary charge e 1.602 × 10−19 C

Speed of light in vacuum c 2.998 × 108 m s−1

Planck constant h 6.626 × 10−34 J s

Reduced Planck constant � ≡ h/2π 1.055 × 10−34 J s

Boltzmann constant k 1.381 × 10−23 m2 kg s−2 K−1

Stefan–Boltzmann constant σSB 5.670 × 10−8 W m−2K−4

Thomson cross-section σe 6.652 × 10−29 m2

Proton mass mp 1.673 × 10−27 kg

Electron mass me 9.109 × 10−31 kg



Astronomical Constants

Name Symbol Value Units

Mass of Earth M⊕ 5.974 × 1024 kg

Mass of Sun M� 1.989 × 1030 kg

Mass of Moon 7.36 × 1022 kg

Equatorial radius of Earth R⊕ 6378 km

Equatorial radius of Sun R� 6.955 × 105 km

Equatorial radius of Moon 1737 km

Mean density of Earth 5515 kg m−3

Mean density of Sun 1408 kg m−3

Mean density of Moon 3346 kg m−3

Luminosity of Sun L� 3.839 × 1026 W

Effective temperature of Sun 5778 K

Hubble constant Ho 70 ± 5 km s−1 Mpc−1

Light-year 9.461 × 1012 km

Astronomical unit AU 1.496 × 108 km

Parsec pc 3.086 × 1013 km
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Color Figure 1: Comet Ikeya-Zhang (above) and the Andromeda
Galaxy (below).

Color Figure 2: The emission spectrum of (top to bottom) hydrogen,
helium, oxygen, and neon at visible wavelengths.
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CloudContinuum
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Color Figure 3: Kirchhoff’s laws for the production of continuous spectra (upper left), emission
spectra (upper right), and absorption spectra (lower right).
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Color Figure 4: The brightly colored chromosphere of the Sun, seen during a total solar eclipse.
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Color Figure 5: Uranus (left) and Neptune (right), with the Earth shown on the same scale.
Notice the decidedly blue color of Uranus and Neptune.
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Color Figure 6: Aurora australis seen from above, by an observer in the International Space
Station (h < 400 km).
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Color Figure 9: The Galilean satellites of Jupiter, shown at correct relative sizes. Left to right:
Io, Europa, Ganymede, and Callisto.

Color Figure 7: The terrestrial planets, shown at correct relative sizes. Left to right: Mercury,
Venus (seen in a cloud-piercing radar image), Earth, and Mars.

Color Figure 8: The Jovian planets, shown at correct relative sizes. Left to right: Jupiter, Saturn,
Uranus, and Neptune.
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Color Figure 11: Gaspra, an irregular asteroid with axes of
length 19 3 12 3 11 km, as imaged by the spacecraft Galileo
on its way to Jupiter. Colors are exaggerated to enhance small
differences in surface composition.

Color Figure 10: The satellite Io seen at visible wavelengths
(left) and at the infrared wavelength l = 5 mm (right). In the
false-color infrared image, white indicates the highest temperature,
and dark blue the lowest.
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Color Figure 12: The two tails of Comet Hale-Bopp. The ion tail (top) has an emission 
spectrum, and appears blue. The dust tail (bottom) reflects sunlight, and appears yellow.

Color Figure 13: A high-resolution spectrum of the Sun at visible wavelengths.
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Color Figure 14: False-color image of (left to right) the Sun, an M dwarf, an L dwarf, a T dwarf,
and Jupiter, as seen at near infrared wavelengths.

Color Figure 15: The Orion Nebula, an emission nebula at a distance 
d < 400 pc from the Sun. This Hubble Space Telescope image shows 
a region about 0.5 degrees across on the sky.
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Color Figure 16: The Ring Nebula, a planetary nebula at a distance d < 700 pc from the
Sun in the constellation Lyra.

Color Figure 17: False-color map of the CO emission from the Milky Way. Red indicates the
highest surface brightness, and blue the lowest.
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Color Figure 18: The Crab Nebula, a supernova remnant at a distance d < 2 kpc from the Sun.
The panels at upper right show images of its pulsar taken 1 millisecond apart.

Color Figure 19: The Milky Way as seen at infrared wavelengths; notice the central bulge.
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Color Figure 20: Sagittarius A, at a wavelength l = 20 cm.
This image shows a region 25 arcmin across, corresponding to 
a length scale d , 60 pc at the Galactic center. In this false-color
image, red indicates the highest surface brightness.

Color Figure 21: Sagittarius A West, at a wavelength l = 6 cm.
This image shows a region 3 arcmin across, corresponding to 
a length scale d , 7 pc at the Galactic center. In this false-color
image, white indicates the highest surface brightness.
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Color Figure 22: The Hubble Ultra Deep Field; the region of the sky shown here is approximately
3 arcmin on a side.
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Color Figure 23: The galaxy M82 (at a distance d < 3.5 Mpc), seen at wavelengths ranging
from X-ray (upper left), through visible (upper right) and infrared (lower right) to radio (lower left).
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Color Figure 24: Surface brightness (left) and mean radial velocity (center) of the galaxy NGC
4365 (at a distance d < 16 Mpc). Note that the core (right inset) is rotating in a different direction
from the rest of the galaxy.

Color Figure 25: Line-of-sight velocity
dispersion s in the galaxy NGC 4365.
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Color Figure 26: Gas disk at the center of the elliptical galaxy M87 (right), with Doppler shift
information (left).

Color Figure 27: Left: The Coma Cluster of galaxies (at a distance d < 100 Mpc) seen at visible
wavelengths. Right: The same cluster at X-ray wavelengths (false-color image, with red indicating
the highest surface brightness).
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Color Figure 28: A Hertzsprung-Russell diagram of the globular 
cluster M55 (at a distance d < 5 kpc in the constellation Sagittarius). 
The blue straggler stars are circled.

Color Figure 29: Infrared and visible images of the center of the Antennae,
a pair of interacting galaxies at a distance d < 14 Mpc.
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Color Figure 30: Temperature of the cosmic microwave background across the whole sky 
(black = cooler, white = hotter). The horizontal pink band is synchrotron (non-thermal) emission
from the disk of our galaxy.

Color Figure 31: Temperature fluctuations of the cosmic microwave background, after removal
of the dipole temperature distortion shown in Color Figure 30.
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1 Early Astronomy

The term “astronomy” is derived from the Greek words astron, meaning “star,” and
nomos, meaning “law.” This reflects the discovery by ancient Greek astronomers that
the motions of stars in the sky are not arbitrary but follow fixed laws. In modern times,
astronomy is usually defined as the study of objects beyond the Earth’s atmosphere,
including not only stars but also celestial objects as small as interstellar dust grains and as
large as superclusters of galaxies. The field of cosmology, which deals with the structure
and evolution of the universe as a whole, is also regarded as part of astronomy.

In the late nineteenth century, the term “astrophysics” was invented, to describe
specifically the field that studies how the properties of celestial objects are related to
the underlying laws of physics. Thus, astrophysics could be regarded as both a subfield
of physics and as a subfield of astronomy. However, because a knowledge of physics is
crucial for any type of astronomical study, the terms “astronomy” and “astrophysics” are
often used nearly interchangeably.

It is customary to start learning astronomy from a historical perspective. This is a
natural way to learn about the universe; it permits our personal growth in knowledge
to echo humanity’s growth in knowledge, starting with relatively nearby and familiar
objects, and then moving outward. Furthermore, as we will see, some of the most
fundamental things we learn about the universe are based on simple, straightforward
observations that don’t require telescopes or space probes. Let us begin, therefore, by
throwing away our telescopes and considering what we can see of the universe with our
unaided eyes.

1.1 THE CELESTIAL SPHERE

When you look up at a cloudless night sky, you have little sense of depth. In Color
Figure 1, for instance, it is not immediately obvious that the fuzzy streak in the upper
part of the picture is a comet a few light-minutes away and that the fuzzy blob in the
lower part is a galaxy two million light-years away. You can pick up a few clues about
depth with your naked eyes (for instance, the Moon passes in front of stars, so it must

1



2 Chapter 1 Early Astronomy

Above the
horizon

Below the
horizon

NCP

N

Z

S

W E

SCP

CEq

WW

FIGURE 1.1 The celestial sphere surrounding the Earth. The Earth’s north pole,
south pole, and equator project onto the north celestial pole (NCP), south celestial
pole (SCP), and celestial equator (CEq), respectively. For any observer, the horizon
plane is tangent to the observer’s location, and the zenith (Z) is directly overhead.

be closer to us than the stars are) but for the most part, determining distances to celestial
objects requires sophisticated indirect methods.1

Although it is difficult to determine the distance to celestial objects, it is much easier
to determine their position projected onto the celestial sphere. The celestial sphere is
an imaginary spherical surface, centered on the Earth’s center, with a radius immensely
larger than the Earth’s radius. (In Figure 1.1, the spherical Earth is exaggerated in size
relative to the outer celestial sphere, for easy visibility.) Given the Earth’s inconvenient
opacity, an observer on the Earth’s surface can see the sky only above the horizon,
defined as a plane tangent to the idealized, perfectly spherical Earth at the observer’s
location (that is, it touches the Earth at the observer’s feet and at no other place). The
horizon is always defined locally, meaning that it moves with the observer. The horizon
intersects the celestial sphere in a great circle called the horizon circle.2 The horizon
circle divides the celestial sphere into two hemispheres; only the hemisphere above the

1 Some of these distance-measuring techniques will be discussed in Chapter 13.
2 A “great circle” is a circle on the surface of a sphere whose center coincides with the sphere’s center.



1.2 Coordinate Systems on a Sphere 3

horizon is visible to the observer. The point directly above the observer’s head, in the
middle of the visible hemisphere of the celestial sphere, is called the zenith (point Z
in Figure 1.1). The point directly below the observer’s feet, opposite the zenith, is the
nadir.

Since the celestial sphere is indeterminately large, distances between points on the
celestial sphere are measured in angular units, as seen by an Earthly observer, rather than
in physical units such as kilometers. Astronomers most frequently measure angles in
degrees, arcminutes, and arcseconds, with 360 degrees (360◦) in a circle, 60 arcminutes
(60′) in a degree, and 60 arcseconds (60′′) in an arcminute. When they measure angles
smaller than an arcsecond, they revert to the decimal system and use milliarcseconds and
microarcseconds.

When the Sun is above the horizon, it appears as a bright disk on the celestial
sphere, 30 arcminutes across. The Moon, coincidentally, is also roughly 30 arcminutes
in diameter as seen from Earth, but appears to change in shape as it waxes and wanes
from new Moon to full and back again. When the Sun is below your horizon, you can
see as many as 3000 stars with your unaided eyes.3 The stars in the night sky appear as
tiny lights, blurred by our imperfect human vision into blobs about an arcminute across.
Starting in prehistoric times, astronomers have identified apparent groupings of stars
called constellations. The stars in a constellation are not necessarily physically related,
since they may be at very different distances from the Earth.

1.2 COORDINATE SYSTEMS ON A SPHERE

If we want to describe the approximate position of a star on the celestial sphere, we can
say what constellation it lies within. However, since there are only 88 constellations on
the entire celestial sphere, some of them quite large, merely knowing the constellation
doesn’t give a very precise location. For a more precise description of positions on the
celestial sphere, we need to set up a coordinate system. On the two-dimensional celestial
sphere, two coordinates will be needed to describe any position. Geographers have
already shown us how to set up a coordinate system on a sphere; the system of latitude
and longitude provides a coordinate system on the surface of the (approximately)
spherical Earth.

On the Earth, the north and south poles represent the points where the Earth’s rotation
axis passes through the Earth’s surface. The equator is the great circle midway between
the north and south pole, dividing the Earth’s surface into a northern hemisphere and
a southern hemisphere. The latitude of a point on the Earth’s surface is its angular
distance from the equator, measured along a great circle perpendicular to the Earth’s
equator (Figure 1.2). Latitude is measured in degrees, arcminutes, and arcseconds, as is
longitude. Thus, the use of latitude and longitude doesn’t require knowing the size of

3 This number assumes that you are in a dark location, far from the bright lights of the big city. In a populated
area, you’ll be lucky to see a few hundred stars.
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North pole

South pole

Equator

Greenwich

40° N

83° W

Prime MeridianColumbus

FIGURE 1.2 Latitude and longitude of a point on the Earth’s surface.

the Earth in kilometers or any other unit of length.4 In the example shown in Figure 1.2,
the city of Columbus, Ohio, has a latitude of 40◦ N; that is, it’s located 40◦ north of the
equator.

Latitude alone doesn’t uniquely specify a point on the Earth’s surface. If you invited a
friend to lunch at 40◦ N, he wouldn’t know whether to expect hamburgers in Columbus,
Peking duck in Beijing, or shish kebab in Ankara. The required second coordinate
on the Earth’s surface is the longitude. For each point on the Earth’s surface, half a
great circle can be drawn starting from the north pole, running through the point in
question, and ending at the south pole. This half-circle, which intersects the equator at
right angles, is called the point’s meridian of longitude, or just “meridian” for short.
The longitude of the point is the angle between the point’s meridian and some other
reference meridian. By international agreement, the reference meridian for the Earth,
called the Prime Meridian, is the meridian that runs through the Royal Observatory at

4 The use of latitude and longitude was successfully pioneered by the Greek astronomer Ptolemy in the
second century AD, despite the fact that Ptolemy severely underestimated the size of the Earth. (Ptolemy’s
underestimate helped to encourage Christopher Columbus in his crazy plan to sail nonstop from the Canary
Islands to Japan.)



1.2 Coordinate Systems on a Sphere 5

Zenith

Nadir

Horizon circle
Az = 83°

S

W

N

E

Observer

Alt = +40°

FIGURE 1.3 Altitude (Alt) and azimuth (Az) of a point on the celestial sphere,
as seen by an observer on Earth.

Greenwich, England.5 In Figure 1.2, the city of Columbus has a longitude of 83◦ W; that
is, the meridian of Columbus is 83◦ west of the Prime Meridian.

The latitude–longitude coordinate system can be applied to other planets (and to
spherical satellites as well). The rotation axis of the planet defines the poles and equator;
the Prime Meridian is generally chosen to go through a readily identifiable landmark. The
Martian Prime Meridian, for instance, runs through the center of a particular small crater
called Airy-0. A coordinate system using latitude-like and longitude-like coordinates can
also be applied to the celestial sphere. We just need to specify a great circle that can play
the role of the equator on Earth, and a perpendicular meridian that can play the role of
the prime meridian.

One such coordinate system on the celestial sphere is based on an observer’s hori-
zon, and hence is called the horizon coordinate system. In this system, illustrated in
Figure 1.3, the latitude-like coordinate is the altitude, defined as the angle of a celestial
object above the horizon circle. The zenith (the point directly overhead) is at an altitude
of 90◦. Points on the horizon circle are at an altitude of 0◦. The nadir is at an altitude of

5 Before the International Meridian Conference of 1884 agreed to adopt the Greenwich meridian as the Prime
Meridian, different nations used different reference meridians.
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−90◦, but in practice, negative altitudes are seldom used, since they represent objects
that are hidden by the Earth. The longitude-like coordinate in the horizon coordinate
system is called the azimuth.6

For any point on the celestial sphere, half a great circle can be drawn from the
zenith, through the point in question, to the nadir. The half-circle that runs through the
north point on the horizon circle acts as the “prime meridian” in the horizon coordinate
system. The azimuth is measured in degrees running from north through east. An object
due north of an observer has an azimuth of 0◦, an object due east has an azimuth of
90◦, and so forth. If you know the altitude and azimuth of any object in your horizon
coordinate system, you know where to point your telescope in order to see it. In the
example shown in Figure 1.3, a star has an altitude of 40◦ and an azimuth of 83◦; in
other words, it’s nearly halfway from the horizon to the zenith, off to the east of the
observer.

One shortcoming of the horizon coordinate system is that every observer on Earth has
a different, unique horizon and hence has a different, unique horizon coordinate system.
A star that is near the zenith (altitude ≈ 90◦) for an observer in Buenos Aires will be near
the nadir (altitude ≈ −90◦) for an observer in the antipodal city of Shanghai. To describe
positions of objects on the celestial sphere, it is useful to have a coordinate system that
all astronomers, regardless of location, can agree on, just as geographers all agree to use
latitude and longitude to describe positions on the Earth.

To build a coordinate system useful for all Earthlings, we start by projecting the
Earth’s poles and equator outward onto the celestial sphere. The Earth’s rotation axis,
which passes through the north and south poles of the Earth, intersects the celestial
sphere at the north celestial pole (labeled as NCP in Figure 1.1) and the south celestial
pole (labeled as SCP). The north celestial pole is at the zenith for an observer at the
Earth’s north pole; more generally, for an observer at a latitude � north of the equator,
it will be at an altitude of � and an azimuth of 0◦.7 The projection of the Earth’s
equator onto the celestial sphere is called the celestial equator (labeled as CEq in the
figure). The celestial equator passes through the zenith for an observer on the Earth’s
equator.

On the Earth’s surface, a point’s latitude is its angular distance north or south of
the equator. Similarly, on the celestial sphere, a point’s declination (δ) is its angular
distance north or south of the celestial equator. For points north of the celestial equator,
the declination is positive (0◦ < δ ≤ 90◦), and for points south of the celestial equator, the
declination is negative (−90◦ ≤ δ < 0◦).8 However, the declination alone is insufficient

6 The words “azimuth,” “zenith,” and “nadir,” like many terms in astronomy, are derived from Arabic.
(“Altitude” is from the Latin altus, meaning “high.”)
7 Similarly, the south celestial pole is at the zenith for an observer at the Earth’s south pole; more generally,
for an observer at a latitude � south of the equator, it will be at an altitude � and an azimuth of 180◦.
8 By analogy with the celestial poles and the celestial equator, a more logical term for declination might be
“celestial latitude.” However, the term “declination” has been in use for over six centuries; in Chaucer’s A
Treatise on the Astrolabe (ca. AD 1391), the poet included what he called “tables of the declinacions of the
sonne.”
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to uniquely locate a point on the celestial sphere, just as latitude alone is insufficient
to uniquely locate a point on the Earth. To determine the equivalent of longitude on
the celestial sphere, it is necessary to choose a celestial “prime meridian” running from
the north celestial pole to the south celestial pole. If we let the observer’s zenith act
as the celestial “Greenwich,” then the zenith meridian, defined as the arc running
from the north celestial pole through the zenith to the south celestial pole, will act as
a celestial “prime meridian.”9 The longitude-like coordinate, measured westward from
the zenith meridian, is called the hour angle (H ). For a given observer at a given time, the
declination (angular distance from the celestial equator) and hour angle (angular distance
from the zenith meridian) uniquely specify the location of a star, or other object, on the
celestial sphere.

One complication of using the hour angle to specify the location of a star is that
observers at different longitudes will have different observer’s meridians, and hence will
measure different hour angles for the same star. If a star is on your zenith meridian, it
will be 1◦ east of the zenith meridian for an observer 1◦ of longitude west of you. Another
complication results from the fact that the Earth is rotating about the axis between its
north and south poles, completing one rotation in about 24 hours. Although we know
perfectly well, at an intellectual level, that the Earth is rotating from west to east, an
observer pinned by gravity to the Earth’s surface experiences a strong illusion that the
Earth is stationary and the celestial sphere is rotating from east to west. Stars thus appear
to follow circular paths called diurnal circles that are parallel to the celestial equator;
that is, they stay a fixed angular distance from the celestial equator, and their declination
remains constant. This situation is illustrated in Figure 1.4. Over the course of 24 hours,
the hour angle of a star changes by 360◦ as it travels in its diurnal circle. Because of the
constant rate of change of the hour angle (15◦ per hour), the hour angle is often measured
in units of hours (h), minutes (m), and seconds (s) instead of degrees, arcminutes, and
arcseconds, with 1h = 15◦, 1m = 15′, and 1s = 15′′. A star that is on the zenith meridian
right now has hour angle H = 0h; 6 hours from now it will be at H = +6h, off to the
observer’s west; 12 hours from now it will be at H = +12h, on the nadir meridian. Thus,
the hour angle of a star can be thought of as the time that has elapsed since it was last on
the zenith meridian.

The hour angle of a star is constantly changing because it is measured relative to
an observer’s meridian that is tied to the rotating Earth. If we want a longitude-like
coordinate that is constant for a given star over the course of 24 hours, we need to measure
it relative to a new meridian, one that is tied to the celestial sphere rather than to the Earth.
In short, we need a point on the celestial sphere that acts as the astronomical equivalent of
Greenwich, England. Instead of selecting one particular star to serve as a “Greenwich,”
astronomers have chosen a point on the celestial equator termed the “vernal equinox.”
(In Section 1.3, we give the technical definition of the vernal equinox; but remember,

9 We can also define a complementary nadir meridian running from the north celestial pole through the nadir
to the south celestial pole. The zenith meridian and the nadir meridian constitute the two halves of a great circle
called the observer’s meridian.
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FIGURE 1.4 Diurnal circles of stars as seen by an observer in the northern
hemisphere. Circumpolar stars near the north celestial pole never set; similarly, stars
near the south celestial pole never rise. Stars on the celestial equator are above the
horizon for 12 hours and below the horizon for 12 hours.

any point on the celestial sphere would work equally well, just as any point on the Earth
would work just as well as Greenwich.)

Half a great circle drawn on the celestial sphere, from the north celestial pole,
through the vernal equinox, to the south celestial pole, is the celestial equivalent of
the Prime Meridian on Earth (Figure 1.5). The longitude-like coordinate measured
eastward from this “Prime Meridian” is called the right ascension (α). The right as-
cension and declination of a star change slowly with time (just as the latitude and
longitude of a city on Earth may change slowly thanks to plate tectonics), but they
can be treated as constant over the course of a single night, unlike the inexorably
changing hour angle. The right ascension of a celestial object, like its hour angle, is
characteristically measured in hours, minutes, and seconds. The coordinate system us-
ing right ascension and declination is called the equatorial coordinate system and
is widely used in astronomy; catalogs of stars, for instance, generally give their po-
sitions in terms of right ascension and declination. For the example shown in Fig-
ure 1.5, the star in question is at a right ascension α = 277◦ = 18h28m and a decli-
nation δ = +40◦. This is within the constellation Lyra, not far from the bright star
Vega.
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FIGURE 1.5 The right ascension (α) and declination (δ) of a point on the celestial
sphere.

1.3 CELESTIAL MOTIONS

As mentioned above, and illustrated in Figure 1.4, an observer on the rotating Earth
sees stars move in diurnal circles, just as if the Earth were stationary and the stars were
glued to a rigid, rotating celestial sphere. The horizon plane of an observer bisects the
celestial sphere, and thus also bisects the celestial equator (labeled “CEq” in Figure 1.4).
Thus, stars on the celestial equator are above the horizon for 12 hours a day and below
the horizon for 12 hours a day. The diurnal circles of stars not on the celestial equator
are not bisected by the horizon (except in the special case when the observer is on the
equator, when all diurnal circles are bisected). Consider an observer somewhere in the
Earth’s northern hemisphere, as shown in Figure 1.4.10 For stars north of the celestial
equator, more than half of their diurnal circles are above the horizon, so they spend
more time above the horizon than below. For an observer at latitude �, all stars within
an angular distance � of the north celestial pole (that is, with declination δ > 90◦ − �)

10 In our examples, we will practice blatant northern hemisphere chauvinism, rationalized by the fact that ∼90%
of the human population lives in the northern hemisphere. Description of apparent motions for a southern
hemisphere observer is left as an exercise for the reader.
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FIGURE 1.6 Star trails over Mauna Kea, Hawaii, showing circumpolar stars
around the north celestial pole.

will have diurnal circles that don’t intersect the horizon plane at all. These stars, called
circumpolar stars, never fall below the observer’s horizon but can be seen to move in
counterclockwise circles about the north celestial pole.

Figure 1.6 shows a long exposure of the night sky over Mauna Kea, Hawaii, at a lati-
tude � = 20◦; the star trails cover about 1/12 of a full circle, indicating the photographic
exposure was ∼ 2 hours long. By contrast with circumpolar stars, stars within an angu-
lar distance � of the south celestial pole never rise above the horizon; again, the horizon
plane never intersects their diurnal circles. For stars south of the celestial equator but far-
ther than � from the south celestial pole, less than half of their diurnal circles are above
the horizon; these stars spend less than 12 hours per day above the northern observer’s
horizon, rising in the southeast and soon setting in the southwest.

As well as the stars, the Sun, Moon, and planets are seen to move in diurnal circles.
However, if the Sun, Moon, and planets are observed for times much longer than a single
night, additional motions are also seen. The most important motions are the following:

. The relative positions of stars can be approximated as constant, over human time
scales. Although stars are in motion relative to each other and to the Sun, on time
scales shorter than decades the motion cannot be detected without a telescope.

. The Sun moves eastward relative to the stars by about 1◦ per day. This is because
the Earth is orbiting the Sun, and we see the Sun in projection against different
background stars as we orbit around it. Because of the relative motion of the Sun
and stars, the stars rise 4 minutes earlier each day relative to the Sun.
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FIGURE 1.7 The apparent motion of Mars relative to the stars during late 2005
and early 2006. Mars was in retrograde motion from 2005 October 1 to 2005
December 9.

. The Moon also moves eastward relative to the stars, by about 13◦ per day. This
is because the Moon orbits around the Earth in an eastward direction, taking 27.3
days for a complete orbit. The Moon’s motion around the sky (360◦/27.3 days ≈
13◦ day−1) is slow compared to the Earth’s eastward rotation (360◦ day−1), so
we still see the Moon rise in the east and set in the west, just like the Sun.
Relative to the Sun, the Moon moves eastward by about 12◦ per day, so it takes
360◦/12◦ day−1 ≈ 30 days for the Moon to “lap” the Sun. Because of the relative
motion of Sun and Moon, the Moon rises about 50 minutes later each day.

. The planets known prior to the invention of the telescope were Mercury, Venus,
Mars, Jupiter, and Saturn (in addition to the Earth, of course). Without a telescope,
the planets look like unresolved stars. Early astronomers distinguished them from
stars by the fact that planets move relative to the stars.11 Ordinarily, planets
move slowly eastward relative to the stars. On occasion, however, they reverse
their motion and move westward relative to the stars for a short period. This
reversed motion is called retrograde motion. Figure 1.7, illustrates, an example
of retrograde motion for the planet Mars.

The great circle along which the Sun moves on the celestial sphere is called the ecliptic.
The ecliptic represents the plane of the Earth’s orbit around the Sun, projected onto the

11 The word “planet” comes from the Greek word meaning “wanderer.” The word “plankton” derives from the
same root; plankton are tiny aquatic creatures condemned to wander where the ocean currents take them.
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FIGURE 1.8 The relative positions of the ecliptic and the celestial equator on the
celestial sphere. The equinoxes and solstices are indicated.

celestial sphere. The ecliptic, as shown in Figure 1.8, is inclined by 23.5◦ relative to the
celestial equator. The tilt of 23.5◦ between the ecliptic and celestial equator is called the
obliquity of the ecliptic. The obliquity is nonzero because the Earth’s rotation axis is
not exactly perpendicular to the orbit of the Earth around the Sun; instead, the axis is
tilted by 23.5◦ from the perpendicular.

Since the ecliptic and celestial equator are two different great circles on a sphere,
they intersect at two points, 180◦ apart. The two points of intersection are called the
equinoxes. The point where the Sun moves from the northern celestial hemisphere to
the southern is called the autumnal equinox; the Sun is at the autumnal equinox around
September 21. The point where the Sun moves from the southern celestial hemisphere
to the northern is called the vernal equinox; the Sun is at the vernal equinox around
March 21. (Recall from Section 1.2 that the vernal equinox was chosen as the origin for
the measurement of right ascension).

The point on the ecliptic that is farthest north of the celestial equator (it has declination
δ = +23.5◦) is called the summer solstice; the Sun is at the summer solstice around June
21. The point on the ecliptic that is farthest south of the celestial equator (δ = −23.5◦)
is called the winter solstice; the Sun is at the winter solstice around December 21.
Astronomers usually use the terms “equinox” and “solstice” to refer to points on the
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celestial sphere; however, the terms can also refer to the time at which the Sun reaches
those points.

The Sun’s diurnal path varies during the year because its declination changes as it
moves along the ecliptic. The time per day that the Sun is above the horizon depends on
where it is relative to the celestial equator. At the equinoxes, the Sun is exactly on the
celestial equator, and thus spends 12 hours above the horizon and 12 hours below the
horizon.12 When the Sun is north of the celestial equator, it is above the horizon for more
than 12 hours for a northern hemisphere observer. When it’s south of the celestial equator,
it is above the horizon for less than 12 hours for a northern hemisphere observer. In the
northern hemisphere, the shortest night of the year occurs when the Sun is at the summer
solstice, its point farthest north of the celestial equator. Similarly, the longest night of
the year in the northern hemisphere occurs when the Sun is at the winter solstice.13

As mentioned on page 10, stars with a declination δ > 90◦ − � are circumpolar stars
for an observer at latitude � north of the equator. This implies that a star in the northern
celestial hemisphere, with declination δ > 0◦, will be a circumpolar star for all observers
with latitude � > 90◦ − δ. When the Sun is at the summer solstice, it has a declination
δ = +23.5◦, and hence is a circumpolar star for observers north of latitude 66.5◦ N.
Within this region, bounded by the Arctic Circle, observers experience the phenomenon
of the midnight Sun around June 21; the Sun never sets but makes a complete circle in
azimuth over 24 hours. At the same time, observers within the Antarctic Circle, at
latitude 66.5◦ S, never see the Sun rise over the horizon during the course of 24 hours
(see Figure 1.9). At the time of the winter solstice, around December 21, the situation is
reversed; observers within the Arctic Circle have 24 hours of darkness while observers
within the Antarctic Circle have 24 hours of sunlight.

Globes of the Earth usually have the Arctic and Antarctic Circles drawn on them (see
Figure 1.9). They also display the Tropic of Cancer at 23.5◦ N and the Tropic of Capricorn
at 23.5◦ S. At a latitude � north of the equator, the zenith has a declination +�; thus, the
Tropic of Cancer represents the latitude at which the Sun passes directly overhead when
it’s at the summer solstice. At a latitude � south of the equator, the zenith has a declination
−�; thus, the Tropic of Capricorn represents the latitude at which the Sun passes directly
overhead when it’s at the winter solstice. The region on Earth between the Tropic of
Cancer and the Tropic of Capricorn is known as “the tropics.”14

The Sun’s annual motion along the ecliptic carries it through a group of constellations
that comprise the zodiac. The 12 traditional members of the zodiac are Pisces (within
which the vernal equinox is located), Aries, Taurus (where the summer solstice is
located), Gemini, Cancer, Leo, Virgo (where the autumnal equinox is located), Libra,

12 This equality accounts for the name “equinox,” which comes from the Latin equus (equal) + nox (night). In
other words, it’s where the Sun is located when night is equal in length to day.
13 The term “solstice” comes from the Latin sol (Sun) + sistere (to stand still). The solstices are the points
where the Sun’s declination reaches an extremum. Thus, although the Sun doesn’t literally stand still relative
to the background stars (its right ascension is continuously increasing), its declination is momentarily constant
at a solstice.
14 The words “tropic” and “tropical” derive from the Greek word trope (meaning “a turning”—as when the
Sun, which has been moving away from the celestial equator, turns around and moves back toward the celestial
equator).
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FIGURE 1.9 Sun’s rays striking the Earth, around the time of the summer solstice.
The Arctic and Antarctic Circles, as well as the Tropics of Capricorn and Cancer,
are indicated.

Scorpius, Sagittarius (where the winter solstice is located), Capricornus, and Aquarius.
However, using the constellation boundaries defined by the International Astronomical
Union, the Sun also passes through the constellation Ophiuchus (from December 1 to
December 18).

The vernal equinox has not always been in Pisces. In the second century BC, the Greek
astronomer Hipparchus discovered that the equinoxes and solstices move westward
along the ecliptic with respect to the fixed stars of the zodiac. This motion, called
the precession of the equinoxes, occurs at a rate of 50.3′′ per year, completing a full
circuit in 25,800 years. In the time of Hipparchus, the vernal equinox was located in the
constellation Aries.15 We know today, as Hipparchus did not, that the precession of the
equinoxes is due to the precession, or “wobble,” of the Earth’s rotation axis, which moves
in a cone of opening angle 47◦, with a precession period of 25,800 years (Figure 1.10).

In Section 4.1, we examine the physical causes that make the Earth precess like a
dying top. For the moment, however, we will focus on the practical implications of the
precession. As the Earth’s rotation axis precesses, the north and south celestial poles,
which are the projections of that axis onto the celestial sphere, move in a circle of diameter

15 Thus, the vernal equinox is sometimes referred to, anachronistically, as the “first point of Aries.” Similarly,
the Tropic of Cancer and Tropic of Capricorn gained their names when the summer and winter solstices were
in the constellations Cancer and Capricornus, respectively.
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FIGURE 1.10 Precession of the Earth’s rotation axis, with the resulting motion
of the north celestial pole on the celestial sphere.

47◦, taking 25,800 years for a complete circuit. The north celestial pole (at declination
δ = 90◦) is currently near the bright star called Polaris, in the constellation Ursa Minor.
In the year 2700 BC, the star Thuban, in the constellation Draco, was very close to the
north celestial pole.16 In the year AD 14,000, the bright star Vega, in the constellation
Lyra, will be close to the north celestial pole (see Figure 1.10).

As the celestial poles and equator continuously move relative to the background stars,
the declination of those stars must also continuously change. Also, since the vernal
equinox continuously moves through the zodiac, the right ascension of stars (which is
measured relative to the vernal equinox) must continuously change. Since the vernal
equinox is moving westward across the celestial sphere, and right ascension is measured
eastward from the vernal equinox, the right ascension of a fixed star will increase
with time. Due to the time dependence of the coordinates, when a right ascension and
declination are given, the epoch at which they are measured must also be specified. The
most common standard used today is “equinox 2000.0,” indicating right ascension and
declination at the beginning of the year 2000. (Some older star charts and catalogs use
1950.0 or 1900.0 as their right ascension and declination standards.)

16 When William Shakespeare put the words “I am as constant as the northern star” into the mouth of Julius
Caesar, he was making an astronomical blunder. In the year 44 BC, when Caesar was assassinated, the closest
bright star to the north celestial pole was Kochab, in the constellation Ursa Major; at a distance of 9◦ from
the pole, its diurnal circle would have been blatantly obvious, and calling it “constant” would have been a real
stretch.
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1.4 BASIC TIMEKEEPING

Astronomy was initially developed largely for its practical applications, such as celes-
tial navigation and timekeeping. Calendars are particularly important for agriculture;
planting a crop at the correct time of year is vital. Thus, virtually all agrarian cultures
developed astronomy to varying levels of sophistication. Some archeological sites have
been shown to have a connection with astronomy. Stonehenge, on Salisbury Plain in the
south of England, is a spectacular example of a prehistoric observatory, built in stages
during the time span 2500–1700 BC. Various alignments of stones mark key events of
the calendar; for instance, the direction in which the Sun rises at the time of the win-
ter solstice and of the summer solstice. Other prehistoric structures throughout the world
show similar alignments, giving concrete evidence for humanity’s long-standing interest
in astronomy.

With the invention of writing, astronomers began leaving systematic records of their
observations of the sky. Chinese, Egyptian, and Mayan astronomers all made meticulous
records, as did the ancient Babylonians. The Babylonian Empire was the dominant power
in southern Mesopotamia (modern Iraq) from the reign of Hammurabi in the eighteenth
century BC until it was absorbed into the Persian Empire in the sixth century BC. During
that interval, careful observations of the Sun and Moon by Babylonian astronomers
enabled an accurate determination of the length of the year and month. The Babylonians
used a sexagesimal number system (base 60) rather than a decimal system (base 10);
it is thanks to the Babylonians that there are 360 (6 × 60) degrees in a full circle, 60
arcminutes in a degree, and 60 arcseconds in an arcminute.

Astrology, which tracks the positions of planets in the belief that they influence human
events, was also a major motivation for the development of astronomy in Babylonia and
elsewhere. In fact, until relatively modern times, astronomy was not clearly distinguished
from astrology at all. As late as the seventeenth century, for instance, the astronomer
Johannes Kepler augmented his inadequate salary by casting horoscopes. “God provides
for every animal his means of sustenance—for an astronomer he has provided astrology,”
Kepler wrote.

All common units of time are ultimately astronomical in origin. The day is based on
(but is not identical to) the rotation period of the Earth. The hour is defined as a fraction
of the day. Ancient cultures divided the day into 12 hours of daylight and 12 hours of
darkness; thus, the daylight hours were longest near the time of the summer solstice and
shortest near the time of the winter solstice. The division of the day into 24 hours of equal
length didn’t occur until the mechanical clock was invented in the thirteenth century. By
the end of the Middle Ages, clocks were accurate enough to allow the subdivision of
each hour into 60 minutes.17 The measurement of seconds, defined as 1/60 of a minute,
wasn’t feasible until the invention of pendulum clocks in the seventeenth century.

The month and the year are based on (but are not identical to) the orbital period of
the Moon around the Earth, and the Earth around the Sun, respectively. Even the week
is tied, albeit loosely, to astronomy. The seven-day week currently in use is the merger

17 The division of hours into 60 minutes was modeled on the much earlier division of degrees into 60
(arc)minutes. Thus, the 60 tick marks around the edge of a clock face ultimately trace back to the Babylonians.
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TABLE 1.1 Days of the Week

Latin Italian English
Name Name Name Notes

dies Solis domenica Sunday domenica = “Lord”

dies Lunae lunedi Monday Moon = Luna

dies Martis martedi Tuesday Mars ≈ Tiw

dies Mercurii mercoledi Wednesday Mercury ≈ Woden

dies Iovis giovedi Thursday Jupiter = Jove ≈ Thor

dies Veneris venerdi Friday Venus ≈ Frigg

dies Saturni sabato Saturday sabato = “Sabbath”

of two different cycles: the Jewish week, containing six work days plus the Sabbath, and
the planetary week, in which each day is presided over by one of the seven wandering
objects (or planets) known to ancient astronomers. In the planetary week, which may
have originated among Egyptian astrologers, the days of the week are named, in order,
after the Sun, the Moon, Mars, Mercury, Jupiter, Venus, and Saturn.18 The Latin names
for the days of the week, shown in Table 1.1, preserve this order. In Romance languages
(Italian is shown as an example in the Table), the planetary names are retained for the
workweek; however, Saturday is given a name derived from the Sabbath of the Jewish
calendar, and Sunday is named the “Lord’s Day.” In the English names for the days of the
week, the links to Saturn, the Sun, and the Moon are obvious in Saturday, Sunday, and
Monday. The planetary associations are obscured for the other four days of the week,
however, since the names of Roman deities have been replaced with their approximate
Teutonic equivalents (see Table 1.1).

1.5 SOLAR AND SIDEREAL TIME

In Section 1.4, we noted that the length of the day, as it is most commonly defined,
is not exactly equal to the rotation period of the Earth. Let’s see why this is true. By
convention, we define the “day” to be the interval between successive upper transits
of a celestial object. Because of the Earth’s rotation, a celestial object will cross, or
transit, the observer’s meridian twice a day. The upper transit occurs when the object
crosses the zenith meridian, and the lower transit occurs half a day later, when it crosses
the nadir meridian.19 The time between two upper transits of a star is a sidereal day;

18 To modern astronomers, the Sun is classified as a star, and the Moon is classified as a satellite. However,
ancient astronomers lumped together the Sun and the Moon with the other “wanderers” they could see in the
sky.
19 For circumpolar objects, both transits are visible above the horizon, so it is particularly important to
distinguish between them. The upper transit for a circumpolar object occurs when the object crosses the
observer’s meridian at a higher altitude traveling westward; the lower transit occurs when the object crosses
the meridian at a lower altitude traveling eastward.
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FIGURE 1.11 The relation between the solar and sidereal day; the solar day is
slightly longer than the sidereal day because of the Earth’s orbital motion around the
Sun.

this represents the Earth’s rotation period relative to the distant fixed stars.20 The time
between two upper transits of the Sun is a solar day, which is slightly longer than the
sidereal day, as seen in Figure 1.11. The fundamental measure of time used by humans
is solar time, since people find it more convenient to schedule their lives around how the
Sun moves in the sky rather than how the inconspicuous nighttime stars move.

The difference in length between the sidereal and solar day is the result of a change
in the observer’s frame of reference. The sidereal day is the Earth’s rotation period
measured in the nonrotating frame of reference of the fixed stars, also known as the
sidereal frame. The solar day is the Earth’s rotation period measured in a reference frame
that co-rotates with a line drawn from the Earth to the Sun. To examine the mathematical
relation between the sidereal day and the solar day, let �ωsid be the angular velocity of the
Earth’s rotation in the sidereal frame and let �ωE be the angular velocity of the Earth’s
orbital motion in the same frame of reference. The difference between these is the angular
velocity of the Earth’s rotation in a reference frame that co-rotates with the Earth–Sun
line; let’s call this �ωsol. Specifically, we see that

�ωsid(t) = �ωsol(t) + �ωE(t). (1.1)

If the angular velocity vectors are parallel, this can be rewritten as a scalar equation,

ωsid(t) = ωsol(t) + ωE(t). (1.2)

20 The word “sidereal” is derived from the Latin word sidereus, meaning “starry.”
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For the Earth–Sun system, ωsid and ωE aren’t exactly parallel, since they are tilted by
23.5◦ relative to each other. However, the parallel assumption gives a reasonable first
approximation.

If, in addition, ωsid and ωE are constant, then equation (1.2) can be rewritten in terms
of time rather than angular velocity. In that case, |ω| = 2π/P , where P is the period of
the circular motion in question. Thus, if Psid is the length of the sidereal day, Psol is the
length of the solar day, and PE is the Earth’s orbital period around the Sun,

2π

Psid
= 2π

Psol
+ 2π

PE

1

Psid
= 1

Psol
+ 1

PE
. (1.3)

If we define the solar day to be Psol ≡ 1 day, then we note that PE ≈ 365 days 	 Psol.
Thus, we may write

Psid =
(

1

Psol
+ 1

PE

)−1

= Psol

(
1 + Psol

PE

)−1

≈ Psol

(
1 − Psol

PE

)
. (1.4)

The difference between the solar day and the sidereal day is then

Psol − Psid ≈ Psol

(
Psol

PE

)

≈ 1 day

(
1

365

) (
24 hr

1 day

) (
60 min

1 hr

)

≈ 4 min. (1.5)

Thus, the length of the sidereal day is 23h56m. This means that, relative to the Sun, the
stars rise 4 minutes earlier each day as the Sun moves slowly eastward along the ecliptic.

Although the Sun makes a convenient clock for terrestrial observers, and one that
never needs winding, defining time in terms of the solar day has one major problem. The
length of the apparent solar day, defined as the time between one upper transit of the
Sun and the next, varies over the course of a year. The variations in the apparent solar
day are not huge: the shortest apparent solar days, which occur in March and September,
are less than a minute shorter than the longest apparent solar days, which occur in June
and December. Nevertheless, the differences in the length of the apparent solar day were
known to ancient Babylonian astronomers, thanks to their careful observations. From a
purely empirical standpoint, astronomers circumvent the problem of the variable length
of the apparent solar day by defining two types of time measurement:
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FIGURE 1.12 The solid line is the empirically determined equation of time; dots
represent the first day of each calendar month. The dotted line is the contribution
to the equation of time from the obliquity of the ecliptic; the dashed line is the
contribution from the Earth’s changing orbital speed.

. Apparent solar time is measured by the Sun’s position relative to the local
observer’s meridian. Apparent solar time is the time measured by a sundial.21

. Mean solar time is the time kept by a fictitious “mean Sun” that travels eastward
along the celestial equator at a constant rate, completing one circuit in one year.
The mean solar day is thus equal to the average length of an apparent solar day.
The mean solar day, which is constant over time, is the basis for the time kept by
mechanical and electronic clocks.

These two measures of time are related by the equation of time. Specifically,

Equation of Time = Apparent Solar Time − Mean Solar Time. (1.6)

The equation of time, as calculated from observations of the Sun, is shown in Figure 1.12.
In mid-February, the accumulation of long apparent solar days causes apparent solar
time to fall as much as 14 minutes behind mean solar time. Conversely, during early
November, apparent solar time runs more than 16 minutes ahead of mean solar time.

21 Brief reflection on how a sundial works, combined with the knowledge that mechanical clocks were invented
in the northern hemisphere, should lead the reader to an understanding of why clocks run “clockwise.”
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FIGURE 1.13 The analemma; that is, a plot of the Sun’s declination as a function
of the equation of time. The dots represent the Sun’s position on the first day of each
calendar month.

If the equation of time is plotted as a function of the Sun’s declination rather than as
a function of date, the result is a figure known as the analemma (Figure 1.13). The
lopsided “figure eight” shape of the analemma is sometimes found printed on globes.
Perhaps more striking, if you take a multiple exposure photograph of the Sun, taking
an exposure at the same time each day (as measured by a clock) throughout the year,
the resulting Sun images trace out the shape of an analemma. Such a photograph, taken
from Arizona, is shown in Figure 1.14. Analemma photographs provide graphic evidence
that the length of the apparent solar day is variable; if its length were constant, then the
analemma would be a straight line segment, not a warped figure eight. The obvious next
question is Why does the apparent solar day vary in duration?

The variation in length of the apparent solar day has two causes: the obliquity of the
ecliptic (that is, the fact that �ωsid and �ωE are not parallel) and the nonuniform orbital
speed of the Earth (that is, the fact that ωE(t) varies with time).22 Even if the Sun moved
at a perfectly constant rate along the ecliptic, the obliquity of the ecliptic would create
a variable eastward motion of the Sun. The Sun’s eastward motion (that is, the rate of
increase of its right ascension) is its projected motion onto the celestial equator. The

22 The angular velocity of the Earth’s rotation, ωsid, varies at a much, much slower rate than the angular velocity
of the Earth’s orbital motion.
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FIGURE 1.14 Analemma photographed over Carefree, Arizona, from 1990
September to 1991 August, at 8:00 am local standard time.

projected motion is greatest at the solstices, when the Sun’s motion is parallel to the
equator, and smallest at the equinoxes, when the eastward motion is reduced by a factor
cos(23.5◦) ≈ 0.917. As a result, the apparent solar day tends to be longer at the solstices
(late June and late December) than at the equinoxes (late March and late September).

The contribution of the obliquity of the ecliptic to the equation of time is shown as the
dashed line in Figure 1.12. The other contribution to the equation of time is due to the fact
that the angular speed of the Earth on its orbit is not constant. As discussed in detail in
Section 2.5, the Earth’s orbit is not perfectly circular but is a mildly eccentric ellipse. The
angular speed of the Earth is greatest when the Earth is at its closest approach to the Sun;
this occurs near the beginning of January. The motion of the Sun, as seen from Earth,
will thus be largest in January and smallest in July, six months later, when the Earth is
at its greatest distance from the Sun. The contribution of the changing angular speed to
the equation of time is shown as the dotted line in Figure 1.12. When the contributions
of the obliquity of the ecliptic and the variable angular speed are added together, they
produce the observed equation of time (the solid line in the figure).

Even after switching from apparent to mean solar time, a remaining difficulty is that
time is defined locally, not globally. Local noon, defined as the instant when the center
of the Sun makes an upper transit, is different for observers at different longitudes. For
every degree of longitude that you travel westward, local noon occurs 4 minutes later.
Prior to the nineteenth century, when it took far longer than 4 minutes to travel one degree
in longitude, this was not a problem. However, the advent of high-speed communication
(the telegraph) and high-speed transportation (the railways) raised a problem. To prevent
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railway conductors from having to reset their watch at each station, every railway
company adopted a standard time, usually that of the company headquarters or the largest
city serviced by the company. This resulted in unpleasant chaos at railroad stations served
by more than one railway company.

In 1883, the major railway companies of the United States and Canada simplified
matters by adopting time zones, within which all clocks would strike noon simultane-
ously. The adoption of time zones has since spread throughout the world. Each time zone
is nominally 15◦ wide, but adjusted locally along political boundaries; the time within
each time zone is called the “civil time” and can vary significantly from the local mean
solar time, especially in broader time zones. Since the civil time increases by one hour
for each time zone you travel to the east, there must be a boundary drawn from the north
pole to the south at which the civil time jumps backward by 24 hours as you travel to the
east. Otherwise, the civil time would be multiple-valued as it wound around and around
and around the globe. This boundary is called the International Date Line. The Inter-
national Date Line is based on the meridian opposite the Prime Meridian, but jogs back
and forth to ensure that the division line doesn’t pass through any nations.

Astronomers, and other scientists, frequently want to use a time measure that is
independent of the observer’s position on Earth. During the ninteenth century, when
the meridian through Greenwich was adopted as the Prime Meridian, it was natural to
use Greenwich Mean Time (GMT) as the universal standard, where GMT is defined as
the mean solar time as measured at the Prime Meridian. Locally, mean solar time is then

Mean Solar Time = GMT + �east, (1.7)

where �east is the east longitude of the observer. Civil time, however, is

Local Civil Time = GMT + Nzone × 1 hr, (1.8)

where Nzone is the integral number of time zones the observer is displaced eastward from
the prime meridian.23

Until the twentieth century, the rotating Earth provided the ultimate basis for human
measurements of time. However, the rotation rate of the Earth is not perfectly constant.
The Moon’s tidal effect (discussed in more detail in Section 4.2) slows the Earth’s rotation
rate by approximately 0.0016 s century−1. In addition, the Earth’s rotation rate varies
seasonally because of changes in atmospheric and oceanic temperature and has irregular
changes due to earthquakes, which make tiny changes to the Earth’s moment of inertia.
The Earth, in other words, is a clock that is “winding down,” and is doing so at an
irregular rate. In the twentieth century, atomic clocks were devised that measured time
more accurately than the rotating Earth. The fundamental measure of time used today is
therefore International Atomic Time (abbreviated TAI, from the French Temps Atomique
International). In the SI system of units, the second is defined as 9,192,631,770 times
the period of the radiation emitted by the hyperfine transition of the cesium-133 atom at
absolute zero temperature. This definition was chosen so that the second was equal in
length to 1/60 of 1/60 of 1/24 of a mean solar day, measured around the year AD 1900.

23 The actual situation is complicated by the fact that some regions, such as India, Newfoundland, and central
Australia, have time zones that are not offset by an integral number of hours.
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Because of the slowing of the Earth’s rotation, a mean solar day in AD 2000 was not
60 × 60 × 24 = 86,400 s. Instead, it was 86,400.0016 s.

We thus have an inherent tension between time as measured by highly accurate atomic
clocks and time as measured by the not-quite-as-accurate clock provided by the rotating
Earth. To resolve this tension, scientists have adopted a reference time for Earth, called
Coordinated Universal Time, or UTC.24 In UTC, seconds are defined in accordance
with the SI definition. UTC is synchronized with the (gradually slowing) mean Sun by
occasionally interpolating a leap second when necessary to keep UTC within 0.9 seconds
of the time measured by the mean Sun. Through the year 2008, a total of 34 leap seconds
were required to align UTC with mean solar time.

One might ask how a spin-down rate of only 0.0016 s century−1 can lead to 34 leap
seconds over a period of just over a century. This is because the effect of slowing is cumu-
lative. Think of the Earth as being a clock that slows at a rate ε = 0.0016 s century−1 =
4.4 × 10−8 s day−1. If the length of a day is P0, then during the first day we use the Earth
as a clock, it loses a time εP0 = 4.4 × 10−8 s. During the second day, however, it loses a
time 2εP0 = 8.8 × 10−8 s, and in general, on the N th day, it loses NεP0. The total time
lag after N days will be

�t = εP0 + 2εP0 + . . . + NεP0 = εP0

N∑
i=1

i = εP0
N(N + 1)

2
. (1.9)

After a time t equal to many days has passed (N 	 1), the time lag that must be filled in
with leap seconds is

�t ≈ εP0
N2

2
≈ εP0

2

(
t

1 day

)2

. (1.10)

Thus, the time lag due to the Earth’s spin-down is quadratic in t , not linear. Since there
are 36,525 days in a century, the time lag expected, in seconds, is

�t ≈ (4.4 × 10−8 s day−1)(1 day)

2

(
36,525 days

1 century

)2 (
t

1 century

)2

≈ 30 s

(
t

1 century

)2

. (1.11)

This is only an approximate formula, because of the occasional small glitches in the
Earth’s rotation rate due to earthquakes. However, it gives the correct long-term trend:
each century will require a greater number of leap seconds to keep the gradually length-
ening mean solar day in synch with atomic clocks.

In addition to solar time, astronomers frequently find it useful to use an alternative
time system, sidereal time. Because a sidereal day is the time between upper transits
of a star other than the Sun, it represents the rotation period of the Earth relative to the

24 English speakers wanted the abbreviation CUT; French speakers wanted TUC, for temps universel coordiné.
UTC was chosen as the compromise.
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distant fixed stars. A clock measuring sidereal time runs faster than a clock measuring
mean solar time, by about 4 minutes per day.

Technically speaking, the local sidereal time (LST) is defined as the hour angle of
the vernal equinox, which by definition has a right ascension α = 0. Thus, when the
vernal equinox makes an upper transit, the local sidereal time is 0h. Local sidereal time
is based on a 24-hour clock, running from 0h to 24h. If the vernal equinox is not above
the horizon, the local sidereal time can be computed after measuring the hour angle (H )
of a star with known right ascension (α):

LST = H + α. (1.12)

In practice, astronomers use this equation to compute the hour angle of a star with known
right ascension at a particular local sidereal time.

1.6 CALENDARS

As mentioned in Section 1.4, having an accurate calendar is useful for an agrarian society.
For a calendar to remain useful for agricultural purposes, it must remain in phase with
the seasons of the year. That is, the Sun should return to the vernal equinox on the same
calendar date each year. (In the calendar currently in use, that date happens to be March
21.) The interval of time that elapses between successive passes of the Sun through the
vernal equinox is called the tropical year.25 The length of the tropical year is 365.24219
mean solar days. Because of the precession of the equinoxes, the tropical year is slightly
different in length from the sidereal year, which is the time it takes the Sun to make a
complete circle of the ecliptic relative to the fixed background stars. The sidereal year,
which is the orbital period of the Earth around the Sun, is 365.25636 days, or about 20
minutes longer than the tropical year.

The fact that the number of mean solar days in a tropical year, 365.24219, is not
an integer led to a certain amount of difficulty when ancient cultures set up calendars.
During the time of the Roman Republic, for instance, the Roman calendar contained 12
months adding up to only 355 days. It was the job of the board of pontifices (Roman
priests) to interpolate an extra month when the calendar fell out of synchronization with
the seasons. However, the priests were largely driven by nonastronomical considerations;
they added the extra month when politicians friendly to them were in office, effectively
extending their elected term, but omitted the month when their enemies were in power.
By the time Julius Caesar became effective dictator of Rome, the Roman calendar was
badly out of alignment with the seasons. In the year 46 BC, Caesar interpolated not one
but three extra months to return the time of the vernal equinox to its traditional date in
late March.26 After consulting with an Alexandrian astronomer named Sosigenes, who

25 It’s called the “tropical” year because it is the time required for the Sun to go from being overhead at the
Tropic of Cancer to being overhead at the Tropic of Capricorn and back again.
26 Caesar called the year 46 BC, with its unusual length of 445 days, the ultimus annus confusionis, or “last
year of confusion.” Humorists in Rome emphasized the alternate meaning of the phrase: “the year of ultimate
confusion.”
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was familiar with the 365-day calendar used by the Egyptians, Julius Caesar proclaimed
a new calendar. In this Julian calendar, years ordinarily had 365 days; however, every
fourth year, an extra day, called a leap day, was added. The Julian year thus has 365.25
days, on average; this is a fairly close approximation to the tropical year of 365.24219
days.

The initial small difference between the Julian year and the tropical year accumulated
with time, amounting to one day every 128 years. By the sixteenth century, the vernal
equinox fell on the date March 11, according to the Julian calendar. This caused problems
for the Church, which computed the date of Easter using a formula devised in the fourth
century that assumed that the vernal equinox occurred on March 21. Thus, the average
date of Easter was gradually drifting later and later, relative to the true date of the equinox.
Pope Gregory XIII foresaw, with displeasure, a future in which Easter fell during the
summer, then during the fall, and eventually the winter. In the year 1582, therefore,
Gregory issued a papal bull reforming the calendar. In October of that year, the calendar
skipped 10 days, going straight from October 4 to October 15, and thus returning the
date of the vernal equinox to March 21.

In addition, the papal bull announced a new algorithm for computing leap days;
years evenly divisible by 4 would contain a leap day unless the year number was evenly
divisible by 100 and not by 400. This means that the years 1600 and 2000 in the new
Gregorian calendar were leap years, but that 1700, 1800, and 1900 were not. In 400
Gregorian years, there are 97 leap years and 303 regular years, totaling

NGreg = 97 × 366 + 303 × 365 = 146,097 days. (1.13)

For comparison, 400 tropical years will contain

Ntrop = 400 × 365.24219 = 146,096.88 days, (1.14)

a difference that amounts to only 1 day in 3225 years (about 4% as large as the error
in the Julian calendar). The accuracy of the Gregorian calendar eventually caused it to
be adopted by members of all religions. Today all nations, even those that use other
calendars for religious purposes, use the Gregorian calendar for business.

PROBLEMS

1.1 The Polynesian inhabitants of the Pacific reportedly held festivals whenever the Sun
was at the zenith at local noon. How many times per year was such a festival held?
At what time(s) of year was the festival held on Tahiti? At what time(s) of year was
it held on Oahu? (Hint: any reputable world atlas will give you the latitude of Tahiti
and Oahu. You may also find the information in Figure 1.13 useful.)
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1.2 The right ascension and declination of the seven stars of the Big Dipper are given
below.

Star Right Ascension Declination

Alkaid 13h48m +49◦19′

Mizar 13h24m +54◦56′

Alioth 12h54m +55◦58′

Megrez 12h15m +57◦02′

Phecda 11h54m +53◦42′

Merak 11h02m +56◦23′

Dubhe 11h04m +61◦45′

For what range of latitudes are all the stars of the Big Dipper circumpolar? What is
the southernmost latitude from which all of the stars of the Big Dipper can be seen?
For what range of latitudes are none of the stars of the Big Dipper ever seen above
the horizon?

1.3 Columbus, Ohio, is in the Eastern Time Zone, for which the civil time is equal to the
mean solar time along the 75◦ W meridian of longitude.

(a) Ignoring daylight saving time for the moment, are there any days of the year when
civil noon (as shown by a clock) is the same as apparent local noon (as shown by
the Sun) in the city of Columbus? If so, what day or days are they?

(b) Daylight saving time advances the clock by one hour from the second Sunday
in March to the first Sunday in November (“Spring forward, fall back”). When
daylight saving time is in effect, are there any days of the year when civil noon is
the same as apparent local noon in the city of Columbus? If so, what day or days
are they?

1.4 Suppose you’ve been granted access to a large telescope during the last week in
September. One of the two objects you want to observe is in the constellation Virgo;
the other is in the constellation Pisces. You only have time to observe one object:
which should you choose? Please explain your answer.

1.5 In The Old Man and the Sea, Hemingway described the old man lying in his boat
off the coast of Cuba, looking up at the sky just after sunset: “It was dark now as it
becomes dark quickly after the Sun sets in September. He lay against the worn wood
of the bow and rested all that he could. The first stars were out. He did not know the
name of Rigel but he saw it and knew soon they would all be out and he would have
all his distant friends.” Explain what is astronomically incorrect about this passage.
(Hint: what are the celestial coordinates of the star Rigel?)

1.6 (a) Consider two points on the Earth’s surface that are separated by 1 arcsecond as
seen from the center of the (assumed to be transparent) Earth. What is the physical
distance between the two points?

(b) Consider two points on the Earth’s equator that are separated by 1 second of time.
What is the physical distance between the two points?
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FIGURE 1.15 The analemma of the planet Mars.

1.7 The bright star Mintaka (also known as δ Orionis, the westernmost star of Orion’s
belt) is extremely close to the celestial equator. Amateur astronomers can determine
the field of view of their telescope (that is, the angular width of the region that they
can see through the telescope) by timing how long it takes Mintaka to drift through
the field of view when the telescope is held stationary in hour angle. How long does
it take Mintaka to drift through a 1◦ field of view?

1.8 (a) Imagine that technologically advanced, but highly mischievous, space aliens have
reduced the tilt of the Earth’s rotation axis from 23.5◦ to 0◦, while leaving the
Earth’s orbit unchanged. Sketch the analemma in this case.

(b) Now imagine that the aliens have restored the axial tilt to its previous value of
23.5◦ but have changed the Earth’s orbit to a perfect circle, with the Earth’s orbital
speed being constant over the course of a year. Sketch the analemma in this case.

(c) The martian analemma is shown in Figure 1.15. What is the tilt of the rotation
axis of Mars?

1.9 How many square degrees are on the complete celestial sphere?



2 Emergence of Modern
Astronomy

Modern astronomy has deep historical roots. The main path of development for astron-
omy begins with the ancient Babylonians. Greek astronomers built on the observations
of the Babylonians, creating a science of astronomy that was mathematical and deduc-
tive in nature. Ancient knowledge about the heavens was preserved and expanded during
medieval times by Arabic scientists. During the Renaissance, the heliocentric theory of
Copernicus led to additional advances by scientists such as Galileo and Kepler. This lin-
eage, Babylonians to Greeks to Arabs to Europeans, is a great oversimplification of the
rich history of astronomy. However, in a single chapter, we have only enough space for
a broad overview of how modern astronomy evolved.

2.1 EARLY GREEK ASTRONOMY

Of the nine muses of classical mythology, eight dealt with various forms of music, dance,
and poetry; the ninth muse, Urania, was the Muse of Astronomy. This is indicative of
the ancient Greek approach to astronomy: the motions of Sun, Moon, and planets were
regarded as a type of cosmic dance, revealing an underlying rhythm and harmony. A
main goal of ancient Greek astronomers was to build, using deductive reasoning and
mathematical computations, a conceptual model for the universe that explained the
(sometimes complicated) motions of celestial bodies. To provide a bit of clarification,
when historians of science talk about “ancient Greek astronomy,” they aren’t talking
solely about developments in the geographical region currently called Greece. Rather,
they embrace the entire Greek-speaking world, which in Hellenistic times, after the
conquests of Alexander the Great, embraced much of the Mediterranean basin and the
Near East.

Our knowledge of Greek astronomy, particularly in the time prior to Aristotle, is
sadly fragmentary, due to the incompleteness of the written record. Many early Greek
astronomical works are lost and are known to have existed only because they were cited
by later writers. Some general aspects of Greek astronomy are well established, however.
For instance, the Greeks were the first known culture to realize that the sky is three-
dimensional; that is, it has a significant depth. Earlier societies, such as the Babylonians
and Egyptians, thought that the sky was a thin, solid dome, arching over a flat Earth. The
most famous written description of such a domed universe is in the first book of Genesis:

29
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“God made the firmament, and divided the waters which were under the firmament from
the waters which were above the firmament; and it was so. And God called the firmament
heaven.”1 Greek astronomers, however, realized that the Sun and Moon, instead of being
disks stuck to a domed sky, were spherical objects, at different distances from the Earth.

The realization that space was three-dimensional led Greek astronomers to an under-
standing of various celestial effects. For instance, they correctly explained the causes of
the phases of the Moon. During the course of 29.5 days, the Moon appears to change
in shape against the sky (see Figure 4.10b, for instance). The Moon wanes from a full
circle on the sky (the full Moon) through gibbous and crescent phases until it seems
to disappear (the new Moon). It then waxes through the crescent and gibbous phases
until it reaches full Moon again, 29.5 days after the previous full Moon. The ancient
Greeks realized that the phases occur because the Moon is an opaque sphere illuminated
by the Sun. As the Moon orbits the Earth, we see different fractions of the illuminated
hemisphere of the Moon, causing the apparent change in shape.2

The Greeks also realized the cause of eclipses. During a lunar eclipse, the Moon
darkens dramatically; this is because the Moon passes through the Earth’s shadow,
depriving it of the sunlight that usually illuminates the Moon’s surface. During a solar
eclipse, the Sun darkens dramatically; this is because the opaque Moon passes between
the Earth and the Sun, blocking the sunlight that usually reaches the Earth’s surface.
Thus, Greek astronomers realized that the Sun is farther away from us than the Moon
is.3

Aristotle (384–322 BC) was one of the great philosophers and scientists of the Greek
world. In his work On the Heavens, written around 350 BC, he turned his attention to
astronomy. In this work, Aristotle pointed out that the Earth was spherical and gave four
physical reasons, based on observation, why this must be true. His first reason was based
on his observations of how gravity works: since gravity draws dense materials toward
the center of the Earth, the resulting compression must squeeze the Earth’s substance
into as compact a form as possible—which is a sphere. His second reason was based on
observations of partial lunar eclipses: when the edge of the Earth’s shadow falls on the
Moon, it always forms an arc of a circle. The only object that always casts a circular
shadow is a sphere; thus, the Earth must be spherical.

His third reason was based on observing that new stars appear above the horizon
when you head south toward the equator: on a spherical Earth, observers at a latitude �

north of the equator cannot see stars with declination δ < −90◦ + �. To take an example
known in ancient times, the star Canopus (δ ≈ −53◦) is invisible from Athens (� ≈ 38◦
N) but is visible from Alexandria, in Egypt (� ≈ 31◦ N). This showed that the Earth was
curved in the north–south direction, as a sphere would be. His fourth reason was based on
observing elephants: since elephants existed both in Morocco, the westernmost region
known to Aristotle, and in India, the easternmost region known to him, the two regions

1 The image portrayed is more graphic in the original Hebrew; the word translated as “firmament” in the King
James translation is raqia, which means a metal sheet or bowl that has been hammered out of a solid ingot.
2 The Moon’s phases are discussed in more detail in Section 4.4.
3 Eclipses are discussed in more detail in Section 4.6.
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FIGURE 2.1 The geometrical method of Aristarchus for determining the relative
distances to the Moon and to the Sun. (Not to scale.)

must actually be adjacent to each other on the spherical surface of the Earth. (This last,
elephant-based reason sounds absurd to modern ears, but it’s actually an illustration of
how you can arrive at the right answer for the wrong reasons.)

The astronomer Aristarchus (ca. 310–230 BC) was notorious in his day for his
unprecedented belief that the Earth orbits the Sun, rather than vice versa. The only
surviving book of Aristarchus, On the Sizes and Distances of the Sun and Moon, doesn’t
explicitly mention his heliocentric (Sun-centered) model for the universe; instead, it puts
forward geometric methods for determining the relative distances to the Sun and Moon,
and their relative sizes. Aristarchus realized that when we, on the Earth, see half the
Moon’s disk illuminated, then the Earth–Moon–Sun angle must be exactly 90◦, as seen
in Figure 2.1. When the Earth–Moon–Sun angle is 90◦, then the ratio of the Earth–Moon
distance A to the Earth–Sun distance C is

A

C
= cos θ, (2.1)

where θ is the measurable angle between the Sun and Moon as seen from the Earth.
Unfortunately, the angle θ is difficult to measure with sufficient accuracy, since the
difference between θ and 90◦ is tiny. Aristarchus thought the angle was θ = 87◦, which
would give

C = A/ cos 87◦ = 19A. (2.2)

However, the actual value of the angle is θ = 89.853◦, much closer to a right angle, which
gives

C = A/ cos 89.853◦ = 390A. (2.3)

Because of the difficulty of measuring θ with sufficiently high accuracy, Aristarchus
underestimated the distance to the Sun, relative to that of the Moon, by a factor of 20.

Nevertheless, Aristarchus did correctly deduce that the Sun is much farther away
than the Moon is. Since the Sun and the Moon are the same angular size as seen from
Earth, we know from similar triangles that the ratio of their diameters is the same as
the ratio of their distances from Earth. That is, Aristarchus thought that the Sun was 19
times bigger than the Moon in diameter (whereas, the Sun is actually 390 times bigger
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than the Moon). Aristarchus knew that the Moon was smaller than the Earth, since it fits
inside the Earth’s shadow during a total lunar eclipse. Moreover, he calculated, by further
geometric arguments, that the diameters of Moon, Earth, and Sun had the approximate
relative values 1:3:19. Again, although the exact numbers are wrong (they are actually
closer to 1:4:390), Aristarchus correctly deduced that the Sun is much larger than the
Earth, thus lending support to, or perhaps even inspiring, his heliocentric model for the
universe. It seemed sensible to Aristarchus that the small Earth should go around the
large Sun rather than the reverse.

Aristarchus deduced the relative sizes of the Moon, Earth, and Sun; absolute values
for their sizes, in physical units, were provided by the work of Eratosthenes (276–195
BC), who served as the head librarian of the famous Library of Alexandria. Although
the original works of Eratosthenes have been lost, a later textbook by the astronomer
Cleomenes records the method by which Eratosthenes determined the circumference
of the Earth.4 Eratosthenes was aware that exactly at noon at the time of the summer
solstice, the Sun was at the zenith as seen from the town of Syene (the modern city of
Aswan, in upper Egypt).

On the same date, however, the Sun doesn’t pass through the zenith as seen from
Alexandria; instead, as shown in Figure 2.2, it is an angle α south of the zenith at noon.
Eratosthenes measured the angle α and found it to be 1/50 of a full circle, or α = 7◦12′.
At this point, Eratosthenes assumed that the Earth is spherical (he had read his Aristotle)
and that the Sun is far enough away that the Alexandria–Sun line is effectively parallel to
the Syene–Sun line. In that case, angle β in Figure 2.2 must be equal to angle α.5 Since β,
the angular distance between Alexandria and Syene, is equal to 1/50 of a full circle, the
physical distance D between Alexandria and Syene must be 1/50 of the circumference
of the Earth. That is,

C = 50D, (2.4)

where C is the circumference of the Earth. The distance between Alexandria and Syene
was known to be 5000 stades; the stade was a Greek unit of length, based on the length
of the stadium in which foot races were held. This meant that the Earth’s circumference
was

C = 50 × 5000 stades = 250,000 stades. (2.5)

The length of the stade was not uniform throughout the ancient world, and historians of
science have had a grand time debating the exact length of the stade used by Eratosthenes.
Perhaps the most widely used stade at the time of Eratosthenes was the Attic, or Athenian,
stade, equal in length to 185 meters. If we assume that Eratosthenes used the Attic stade,
then the circumference that he computed was

C = 250,000 stades

(
185 m

1 stade

)
= 4.6 × 107 m = 46,000 km. (2.6)

4 Like most textbook writers, Cleomenes labored in humble obscurity; in fact, so obscure was Cleomenes that
estimates of when he wrote his text range from 100 BC to AD 470.
5 This equality is proved as Proposition 29 in Book I of Euclid’s Elements, written ca. 300 BC.
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FIGURE 2.2 The geometrical method of Eratosthenes for determining the
circumference of the Earth.

This is only 15% bigger than the correct value of 40,000 km. Thus, by the time of
Eratosthenes, Greek astronomers not only knew the Earth is spherical but also had a
reasonably correct idea of its size.

Hipparchus (ca. 190–120 BC) was perhaps the greatest astronomical observer during
antiquity. Hipparchus is credited with a number of accomplishments:

. He produced an accurate catalog of hundreds of star positions. It was his careful ob-
servations that led Hipparchus to the discovery of the precession of the equinoxes,
mentioned on page 14. He noted that the bright star Spica, which lies close to the
ecliptic, was 6◦ west of the autumnal equinox. However, a star catalog made 150
years earlier had described Spica as being 8◦ west of the autumnal equinox. Hence,
Hipparchus deduced that the equinoxes were slipping westward relative to Spica
and the other stars at a rate of 2◦ per 150 years, equivalent to 48′′ yr−1; this is close
to the accurate modern value of 50.3′′ yr−1.

. He established the magnitude system for describing the brightness of stars. He
called the brightest stars “first magnitude,” and then worked downward through
second, third, fourth, and fifth magnitudes, all the way down to the faintest stars he
could see, which were labeled “sixth magnitude.” The more quantitative magnitude
system that is used by astronomers today (described in more detail in Section 13.2)
is based on that of Hipparchus.

. He computed a more accurate distance to the Moon. Although the original work of
Hipparchus is lost, like so many works of Greek astronomy, a later commentator
stated that Hipparchus found the average Earth–Moon distance to be roughly 70
times the Earth’s radius. The actual average separation is 60.5 Earth radii.
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. He measured the length of the tropical year with an error of less than 7 minutes.
(Despite having such an accurate measure of the length of the year available, the
Roman pontifices still botched their calendar!)

The observations of Hipparchus were the basis of the Ptolemaic model for the universe,
which dominated Western astronomy for more than 14 centuries.

2.2 PTOLEMAIC ASTRONOMY

Claudius Ptolemaeus (called “Ptolemy” for short) lived and worked in Alexandria, Egypt,
during the mid-second century AD. The scanty details that we know about his life
come from his surviving astronomical books. His main work, which Ptolemy called
Mathematike Syntaxis (“Mathematical Treatise”) is better known by the name applied to
it in the middle ages: the Almagest, a name that comes from an Arabic phrase meaning
“the best.” As you might guess from its flattering nickname, the Almagest was the most
highly regarded astronomical work in the Western world from the time it was written until
the sixteenth century.6 The main portion of the Almagest is devoted to a geometrical
model that describes the motions of the stars, Sun, Moon, and planets as seen from
Earth. Before going into detail about Ptolemy’s model, let’s briefly review the motions
of celestial bodies that he was attempting to explain.

. Stars move in diurnal circles about the celestial poles, with one complete circuit
requiring one sidereal day. The stars are fixed in position relative to each other (this
is only approximately true, but the relative motions of the stars are too gradual for
the Greeks to have discovered).

. The Sun moves eastward relative to the stars along the ecliptic, which is tilted at
23.5◦ relative to the celestial equator. The average rate of motion is roughly 1◦ per
day, but this varies over the course of a year.

. The Moon moves eastward relative to the stars along a path close to, but not
identical with, the ecliptic. The average rate of motion is roughly 13◦ per day,
but this varies over the course of a month.

. The planets Mercury, Venus, Mars, Jupiter, and Saturn usually move eastward
relative to the stars, along a path close to the ecliptic; sometimes, however, they
reverse course and move westward. An example of the prograde (eastward) and
retrograde (westward) motion of Mars is shown in Figure 1.7.

Ptolemy’s job was made unnecessarily complicated by the erroneous assumptions that he
made. First, he assumed that the Earth was stationary at the center of the universe. In other
words, the Ptolemaic model was geocentric (Earth-centered) rather than heliocentric
(Sun-centered). Second, he assumed that celestial bodies moved in perfect circles at
constant speed. This doctrine of uniform circular motion can be traced to early Greek

6 From now on, all dates in this textbook will be AD, unless otherwise indicated.
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FIGURE 2.3 A planet moves at constant speed around the center of its epicycle,
while the center of the epicycle moves at a constant speed along the deferent. The
combination causes a model planet to move in a “loop-the-loop” motion.

philosophers such as Pythagoras and Plato. They believed that the heavens were perfect,
in contrast to the obviously imperfect Earth, and that heavenly bodies must therefore
move in circles (which were regarded as a perfect shape) at a perfectly constant speed.

Given these assumptions, explaining the apparent motions of the “fixed stars” was
easy; Ptolemy assumed they were affixed to a rigid spherical shell, which rotated
from east to west about the celestial poles, completing one rotation every sidereal day.
Explaining the apparent motion of the Sun was more difficult. How could the nonuniform
motion of the Sun along the ecliptic be reconciled with the dogma of uniform circular
motion? Ptolemy followed the example of his predecessors by using a concept known
as the eccentric. The Sun, Ptolemy assumed, moved along a circular orbit at a constant
speed; however, the Earth was offset from the orbital center by a short distance. This
small offset was referred to as the orbit’s eccentric.7 As the Sun moves along the orbit
at a constant physical speed, its angular speed as seen from Earth is greatest when it’s
closest to the Earth, and smallest when it’s farthest from the Earth. Ptolemy found that
when he displaced the Earth from the orbital center by roughly 4% of the orbital radius,
he could reproduce the observed motions of the Sun with fair accuracy.

Although the eccentric can describe an angular speed that varies with time, it cannot
describe retrograde motion, in which the angular speed of a planet actually changes
sign, rather than simply slowing down and speeding up. Ptolemy explained retrograde
motion of a planet by using an epicycle, illustrated in Figure 2.3. In the epicyclic model,
a planet travels at a constant speed around a circular path called an epicycle. At the

7 The word “eccentric” literally means “away from the center”; thus, when you call a friend’s behavior eccentric,
that’s another way of saying that he’s a few standard deviations away from the mean.
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FIGURE 2.4 The complete Ptolemaic model for a planet’s motion, including the
equant.

same time, the center of the epicycle moves at a constant speed around the center of
a larger circle called the deferent. The combination of an epicycle and a deferent can
produce retrograde motion. Suppose the planet moves counterclockwise at a speed v

around its epicycle, while the center of the epicycle moves counterclockwise at a speed
w around its deferent, as shown in Figure 2.3. When the planet is at the outside of
its epicycle, its speed relative to the center of the deferent is v + w; when it’s at the
inside of its epicycle, its speed is v − w. Thus, if w > v, the planet is actually moving
backward (or in retrograde) when it is closest to the center of the deferent. A typical
path traced out by a planet on an epicycle is shown in Figure 2.3. By fiddling with
the sizes of eccentrics and epicycles, and by playing with the relative orbital speeds
of epicycles and deferents, Ptolemy could get a fairly good fit to the observed motions
of planets on the celestial sphere, but not quite good enough. His models were unable
to match the observations exactly. Eccentrics, deferents, and epicycles were ideas that
Ptolemy had inherited from previous Greek astronomers. However, in order to match the
observations with the necessary accuracy, Ptolemy introduced a new device called the
equant, illustrated in Figure 2.4.

In Ptolemy’s new construction, the Earth (labeled E in the figure) is offset from the
center of the planet’s deferent (labeled C) by a small distance. Ptolemy dictated, however,
that the center of the epicycle (labeled F) moved along the deferent at a changing physical
speed, such that its angular speed would be constant as seen from the equant point
(labeled Q). The equant (Q), orbital center (C), and Earth (E) lie along a straight line
and are spaced so that the distance Q–C is equal to the distance C–E. The concept of the
equant stretched the doctrine of uniform circular motion to the absolute limit; according
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to Ptolemy’s critics, it stretched it beyond the limit. Many medieval astronomers were
dissatisfied by the rather contrived notion of the equant.

Nevertheless, Ptolemy’s complete model for a planetary orbit, including a deferent,
epicycle, and equant, had enough adjustable parameters to enable Ptolemy to make quite
accurate predictions of the motions of planets as seen from Earth. It is not clear that
Ptolemy intended his complicated geocentric model to be an actual physical model of
the cosmos. It worked adequately as a mathematical model, which accounted for its
popularity during medieval times; people wanted reasonably accurate predictions of the
locations of the Sun, Moon, and planets, which the Ptolemaic model provided. The fact
that Ptolemy’s model was geocentric also made it conceptually acceptable. There were a
number of plausible arguments, during Ptolemy’s time and later, why a geocentric model
seemed correct:

. We cannot feel the motion of the Earth. A circumference of 250,000 stades implies
a rotation speed at the Earth’s equator of roughly 3 stades per second, or about 50
times the speed of the fastest sprinter. It seemed inconceivable that such a rapid
speed should be imperceptible.

. The Earth’s centrality and importance was somehow gratifying. (The Earth must
be important; after all, we live on it.)

. Stellar parallax is not observed. This is the most serious scientific objection to a
heliocentric model and deserves a fuller discussion, which is given below.

In general, the term parallax refers to the shift in apparent position of an object when seen
from two different locations. For instance, if you hold up your thumb at arm’s length and
view it first through your right eye and then through your left, you will see your thumb’s
image jump from left to right by roughly 5◦ relative to objects in the background. In
astronomy, the term geocentric parallax refers to the shift in apparent position of a
relatively nearby object, such as the Moon or a planet, when seen from two different
points on the Earth’s surface. Geocentric parallax, illustrated in Figure 2.5a, is also
referred to as diurnal parallax. If you want to observe geocentric parallax, you don’t
have to go on an expedition; during the course of 12 hours, the daily (or diurnal) rotation
of the Earth will carry you through a distance d = D cos �, where D ≈ 12,700 km is the
Earth’s diameter and � is your latitude. The closer an object is to the Earth, the larger its
geocentric parallax will be. The Moon shifts in apparent position by as much as 2◦ when
viewed from antipodal points on the Earth; however, the Sun’s corresponding shift in
apparent position is smaller by a factor of 390, since the Sun is 390 times farther away
than the Moon is. Thus, the geocentric parallax of the Moon was easily measured by
ancient astronomers (it’s how Hipparchus measured the distance to the Moon, in fact),
but the diurnal parallax of the Sun, and of the yet more distant stars, is too small to be
measured by the naked eye.

The daily rotation of the Earth causes a change in position of an observer on the Earth;
so does the annual revolution of the Earth around the Sun. Heliocentric parallax is the
shift in apparent position of a relatively nearby star when seen from two different points
on the Earth’s orbit. Heliocentric parallax, illustrated in Figure 2.5b, is also referred to as
annual parallax. If you want to observe heliocentric parallax, you don’t have to launch
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FIGURE 2.5 (a) Geocentric, or diurnal, parallax due to a change in position relative to the
Earth’s center. (b) Heliocentric, or annual, parallax due to a change in position relative to the Sun.

a spacecraft; during the course of half a year, the annual revolution of the Earth will carry
you through a distance equal to the diameter of the Earth’s orbit.

Before the invention of the telescope, astronomers attempted to measure the annual
parallax of nearby stars but were unsuccessful. They recognized two possible explana-
tions for the lack of detectable annual parallax: either the Earth was stationary or the
stars were so far away that the annual parallax, like the diurnal parallax, was too small
to be measured. Given the accuracy with which stellar positions could be measured in
antiquity, Ptolemy and others deduced that if the solar system were heliocentric, then the
nearest stars would have to be at a distance of at least a few thousand times the Earth–Sun
distance. Such a large amount of empty space made astronomers uneasy. They preferred
the more compact geocentric model. As we discuss further in Chapter 13, stellar parallax
was not measured until long after the invention of the telescope. Even the Sun’s nearest
neighbors among the stars are at a distance of 270,000 times the Earth–Sun distance.
The small, tidy Ptolemaic universe may have been psychologically comforting, but the
universe is under no obligation to make us comfortable.

2.3 COPERNICAN ASTRONOMY

The Polish astronomer Nicolaus Copernicus (1473–1543) was the first scientist since
antiquity to advance a heliocentric model for the universe. Copernicus was a Renais-
sance man metaphorically as well as chronologically; in addition to studying astronomy
and mathematics, he also traveled to Italy in order to study medicine and law. After tak-
ing minor orders in the Church, he served in a variety of administrative positions. His
work for the Church left Copernicus with enough time to make astronomical observa-
tions and work out his heliocentric model in detail. By the year 1514, Copernicus was
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FIGURE 2.6 A schematic diagram of the heliocentric model, drawn by Coperni-
cus (note that Sol, the Sun, is at center).

circulating a brief manuscript about his ideas among his friends; the grand summary of
his work, the book De Revolutionibus Orbium Coelestium (“On the Revolutions of the
Heavenly Spheres”), was not published until Copernicus was on his deathbed, in the
year 1543.

The most radical aspect of the Copernican model was its insistence that the Sun, not
the Earth, was at the center of the solar system (Figure 2.6), and that the Earth was both
rotating about its axis and revolving about the Sun. The Copernican model, however,
also had conservative aspects. For instance, Copernicus wholeheartedly embraced the
dogma of uniform circular motion. One of his proudest claims for his heliocentric model
was that it eliminated the need for equants (however, to match the observations, it still
needed eccentrics and epicycles).

The Copernican model, although it retained eccentrics and epicycles, was concep-
tually simpler than the Ptolemaic model in many respects. In the Copernican model,
retrograde motion of the planets is accounted for by the fact that inner planets move
faster along their orbits than the outer planets do. Thus, as an inner planet, such as the
Earth, overtakes an outer planet, such as Mars, the outer planet undergoes retrograde
motion as seen from the inner planet. This is demonstrated graphically in Figure 2.7.
In a heliocentric model, with the Earth being one of many planets orbiting the Sun, it
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FIGURE 2.7 Explanation of the retrograde motion of Mars in a heliocentric
system.

is useful to divide the planets into two groups, based on their distance from the Sun
compared to that of the Earth:

. Inferior planets are those with orbits smaller than the Earth’s orbit, that is,
Mercury and Venus.

. Superior planets are those with orbits larger than the Earth’s orbit. Mars, Jupiter,
and Saturn were the superior planets known at the time of Copernicus; the planets
Uranus and Neptune and the dwarf planets Ceres, Pluto, Haumea, Makemake, and
Eris were not discovered until after the invention of the telescope.

In the Copernican model, the Earth is in motion around the Sun. Thus, for an Earthly
observer, the positions of planets are measured from a reference frame that is co-rotating
with the Earth–Sun line. It is particularly useful, as we shall see, to measure the position
of planets on the celestial sphere relative to the Sun.

Some special positions of the superior planets relative to the Sun are shown in
Figure 2.8. Names have been given to these special positions:

. Opposition occurs when the Earth lies between the Sun and the superior planet.
That is, the Sun and planet are 180◦ apart on the celestial sphere as seen from the
Earth.

. Conjunction occurs when the Sun lies between the Earth and the superior planet.
That is, the Sun and planet are 0◦ apart as seen from the Earth.

. Quadrature occurs when the Sun and the superior planet are 90◦ apart as seen
from the Earth. The quadrature can be either eastern, when the planet appears 90◦
east of the Sun on the sky, or western, when the planet appears 90◦ west of the
Sun.
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FIGURE 2.8 Configurations of superior planets. In this and following diagrams,
we adopt a convention of looking down on the solar system from above the Earth’s
north pole.

Although inferior planets cannot be seen in opposition or in quadrature, they do have
two different conjunctions, as shown in Figure 2.9:

. Inferior conjunction occurs when the inferior planet lies between the Earth and
the Sun.

. Superior conjunction occurs when the Sun lies between the Earth and the inferior
planet.

When a planet is not in conjunction, it is separated from the Sun on the celestial sphere
by an angle θ referred to as the planet’s elongation. Note from Figure 2.9 that an inferior
planet can have the same elongation θ at two different distances from the Earth.

One of the happy results of the Copernican model is that it enabled Copernicus to
compute the orbital periods of the planets, relative to the Earth’s orbital period, and
compute the size of planetary orbits, relative to the size of the Earth’s orbit. Let’s first
see how Copernicus computed orbital periods, and then how he computed orbital sizes.

As seen from the Earth, planets undergo motion that can be described as periodic; that
is, there is a fixed time interval between consecutive appearances of a particular planetary
configuration. This time interval, known as the synodic period of the planet, can be found
by measuring the time elapsed between successive conjunctions (for a superior planet)
or the time elapsed between successive inferior conjunctions (for an inferior planet).8

The synodic period is different from the sidereal period of the planet, which is the time

8 The term “synodic” comes from the Greek word synodos, meaning a “coming together”—in this case, a
coming together of the Sun and the planet when the planet is at conjunction.
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FIGURE 2.9 Configurations of inferior planets. When the planet is not in
conjunction, the angle θ between the Sun and the planet, as seen from Earth, is
the planet’s elongation.

it takes the planet to complete one full circuit of the sky relative to the fixed stars. The
synodic period of a planet is longer than its sidereal period for much the same reason that
the solar day is longer than the sidereal day (as discussed in Section 1.5). As a reminder,
the sidereal day is the Earth’s rotation period in the nonrotating frame of reference of the
distant stars (the sidereal frame); the solar day is the Earth’s rotation period in a frame of
reference co-rotating with the Earth–Sun line. Similarly, the sidereal period of a planet
is the planet’s orbital period in the nonrotating sidereal frame; the synodic period is its
orbital period in a frame of reference co-rotating with the Earth–Sun line.

As in equation (1.1), let �ωE be the angular velocity of the Earth’s orbital motion in
the sidereal frame; let �ωP be the angular velocity of the planet’s orbital motion in the
same frame. Figure 2.10 shows the orbital motions of the Earth and an inferior planet;
for an inferior planet, ωP > ωE. The difference between these two angular velocities is
�ωsyn, the angular velocity of the planet’s orbital motion in the frame co-rotating with the
Earth–Sun line. Specifically, we see that

�ωP = �ωE + �ωsyn. (2.7)

If �ωP and �ωE are parallel (that is, if the orbits of the Earth and the planet are coplanar
and they orbit in the same direction about the Sun), we may write, for an inferior planet,

ωP = ωE + ωsyn

2π

PP
= 2π

PE
+ 2π

Psyn

1

PP
= 1

PE
+ 1

Psyn
. (2.8)
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FIGURE 2.10 The angular speed of the Earth is ωE and the angular speed of an
inferior planet is ωP. The difference between them is ωsyn, the angular speed of the
planet in a reference frame that co-rotates with the Earth–Sun line.

In equation (2.8), PE is the sidereal orbital period of the Earth, PP is the sidereal orbital
period of the inferior planet, and Psyn is the synodic orbital period of the inferior planet,
as seen from Earth. As an example of an inferior planet, consider Venus. The synodic
period of Venus is measured to be Psyn = 583.92 days. The Earth’s sidereal orbital period
is PE = 365.256 days.9 We can then compute the sidereal period of Venus:

PVenus =
[

1

365.256 days
+ 1

583.92 days

]−1

= 224.70 days. (2.9)

In the case of a superior planet, ωP < ωE. If we refer to Figure 2.11, we see that �ωsyn
is in the opposite sense to �ωE and �ωP. Equation (2.8) then becomes, for a superior planet,

ωP = ωE − ωsyn

1

PP
= 1

PE
− 1

Psyn
. (2.10)

As an example of a superior planet, consider Mars. The synodic period of Mars is
measured to be Psyn = 779.95 days. Given the length of the sidereal period of Earth,
PE = 365.256 days, we compute the sidereal period of Mars to be

PMars =
[

1

365.256 days
− 1

779.95 days

]−1

= 686.98 days. (2.11)

In addition to permitting a determination of a planet’s sidereal orbital period, the
Copernican model also permits us to compute the distance of each planet from the Sun.
For an inferior planet, this computation is straightforward. We need only measure the

9 Remember that due to the precession of the equinoxes, the sidereal year is slightly longer than the tropical
year of P = 365.24219 days.
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FIGURE 2.11 The angular speed of the Earth is ωE and the angular speed of a
superior planet is ωP. The difference between them is ωsyn. To an observer on Earth,
the angular velocity ωsyn of a superior planet is negative.

inferior planet’s greatest elongation, that is, the maximum angular separation between
the planet and Sun as seen from the Earth. As shown in Figure 2.12, if we approximate
the orbit of the inferior planet as a perfect circle, then greatest elongation occurs when the
line of sight from the Earth to the planet is exactly tangent to the planet’s orbit. When that
happens, the angle Earth–planet–Sun is a right angle, as the figure shows. The distance
B from the planet to the Sun is then given by the relation

B/C = sin θ, (2.12)

where θ is the angle of greatest elongation and C is the Earth–Sun distance. This method,
therefore, only gives the radius of the planet’s orbit in units of the Earth–Sun distance.
The average distance from the Earth to the Sun is of such importance to astronomers
that it is given the name astronomical unit, or AU for short. Copernicus, like the Greek
astronomers before him, did not have an accurate knowledge of the absolute length of
the astronomical unit.10 However, he did know the relative sizes of the planets’ orbits.
For instance, the greatest elongation of Venus is θ = 46◦, so its orbital radius is

B = (sin 46◦)(1 AU) = 0.72 AU. (2.13)

The size of the orbits of superior planets can be determined by a similar but slightly
more complicated method. First, we must measure the time interval τ between opposition
and eastern quadrature of the superior planet. As shown in Figure 2.13, the angle swept
out by the Earth during the time interval τ is ωEτ , where ωE is the angular speed of
the Earth’s orbital motion. Over the same time interval, the superior planet (assumed to

10 We now know that 1 AU = 149,597,870.7 km.
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FIGURE 2.12 Measurement of the greatest elongation θ of an inferior planet
allows determination of its distance B from the Sun.
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FIGURE 2.13 In the time τ between opposition and eastern quadrature, Mars
sweeps out an angle ωMarsτ and the Earth sweeps out an angle ωEτ . The difference
between these angles is θ , with cos θ = C/B.

be Mars in the figure) sweeps out an angle ωPτ , where ωP is the angular speed of the
planet’s orbital motion. The difference between these angles is the angle θ = (ωE − ωP)τ

shown in the figure. When Mars is at quadrature, the angle Mars–Earth–Sun is a right
angle, so we have the relation

C/B = cos θ, (2.14)

where C is the Earth–Sun distance and B is the Mars–Sun distance. In the case of Mars,
the time from opposition to eastern quadrature is τ = 107 days. Thus, the angle θ is
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TABLE 2.1 Planetary Orbits

Planet a Sidereal Period Orbital Radius
(years) (AU)

Mercury 0.2408 0.3871

Venus 0.6152 0.7233

Earth 1.000 1.000

Mars 1.881 1.524

Ceres 4.599 2.766

Jupiter 11.863 5.203

Saturn 29.447 9.537

Uranus 84.017 19.189

Neptune 164.79 30.070

Pluto 247.92 39.482

Haumea 283.28 43.133

Makemake 306.17 45.426

Eris 559.55 67.903

a. Dwarf planets in italics.

θ =
(

2π

PE
− 2π

PMars

)
τ

= 2π

(
1

365.256 days
− 1

686.98 days

)
(107 days)

= 0.862 rad

(
180◦

π rad

)
= 49◦. (2.15)

The distance from Mars to the Sun is then

B = C

cos θ
= 1 AU

cos 49◦ = 1.52 AU. (2.16)

Table 2.1 shows the sidereal orbital period and the orbital radius for each of the planets
and dwarf planets in the solar system (including those that were unknown at the time of
Copernicus).11

11 Truth in advertising: the simple calculations we have done in this section assume that planetary orbits are
perfectly circular. Although this is a good first approximation, the orbits are actually ellipses, and what we call
the “orbital radius” in Table 2.1 is actually the semimajor axis of the ellipse.
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2.4 GALILEO: THE FIRST MODERN SCIENTIST

Both the Ptolemaic and Copernican models could explain the observed motions of the
Sun, Moon, and planets on the celestial sphere. Why, then, should one believe that the
Earth is in motion rather than the Sun? We know now that the Earth does orbit the Sun
rather than vice versa, but direct experimental proof of the Earth’s orbital motion was not
provided until the eighteenth century, nearly two centuries after the death of Copernicus.
Nevertheless, the heliocentric model came to be accepted without direct proof. This was
partly because of its elegant simplicity; the motions of the planets are less complicated
in a heliocentric model than in a geocentric model. This is an application of the general
principle often referred to as Occam’s Razor.12 In its typically quoted form, Occam’s
Razor states that “the simplest description of Nature is most likely to be most nearly
correct.” In other words, unnecessary complications should be “shaved away” from a
theory. Of course, when using a razor, it is important not to cut too deep; Albert Einstein
is said to have rephrased Occam’s Razor in the form “Everything should be made as
simple as possible . . . but not simpler.”

In addition to the aesthetic appeal of the heliocentric model’s relative simplicity, com-
pelling indirect evidence for heliocentrism was provided by the telescopic observations
of Galileo Galilei (1564–1642). Galileo is sometimes called the first modern experimen-
tal physicist. Instead of relying purely on the pronouncements of Aristotle, Galileo tried
to understand how nature works by carrying out experiments, such as swinging pendu-
lums back and forth, and sliding weights down inclined planes. Although Galileo didn’t
invent the telescope, he was among the first individuals to use a telescope as a scien-
tific instrument. The actual inventor of the telescope may possibly have been a Dutch
optician called Hans Lippershey. In October 1608, Lippershey applied for a patent on
what he called a kijker, or “looker” in English. The patent was denied by the Dutch
government, however, on the grounds that “many other persons had a knowledge of the
invention.” Indeed, news of the telescope reached Galileo in Italy as early as May 1609;
soon thereafter, he built several telescopes, each superior to the one before.

Although Galileo’s telescopes had apertures of only an inch or two, they provided
Galileo with many important observations. Galileo, knowing the potentially revolution-
ary impact of his discoveries, rushed into print in March 1610 with a pamphlet entitled
Sidereus Nuncius (“Starry Messenger”). Many of Galileo’s observations were startling
to his contemporaries:

. The Moon is not smooth and perfect. Instead, as Galileo wrote, it is “uneven, rough,
and crowded with depressions and bulges. And it is like the face of the Earth itself,
which is marked here and there with chains of mountains and depths of valleys.”
In other words, there is not a vast difference between the Earth’s surface and that
of a celestial object, namely the Moon.

12 Occam’s Razor is named after William of Occam, a fourteenth-century friar and logician.
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* * * *
FIGURE 2.14 Galileo’s illustration of the four bright satellites of Jupiter (the
four asterisks), shown relative to Jupiter itself (the central disk).

FIGURE 2.15 The phases and relative angular size of Venus, from crescent
to full.

. The Milky Way, the nebulous band of light that extends around the sky, actually
consists of numerous faint stars. “To whatever region of it you direct your spy-
glass,” Galileo wrote, “an immense number of stars immediately offer themselves
to view.”

. Through a telescope, stars remain unresolved points, but planets show as disks.
As Galileo put it, “the planets present entirely smooth and exactly circular globes
that appear as little moons.” (Unfortunately for astronomers, even the nearest stars
are too distant to be resolved with conventional telescopes, even telescopes much
larger than Galileo’s.)

. The planet Jupiter has four large, bright satellites. Although Galileo called these
satellites the “Medicean Stars,” in honor of Cosimo de Medici, Grand Duke of
Tuscany, later astronomers named them the Galilean satellites. The individual
names of the four Galilean satellites are Io, Europa, Ganymede, and Callisto.

The Galilean satellites of Jupiter, shown in Figure 2.14 were an indirect piece of support
for the Copernican system. One objection to a heliocentric model was that it required
multiple centers of motion; the Earth went around the Sun while the Moon went around
the Earth. This was regarded as more complex than a geocentric model in which every-
thing goes around the Earth. However, Galileo provided clear evidence that there had
to be multiple centers of motion; obviously, the Galilean satellites were going around
Jupiter, regardless of whether Jupiter was going around the Sun or around the Earth.
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FIGURE 2.16 (a) The phases of Venus in the Copernican model. (b) The phases
of Venus in the Ptolemaic model.

By the end of the year 1610, Galileo made another telescopic discovery that further
undermined the Ptolemaic model. He found that Venus went through all the phases that
the Moon did, from full to new. Moreover, he found that the angular size of Venus was
smallest when it was full and largest when it was a thin crescent. The phases of Venus,
illustrated by Galileo in his later work Il Saggiatore, are shown in Figure 2.15. Ptolemy,
in his geocentric system, had the task of explaining why Venus should always lie within
46◦ of the Sun if the two bodies were on independent orbits around the Earth. Ptolemy
managed it by saying that the center of Venus’s epicycle always lies directly between
the Earth and the Sun (as shown in Figure 2.16b) and that the epicycle is big enough to
subtend an angle of 92◦ as seen from the Earth. The geometry of this situation requires
that we see primarily the nighttime side of Venus, that is, the side away from the Sun. In
the Ptolemaic system, then, we would always see a new or crescent phase for Venus, as
illustrated in Figure 2.16b, top.

Galileo demonstrated, however, that we see gibbous and full Venuses, as well as
crescent and new Venuses. This is easily explained in the Copernican system, as shown
in Figure 2.16a. In the Copernican model, the sunlit side of Venus is turned toward us
when Venus is at superior conjunction; this is when Venus is at its greatest distance from
Earth, and hence has its smallest angular size. Conversely, the nighttime side of Venus
is turned toward us when it is at inferior conjunction, when it is closest to Earth and has
its largest angular size.13 This is in accord with the observations of Galileo.

13 Tantalizingly, when Venus is in its crescent phase, it is just under an arcminute across and thus can almost
be resolved by the human eye. If our eyes were a bit better, or Venus were a bit larger, the phases of Venus
would have been seen before the invention of the telescope, thus altering the course of astronomical history.
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2.5 KEPLER’S LAWS OF PLANETARY MOTION

As increasingly accurate observations of planetary motions were made, the flaws of both
the Ptolemaic and Copernican models became more evident. Tycho Brahe (1546–1601)
was probably the greatest astronomical observer prior to the invention of the telescope;
it was his observations of planetary motions that both revealed the inadequacy of the
Copernican system and provided the necessary data for calculating the true nature of
planetary orbits around the Sun. Tycho was a Danish aristocrat and received large sums
of money from the King of Denmark to set up an elaborate observatory on the island of
Hven, near Copenhagen. For more than 20 years, Tycho observed the positions of planets
and stars with an accuracy of 1 arcminute. Interestingly, Tycho did not believe that the
heliocentric model was correct. He noted, as did the Greeks before him, that the stars
do not show parallax. The absence of parallaxes larger than 1 arcminute implies that the
nearest stars must be farther away than a few thousand AU, given a heliocentric solar
system. Tycho thought this distance was implausibly large and thus devised a compound
system in which all the planets other than the Earth went around the Sun, while the Sun
orbited the Earth, carrying its entourage of planets along with it.

In the year 1599, after a major falling-out with the Danish king, Tycho accepted a
post as Imperial Mathematician to the Holy Roman Emperor in Prague. There he hired
a new assistant named Johannes Kepler (1571–1630). Initially, Kepler was frustrated
by Tycho’s reluctance to share his data. However, Kepler soon had complete access
to Tycho’s observations; in October 1601, less than two years after Kepler arrived in
Prague, Tycho died, and Kepler was appointed his successor as Imperial Mathematician.
By using Tycho’s observations of the planet Mars, and by doing several years’ worth of
calculations, Kepler was able to formulate a mathematical description of its orbit, and
by extension, the orbits of other planets. His basic findings are encapsulated in Kepler’s
laws of planetary motion.

1. Kepler’s first law: Planets travel on elliptical orbits with the Sun at one focus.The
properties of the closed curve known as an ellipse are best described by explaining
how to draw one ( Figure 2.17). Take a piece of string and tie each end to a pin.
Stick the pins into a piece of paper, separated by a distance less than the string’s
length. Use a pencil to stretch the string taut and draw a complete, closed curve;
this is an ellipse. The two pins are located at the foci of the ellipse.14 Expressed
mathematically, the ellipse is the locus of points for which the sum of the distances
to the foci is a constant (equal to the length of the string, in our graphic example). If
the pins are moved closer together, for a given length of string, the ellipse becomes
more nearly circular; if they are moved farther apart, the ellipse becomes more
flattened.

The longest distance across the ellipse (which passes through both foci) is
called the major axis. The shortest distance across the ellipse, passing through
the ellipse’s center, is called the minor axis. The semimajor axis is half the major
axis, and the semiminor axis is half the minor axis. The eccentricity of the ellipse

14 “Foci” is the plural of the word “focus.”
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FIGURE 2.17 The properties of an ellipse.

is the distance between the foci divided by the length of the major axis. If the foci
coincide, then e = 0, and the ellipse is a circle. The other limiting case, e = 1,
represents the case in which the foci are separated by the full length of the string.
It was quite a feat for Kepler to discover the elliptical shape of planetary orbits,
since most planets have orbits with small eccentricity. Of the planets known to
Kepler, Mercury had the largest eccentricity, e = 0.21; all the others had e < 0.1.

2. Kepler’s second law: A line drawn from the Sun to a planet sweeps out equal
areas in equal time intervals. This law provides a quantitative description of how
the orbital speed of planets changes with their distance from the Sun; not only is
motion not circular, Kepler discovered, it doesn’t have uniform speed, either. The
second law is graphically demonstrated in Figure 2.18. A mythical planet has its
motion plotted during two time intervals, each 10 days long, separated by half the
planet’s orbital period. The two wedge-shaped areas swept out by the planet–Sun
line are of equal area, even though they are of different shape. Kepler’s second
law implies that planets move most rapidly at perihelion, the point on their orbit
closest to the Sun, and least rapidly at aphelion, the point farthest from the Sun.15

As we show in Section 3.1, Kepler’s second law is a simple consequence of the
conservation of angular momentum.

3. Kepler’s third law: The squares of the sidereal orbital periods of the planets are
proportional to the cubes of the semimajor axis of their orbits. Kepler’s third law

15 Sometimes you hear “aphelion” pronounced as “ap-helion,” sometimes as “af-felion.” Both pronunciations
can be found in reputable dictionaries.
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FIGURE 2.18 The area swept out by the planet–Sun line in each 10-day interval
is identical.

can be expressed more compactly in mathematical notation:

P 2 = Ka3, (2.17)

where P is a planet’s sidereal orbital period, a is the length of the semimajor axis
of its orbit, and K is a constant. For objects orbiting the Sun,

K = 1 yr2 AU−3. (2.18)

A plot of orbital period versus semimajor axis (like that of Figure 2.19) shows
that all planets in the solar system, even those unknown to Kepler, follow his third
law. In addition, Figure 2.19 shows that the Galilean satellites of Jupiter also obey
equation (2.17), but with K ≈ 1050 yr2 AU−3 rather than K ≈ 1 yr2 AU−3.

2.6 PROOF OF THE EARTH’S MOTION

Although Galileo’s discoveries convinced many individuals that the heliocentric model
was correct, definitive proof that the Earth revolves around the Sun and rotates on its
axis wasn’t provided until much later. The rotation of the Earth about its axis was proved
by detecting the Coriolis effect; this was done most famously by Jean Foucault, using
what is now called a Foucault pendulum. The revolution of the Earth about the Sun was
proved by detecting the effect known as aberration of starlight; later confirmation came
from measuring the annual parallax of nearby stars.



2.6 Proof of the Earth’s Motion 53

0.001 0.01 0.1 1 10 100 1000
0.001

0.01

0.1

1

10

100

1000

Callisto

Mercury

Venus
Earth

Mars

Ceres

Jupiter

Saturn

Uranus
Neptune

Pluto
Makemake

Eris

Io
Europa

Ganymede

a (AU)

P
 (

yr
)

FIGURE 2.19 Orbital period P versus semimajor axis a for planets and dwarf
planets orbiting the Sun (circular dots) and for the Galilean satellites orbiting Jupiter
(square dots).

2.6.1 Rotation of the Earth

When we measure the trajectory of a projectile (such as a bullet or a thrown ball), we are
measuring the trajectory relative to the Earth’s surface. However, because of the Earth’s
rotation, any set of coordinates fixed to the Earth’s surface is rotating with an angular
velocity �ω. The magnitude of �ω is ω ≈ 2π day−1 ≈ 7.3 × 10−5 s−1, and the direction of
�ω is pointing from south to north, parallel to the Earth’s rotation axis. By watching the
motion of the projectile, we can detect the Earth’s rotation; its trajectory in the Earth’s
rotating frame of reference is subtly different from what it would be in a nonrotating
frame of reference.

To quantify the difference in trajectories, let’s start by writing down the relevant
equations of motion. In a nonrotating frame, the motion of an object is famously given
by Newton’s second law of motion:

�a = �F/m, (2.19)

where �a is the measured acceleration of the object, �F is the net force applied, and m is
the object’s mass. However, the equation of motion is different when the acceleration �a
is measured in a frame of reference rotating with angular velocity �ω:

�a = �F/m + 2(�v × �ω) − �ω × (�ω × �r), (2.20)
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where �v is the object’s velocity and �r is the object’s position, both measured in the rotating
frame of reference.

The last term on the right-hand side of equation (2.20) is called the centrifugal
acceleration. The centrifugal acceleration points away from the rotation axis, and has
a magnitude

acent = |�ω × (�ω × �r)| = ω2R, (2.21)

where R is the distance of the object from the rotation axis of the frame of reference.
In other words, when we rotate with the Earth, we see objects at a distance R from the
Earth’s rotation axis move in diurnal circles of physical radius R; motion in a circle of
radius R with uniform angular speed ω requires an acceleration a = ω2R. For objects
near the Earth’s surface, the centrifugal acceleration is greatest at the equator, where
R ≈ 6.4 × 106 m is equal to the Earth’s radius. This implies a centrifugal acceleration
near the equator of

acent = ω2R ≈ (7.3 × 10−5 s−1)2(6.4 × 106 m) ≈ 0.034 m s−2. (2.22)

This is not a large acceleration. In the jargon of auto advertisements, it would take
you from “zero to sixty mph” in 13 minutes. More relevantly in this context, acent is
small compared to the gravitational acceleration at the Earth’s surface, g = 9.8 m s−2. In
principle, traveling from the poles to the equator should reduce your acceleration toward
the Earth’s center, and thus reduce your weight. However, the fractional weight loss will
be only acent/g ≈ 0.003.

The middle term on the right-hand side of equation (2.20) is called the Coriolis
acceleration, or the Coriolis effect, after a French scientist named Gustave Coriolis, who
published the equations of motion for a rotating frame in the year 1835. It is sometimes
computationally convenient to think of the Coriolis acceleration,

�acor = 2(�v × �ω), (2.23)

as being due to a fictitious “Coriolis force” equal to 2m(�v × �ω). In truth, however, no
physical force is being applied to the particle; the Coriolis acceleration results from the
fact that the particle is being observed from a rotating, and hence accelerated, reference
frame. The cross-product in equation (2.23) tells us that the Coriolis acceleration is
always perpendicular to the direction of motion of the particle. When the cross-product is
worked out in detail, it is seen that a moving particle is deflected to its right in the northern
hemisphere and to its left in the southern hemisphere as Figure 2.20 demonstrates.

The magnitude of the Coriolis acceleration is

acor = 2vω sin �, (2.24)

where � is the angle between �v and �ω. Thus, the Coriolis effect is maximized when
the particle’s motion is perpendicular to the Earth’s rotation axis; it vanishes when the
particle’s motion is parallel to the rotation axis. For other directions of motion, we may
make the rough approximation

acor ∼ vω. (2.25)
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FIGURE 2.20 In a reference frame co-rotating with the Earth, moving particles
are deflected to the right in the northern hemisphere, and to the left in the southern
hemisphere.

If a particle is in flight for a time �t , its velocity will be altered by a fractional amount

�v

v
∼ acor�t

v
∼ ω�t. (2.26)

Thus, the change in the particle’s direction of motion will be small as long as its time of
flight is much shorter than

ω−1 ∼ 1

2π
days ∼ 4 hr ∼ 14,000 s. (2.27)

Usually, when a ball is thrown or a bullet is fired, it reaches its target within a few seconds,
so the Coriolis effect is negligible. However, the Coriolis acceleration can significantly
affect the ballistic trajectory of projectiles when the time of flight is sufficiently long.
During the projectile’s flight, it will be deflected by a distance

�d ∼ 1

2
acor(�t)2 ∼ 1

2
vω(�t)2, (2.28)

to the right of its initial trajectory in the northern hemisphere and to the left in the
southern hemisphere. During World War I, for instance, the German army used an
immense artillery gun to bombard Paris from a distance of ∼ 120 km. The Paris Gun
had a muzzle velocity v ∼ 1.6 km s−1; shells were sent on a parabolic trajectory with a
maximum altitude of ∼ 40 km and a time of flight �t ∼ 170 s. This led to a deflection
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FIGURE 2.21 A Foucault pendulum at the Earth’s north pole.

�d ∼ 1

2
vω(�t)2 ∼ 2 km, (2.29)

to the right of where the gun was aimed.
The Coriolis acceleration also affects wind patterns. As air moves inward toward

an area of low pressure, the Coriolis acceleration causes it to swerve to the right (in
the northern hemisphere of Earth), and sets up a counterclockwise circulation. As a
consequence, hurricanes in the northern hemisphere rotate counterclockwise; conversely,
circular storms in the southern hemisphere rotate clockwise. Urban legend to the contrary,
water draining from a sink doesn’t invariably spiral counterclockwise in the northern
hemisphere and clockwise in the southern hemisphere. Draining a sink takes much less
time than forming a hurricane; during the time it takes a sink to empty, the �v caused by
the Coriolis effect remains small compared to the speed of the eddies that form as you
fill the sink and wash your hands.16

A celebrated demonstration of the Coriolis effect is the Foucault pendulum, first
demonstrated in the year 1851 by a French scientist named Jean Foucault. A Foucault
pendulum is nothing more than a long pendulum suspended from a ball-and-socket joint
overhead, so it is free to swing in any direction. Although Foucault set up his own
pendulum in Paris, it is easier to visualize the principle behind the Foucault pendulum if
we imagine one installed at the Earth’s north pole (Figure 2.21). If we set the pendulum
oscillating, it will continue to oscillate back and forth in the same plane, as viewed
by a nonrotating observer. Thus, a sidereal nonrotating observer would report, “The

16 In a classic experiment, A. H. Shapiro of MIT (latitude 42◦ N) managed to detect the Coriolis effect by filling
a 6-foot diameter tank with water, letting it sit covered with a plastic sheet for 24 hours at constant temperature,
then carefully pulling out the small, centrally located drain plug. Under such controlled conditions, the water
did indeed spiral counterclockwise down the drain. (Nature, 1962, vol. 196, p. 1080).
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Earth rotates counterclockwise (viewed from above the Earth’s north pole), completing
one rotation in a sidereal day; the plane of the pendulum’s oscillation is not rotating.”
However, an observer co-rotating with the Earth would report, “The Earth is not rotating
with respect to my frame of reference; the plane of the pendulum’s oscillation is rotating
clockwise (viewed from above the Earth’s north pole), completing one rotation in a
sidereal day.”

Analyzing the rotation of a Foucault pendulum at locations other than the north or
south pole requires a more detailed analysis of the Coriolis acceleration of the pendulum
bob; the result found is that the pendulum’s plane of oscillation rotates at a rate 2π sin �

radians per sidereal day, where � is the latitude at which the Foucault pendulum is
located. (This accounts for the popularity of Foucault pendulums at high-latitude science
museums; near the equator, the excruciatingly slow rotation of a Foucault pendulum is
a less visually exciting demonstration of the Earth’s rotation.)

2.6.2 Revolution of the Earth

The aberration of starlight was first detected by Jean Picard in 1680, but it wasn’t
explained until 1729, by the astronomer James Bradley. The aberration of starlight is an
effect that causes the apparent positions of stars on the celestial sphere to be deflected
in the direction of the observer’s motion. The common analogy to explain the aberration
of starlight involves running through a rainshower with an umbrella; even if the rain
is falling straight down, you have to tilt your umbrella in the direction of motion in
order to keep your head dry. Similarly, in order to catch photons from a distant star, you
have to tilt your telescope in the direction of motion (Figure 2.22). Photons travel at
a large but finite speed, c = 3.0 × 105 km s−1. The orbital speed of the Earth averages

At rest

To star

On moving Earth

(a) (b)

FIGURE 2.22 Telescopes must be tilted in the direction of the Earth’s motion
by an angle θ ≈ v/c to assure that photons arrive at point P at the same time as the
bottom of the telescope.
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FIGURE 2.23 Definition of the parallax π ′′ of a star.

v = 29.8 km s−1 ≈ 10−4 c. If your telescope is 1 m long, then during the time it takes
light to pass through the telescope, the Earth’s motion will have translated the telescope
through a distance of 0.1 mm. Figure 2.22 shows that the angle through which the
telescope must be tilted is given by the relation

tan θ = v/c. (2.30)

Since the Earth’s speed is so much smaller than the speed of light, we may use the
small-angle approximation:

θ ≈ v

c
≈ 29.8 km s−1

3.0 × 105 km s−1

(
180◦

π rad

) (
3600′′

1◦

)
≈ 20.5′′. (2.31)

Aberration of starlight causes the positions of stars in the sky to follow an annual path
that is the projection of the Earth’s motion onto the sky: an ellipse of semimajor axis
20.5′′ and a semiminor axis 20.5′′β, where β is the angular distance of the star from the
ecliptic.

Stellar parallax was introduced earlier, on page 37, when we emphasized the fact
that observers couldn’t detect it prior to the invention of the telescope. In fact, even
after the invention of the telescope, it took a long time before stellar parallax was first
measured. It wasn’t until 1838, more than two centuries after the first telescopes, that the
astronomer Friedrich Wilhelm Bessel announced that he had finally measured the annual
parallax of a star. Formally, astronomers define parallax π ′′ (Figure 2.23) as the apparent
displacement of a star, in arcseconds, due to a change in the position of the observer by
1 AU perpendicular to the line of sight to the star.17 Although parallaxes are defined in
terms of a 1 AU displacement, the actual baseline used for parallax measurements can
be as large as 2 AU, by using observations six months apart at the appropriate times of
year. From Figure 2.23, we see that the distance d from the Sun to another star is simply
related to the star’s parallax:

d = a

tan π ′′ . (2.32)

17 We avoid confusion with the irrational number π = 3.14159265 . . . by using the double prime, gently
reminding us that parallaxes are generally measured in units of arcseconds.
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Using the small-angle approximation, and converting the parallax from radians to
arcseconds, we find that

d = a

π ′′[arcsec]

(
180◦

π rad

) (
3600′′

1◦

)
= 206,265 AU

π ′′ . (2.33)

The distance at which a star has a parallax of exactly 1′′ is known as the parsec, short
for “parallax of one arcsec.” The number of AU in one parsec is equal to the number
of arcseconds in a radian: 206,265. The nearest star to the Sun, Proxima Centauri, has
a parallax π ′′ = 0.76′′, and hence is at a distance d = 270,000 AU = 1.3 parsecs. Stellar
parallax causes the positions of stars on the celestial sphere to follow a path that is
the projection of the Earth’s orbit onto the sky: an ellipse with semimajor axis π ′′ and
semiminor axis π ′′β, where β is the angular distance of the star from the ecliptic.18 It
took a while for stellar parallax to be measured, but when it was, it confirmed two initially
controversial assertions made by Copernicus. First, the Earth goes around the Sun, rather
than vice versa. Second, space is big (really big).

PROBLEMS

2.1 Over the course of the year, which gets more hours of daylight, the Earth’s north pole
or south pole? (Hint: the Earth is at perihelion in January.)

2.2 On 2003 August 27, Mars was in opposition as seen from the Earth. On 2005 July 14
(687 days later), Mars was in western quadrature as seen from the Earth. What was
the distance of Mars from the Sun on these dates, measured in astronomical units
(AU)? Is this greater than or less than the semimajor axis length of the Martian orbit?
You may assume the Earth’s orbit is a perfect circle. (Hint: the sidereal period of
Mars is also 687 days.)

2.3 In the 1670s, the astronomer Ole Rømer observed eclipses of the Galilean satellite
Io as it plunged through Jupiter’s shadow once per orbit. He noticed that the time
between observed eclipses became shorter as Jupiter came closer to the Earth and
longer as Jupiter moved away. Rømer calculated that the eclipses were observed
17 minutes earlier when Jupiter was in opposition compared to when it was close to
conjunction. This was attributed by Rømer to the finite speed of light. From Rømer’s
data, compute the speed of light, first in AU min−1, then in m s−1.

18 Note that the aberrational shift of 20.5′′, which is independent of the star’s distance, is much greater than
the parallactic shift for even the nearest stars, which have π ′′ ≤ 0.75′′.
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2.4 In addition to aberration of starlight due to the Earth’s orbital motion around the Sun,
there should also be diurnal aberration due to the Earth’s rotation. Where on the Earth
is this effect the largest, and what is its amplitude?

2.5 A light-year is defined as the distance traveled by light in a vacuum during one tropical
year. How many light-years are in a parsec?

2.6 The planets of the solar system all orbit the Sun in the same sense: counterclockwise
as seen from above the Earth’s north pole. Imagine a “wrong-way” planet orbiting
the Sun in the opposite (clockwise) sense, on an orbit of semimajor axis length
a = 1.3 AU. What would the sidereal period of this planet be? What would its synodic
period be as seen from the Earth? What would its synodic period be as seen from
Mars?

2.7 Consider a football thrown directly northward at a latitude 40◦ N. The distance of
the quarterback from the receiver is 20 yards (18.5 m), and the speed of the thrown
ball is 25 m s−1. Does the Coriolis effect deflect the ball to the right or to the left?
By what amount (in meters) is the ball deflected? Does the receiver need to worry
about correcting for the deflection, or should he be more worried about being nailed
by the free safety? (Hint: the angular velocity �ω of the Earth’s rotation is parallel to
the rotation axis.)



3 Orbital Mechanics

Isaac Newton (1642/3–1727) was born in rural England; his birth date was 1642 De-
cember 25 according to the Julian calendar (still in use in England at the time), but 1643
January 4 according to the Gregorian calendar. When young Newton proved to be incom-
petent at managing his family’s farm, he was sent to Cambridge University and started
to thrive as a scholar. In 1665, the year in which Newton earned his bachelor’s degree, an
outbreak of the plague closed down the university, and Newton retreated to his family’s
farm and began to think—very hard. The period when the university was closed was
Newton’s annus mirabilis, during which he discovered calculus, formulated his three
laws of motion and his law of universal gravitation, and performed ground-breaking
experiments in optics. Much of the remainder of Newton’s long life was dedicated to
developing the ideas he had in this burst of youthful creativity.1

Newton didn’t publish his laws of motion and law of universal gravitation until 1687,
when his book Philosophiae Naturalis Principia Mathematica (“Mathematical Princi-
ples of Natural Philosophy”) was published. The laws of motion can be summarized as
follows:

1. An object’s velocity remains constant unless a net outside force acts upon it.

2. If a net outside force acts on an object, its acceleration is directly proportional to
the force and inversely proportional to the mass of the object. In short, �F = m�a,
where �F is the outside force, m is the mass, and �a is the acceleration.

3. Forces come in pairs, equal in magnitude and opposite in direction. (As Newton
put it: Actioni contrariam semper et aequalem esse reactionem, or “Every action
has an equal and opposite reaction.”)

Newton’s law of universal gravitation can be concisely expressed in mathematical form.
Suppose that two spherical objects, of mass M and m, are separated by a distance r .

1 He also performed many alchemical experiments while trying to systematize chemistry in the way he did
physics, not to mention writing reams of theological works, becoming Master of the Royal Mint, and serving
as president of the Royal Society for nearly a quarter-century.

61
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(The distance r is measured between the centers of the two objects.) Newton’s law tells
us that the gravitational attraction between the two objects is

F = −GMm

r2
, (3.1)

where G, called the gravitational constant, is a universal constant whose value is
G = 6.67 × 10−11 Nm2 kg−2 (where N stands for newton).2 The negative sign in equa-
tion (3.1) tells us that gravity is always an attractive force.

3.1 DERIVING KEPLER’S LAWS

Newton derived the form of equation (3.1) by requiring that the force of gravity result
in planetary orbits that obey Kepler’s laws of planetary motion. Newton was solving the
problem in the difficult direction: he deduced the form of the law of gravitation starting
from the observations. Since we aren’t as smart as Newton, we will take the easier direc-
tion in the following section; starting with Newton’s law of universal gravitation, we’ll
show that Kepler’s laws follow as a consequence. Although it may seem numerically
incongruous, the derivations will flow more smoothly if we begin by deriving Kepler’s
second law, then go on to the first and third laws.

3.1.1 Kepler’s Second Law

Gravity is an example of a central force, defined as a force directed straight toward or
away from some central point, with a magnitude that depends only on the distance r

from that point. The gravitational force qualifies as a central force because the force �F
acting on the mass m always points toward the mass M (the central point of the force),
and the magnitude of the gravitational force is ∝ 1/r2, where r is the separation of the
two masses.3 While analyzing the motion of a particle responding to a central force, it is
convenient to be able to switch from Cartesian coordinates to polar coordinates.

In a Cartesian coordinate system (Figure 3.1), the unit vectors along the x, y, and z

axes are ı̂, ĵ, and k̂, respectively. Suppose we choose our Cartesian coordinate axes such
that the larger mass M lies at the origin, and the position �r and velocity �v of the smaller
mass m lie in the xy plane. (For the sake of concreteness, let’s call mass M the Sun, and
mass m a planet, although the situation applies in general to any system of two spherical
masses: a planet and a moon, a planet and an artificial satellite, a supermassive black
hole and a star—you name it.) The planet’s position (x, y) can now be expressed in polar
coordinates, where the polar coordinates (r, θ) are related to the Cartesian coordinates
(x, y) by the relations x = r cos θ and y = r sin θ . In polar coordinates, as illustrated in

2 The newton (N)—the force required to accelerate 1 kilogram at one meter per second per second—is
equivalent to 3.6 ounces, or about the weight of a small apple.
3 The electrostatic repulsion or attraction between two charged particles is another example of a central force.
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FIGURE 3.1 Axes and unit vectors in a Cartesian coordinate system.
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FIGURE 3.2 Axes and unit vectors in a polar coordinate system.

Figure 3.2, the unit vectors r̂ and θ̂ are

r̂ = ı̂ cos θ + ĵ sin θ (3.2)

and

θ̂ = −ı̂ sin θ + ĵ cos θ. (3.3)

The dot product (or scalar product) of these unit vectors is

r̂ . θ̂ = − cos θ sin θ + sin θ cos θ = 0, (3.4)
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and their cross product (or vector product) is

r̂ × θ̂ =
∣∣∣∣∣∣

ı̂ ĵ k̂
cos θ sin θ 0

− sin θ cos θ 0

∣∣∣∣∣∣ = k̂(cos2 θ + sin2 θ) = k̂, (3.5)

thus demonstrating that r̂ and θ̂ are mutually orthogonal as well as being orthogonal to
k̂, the unit vector in the z direction.

From equations (3.2) and (3.3), we see that

d r̂
dθ

= d

dθ
(ı̂ cos θ + ĵ sin θ) = −ı̂ sin θ + ĵ cos θ = θ̂ (3.6)

and

d θ̂

dθ
= d

dθ
(−ı̂ sin θ + ĵ cos θ) = −ı̂ cos θ − ĵ sin θ = −r̂. (3.7)

We can then apply the chain rule to find the rate of change of the unit vectors r̂ and θ̂:

d r̂
dt

= d r̂
dθ

dθ

dt
= θ̂

dθ

dt
(3.8)

and

d θ̂

dt
= d θ̂

dθ

dθ

dt
= −r̂

dθ

dt
. (3.9)

Note that since r̂ and θ̂ are unit vectors, they change only in direction, not in magnitude.
The velocity of the planet can be expressed in polar coordinates as

�v ≡ d�r
dt

= d(r r̂)
dt

= dr

dt
r̂ + r

d r̂
dt

= vr r̂ + vt θ̂, (3.10)

where

vr = dr

dt
(3.11)

is the radial velocity and

vt = r
dθ

dt
(3.12)

is the tangential velocity.
The angular momentum of the planet is defined as

�L ≡ �r × �p, (3.13)

where �p = m�v is the linear momentum. The rate of change of the angular momentum is
then

d �L
dt

= d�r
dt

× �p + �r × d�p
dt

= �v × m�v + �r × m
d�v
dt

. (3.14)
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FIGURE 3.3 The motions of a planet during a short time interval �t .

From Newton’s second law of motion, we know that md�v/dt = �F. Thus, equation (3.14)
can be rewritten as

d �L
dt

= m(�v × �v) + �r × �F. (3.15)

However, �v × �v = 0 (that’s just a vector identity), and for a central force, �F is parallel to
�r and thus �F × �r ∝ �r × �r = 0. We conclude that for gravity or any other central force,
angular momentum is conserved:

d �L
dt

= 0. (3.16)

Note that the direction as well as the magnitude of �L is constant; this tells us that the
motion of an object moving under the influence of a central force is confined to a plane.

The conservation of angular momentum is equivalent to Kepler’s second law; to
demonstrate that this is true, we use equation (3.10) to write the angular momentum
explicitly as

�L = �r × m�v = mrvt k̂ = Lk̂, (3.17)

where vt is the tangential velocity. Referring to Figure 3.3, consider a planet of mass m;
at a time t , it is at a distance r from the Sun, which has mass M . During a brief time
interval �t , the planet moves a distance vt�t in the tangential direction and a distance
vr�t in the radial direction. The area �A swept out by the planet–Sun line during this
brief interval can be approximated as the sum of two triangles:

�A ≈ 1

2
r(vt�t) + 1

2
(vr�t)(vt�t), (3.18)

where the two terms represent the left-hand triangle and the right-hand triangle in
Figure 3.3.4 In the limit vr�t 
 r , the right-hand triangle is vanishingly small compared
to the left-hand triangle, and the area swept out can be further simplified as

�A ≈ 1

2
r(vt�t). (3.19)

4 In Figure 3.3, we are looking at the specific case vr > 0, but performing a time reversal will yield the case
vr < 0.
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The rate at which the planet–Sun line sweeps out area can then be written

lim
�t→0

�A

�t
= dA

dt
= 1

2
rvt . (3.20)

However, since we know that L = mrvt , from equation (3.17), we can rewrite equa-
tion (3.20) in the form

dA

dt
= 1

2

L

m
. (3.21)

Since L and m are constant, so is the rate dA/dt at which the planet–Sun line sweeps
out area. In other words, we have demonstrated that Kepler’s second law will be true for
a body acting under any central force, not just the force of gravity.

3.1.2 Kepler’s First Law

To demonstrate that Kepler’s first law follows from Newton’s law of universal gravitation,
we will have to demonstrate that the trajectory r(θ) of the mass m (the planet) constitutes
an ellipse with the larger mass M (the Sun) at one focus. Using equations (3.12) and
(3.17), we can write the angular momentum per unit mass of the orbiting body as

L

m
= r2 dθ

dt
, (3.22)

which is constant for any central force. If the force acting on the mass m is gravitational,
then from Newton’s law of universal gravitation and second law of motion,

�F = −GMm

r2
r̂ = m

d�v
dt

. (3.23)

The orbital acceleration under the influence of gravity is then

d�v
dt

= −GM

r2
r̂. (3.24)

From equation (3.9), we know that

r̂ = −
(

dθ

dt

)−1
d θ̂

dt
. (3.25)

By combining equations (3.24) and (3.25), we find that the acceleration of the planet is

d�v
dt

= GM

r2

(
dθ

dt

)−1
d θ̂

dt
. (3.26)

Combining this equation with equation (3.22), we see

L

GMm

d�v
dt

= d θ̂

dt
. (3.27)
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FIGURE 3.4 Time t = 0 corresponds to perihelion passage, with the planet
crossing the x axis with its velocity in the positive y direction.

Integration of this simple differential equation yields

L

GMm
�v = θ̂ + �e, (3.28)

where �e is a constant of integration that depends on the initial conditions of the orbiting
planet. We may choose the initial conditions for our own convenience. Let’s choose the
time t = 0 to correspond to a perihelion passage of the planet, and orient the axes so
that perihelion passage occurs on the positive x axis (Figure 3.4). With this choice of
coordinates, �v and θ̂ both point in the y direction at t = 0; thus, we may write �e = eĵ,
where e is a constant. Equation (3.28) is then

L

GMm
�v = θ̂ + eĵ. (3.29)

We now take the dot product of this equation and the unit vector θ̂:

L

GMm
�v . θ̂ = θ̂ . θ̂ + eĵ . θ̂. (3.30)

To simplify the right-hand side of equation (3.30), we use equation (3.3) to find that
ĵ . θ̂ = cos θ . To simplify the left-hand side, we write

�v . θ̂ =
[
vr r̂ + vt θ̂

]
. θ̂ = vt. (3.31)

But, since equation (3.17) tells us that mrvt = L, we may write

�v . θ̂ = vt = L

mr
. (3.32)
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Circle Ellipse

Parabola Hyperbola

FIGURE 3.5 Conic sections demonstrated by slicing a cone.

Substituting equation (3.32) back into equation (3.30), we find a relationship between r

and θ for fixed values of M , m, L, and e:

L2

GMm2r
= 1 + e cos θ, (3.33)

which can also be written in the form

r = L2

GMm2(1 + e cos θ)
. (3.34)

Equation (3.34) is the equation of a conic section in polar coordinates; as such, it provides
a generalization of Kepler’s first law.

Conic sections can be obtained by slicing a cone with a plane, as illustrated in
Figure 3.5. If the plane is perpendicular to the cone’s axis, then the conic section is a
circle; from equation (3.34), we see that a circle corresponds to the special case e = 0, and
hence r = L2/(GMm2) = constant. If the slicing plane is tilted from the perpendicular
by an angle less than the half-opening angle of the cone, the conic section obtained is an
ellipse; this corresponds to the special case 0 < e < 1.5 When the slicing plane is tilted
from the perpendicular by an angle exactly equal to the half-opening angle of the cone,
the conic section resulting is a parabola; this is the special case e = 1. Finally, when
the slicing plane is tilted by a larger angle, the conic section that results is a hyperbola,

5 Yes, the parameter e in equation (3.34) is the same as the eccentricity e that we encountered while discussing
elliptical orbits in Section 2.5, that is, the distance between foci divided by the major axis length.
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FIGURE 3.6 An ellipse of semimajor axis a and semiminor axis b.

which has e > 1. Kepler’s first law is thus a special case that deals with closed orbits; that
is, orbits with e < 1, which form closed curves (ellipses or circles). The basic physics of
gravitation, however, permits open orbits as well, that is, parabolic or hyperbolic orbits
with e ≥ 1.

We have blithely asserted that the parameter e in equation (3.34), when it lies in the
range 0 ≤ e < 1, is precisely the same as the eccentricity of an ellipse, defined as the
distance between the foci divided by the length of the major axis. It is time to support
that assertion by looking at the properties of ellipses in more depth. In Figure 3.6, an
ellipse is shown along with a set of Cartesian coordinates; the origin of the coordinates
is the center of the ellipse; the x axis lies along the major axis of the ellipse; and the y

axis lies along the minor axis. We also define a system of polar coordinates centered on
one of the foci. Let’s call the focus at the origin the principal focus and require that it
be the focus where the Sun is located, if the ellipse is regarded as a planetary orbit. The
angular coordinate θ is measured counterclockwise from the x axis in the manner shown
in Figure 3.6. The semimajor axis has length a and the semiminor axis has length b; each
of the foci is displaced from the origin of the Cartesian coordinates by a distance ae. An
arbitrary point on the ellipse is displaced by a distance r from the principal focus and a
distance r ′ from the other focus; the basic property of an ellipse is that r + r ′ is constant.
By considering the two points of the ellipse lying on the x axis (x = ±a, y = 0), we find
that r + r ′ = 2a. It also follows that the perihelion distance, if the ellipse is regarded as
a planetary orbit, is q = a(1 − e) and the aphelion distance is Q = a(1 + e).

Consider the point of the ellipse that lies on the positive y axis, where r = r ′ = a

as shown in Figure 3.7. From the Pythagorean theorem, as applied to the right triangle
drawn in the figure, we find that b2 + (ae)2 = r2, or since r = a,

b2 = a2(1 − e2). (3.35)
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FIGURE 3.7 The relationship among the semimajor axis a, the semiminor axis
b, and the eccentricity e.

This enables us to translate between the axis ratio of an ellipse, b/a, and its eccentricity,

e = (1 − b2/a2)1/2. (3.36)

It can also be shown that the average distance of all points on the ellipse from either
focus is equal to the semimajor axis length a. To prove this, consider an arbitrary point
on the ellipse, P(x, y), and its reflection across the y axis, P ′(−x, y), as shown in
Figure 3.8. The distance from point P to the focus on the positive x axis is r . By
symmetry, the distance from the complementary point P ′ to the focus on the positive
x axis is r ′, where r ′ is the distance from point P to the focus on the negative x axis. The
average distance of the two points from the focus on the positive x axis is then

〈r〉 = r + r ′

2
= 2a

2
= a. (3.37)

Since this relation holds for all (P, P ′) pairs, regardless of the choice of P , it is true that
the average distance 〈r〉 from the focus over the entire ellipse is a.

Let us now describe the ellipse in terms of the polar coordinates (r, θ), where r is the
distance from the principal focus and θ is the polar angle measured counterclockwise
from the positive x axis, as shown in Figure 3.9. (When the ellipse represents an orbit,
the angle θ is called the true anomaly.) Note in the figure that we can draw a triangle
from the principal focus at r = 0, to an arbitrary point (r, θ) on the ellipse, to the other
focus, then back to the principal focus. The internal angle of the vertex at the principal
focus (as shown in Figure 2.17) is π − θ . We can thus use the law of cosines to write

r ′2 = r2 + (2ae)2 − 2(2ae)r cos(π − θ). (3.38)

Using the trigonometric identity cos(π − θ) = − cos θ , this becomes

r ′2 = r2 + 4a2e2 + 4aer cos θ. (3.39)
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FIGURE 3.8 The point P(x, y) is at a distance r from the focus on the positive x
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FIGURE 3.9 An ellipse in polar coordinates.

However, from the definition of the ellipse, we know that r ′ = 2a − r , which yields
(squaring each side of the equation)

r ′2 = 4a2 − 4ar + r2. (3.40)

Since the right-hand sides of equations (3.39) and (3.40) are equal, this tells us

4a2e2 + 4aer cos θ = 4a2 − 4ar. (3.41)
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After dividing by 4a and doing a bit of rearranging, we find

r = a(1 − e2)

1 + e cos θ
. (3.42)

This equation for r as a function of θ is the equation for an ellipse in polar coordinates,
with the origin at one focus. This is equivalent in form to equation (3.34), which gives
the shape of an orbit if Newton’s law of universal gravitation holds true. Comparison of
equations (3.34) and (3.42) tells us that the angular momentum L of a planet’s orbital
motion is related to the size and shape of its orbit by the relation

L2

m2
= GMa(1 − e2). (3.43)

Since L = mrvt , this relation can also be written in the form

r2v2
t
= GMa(1 − e2). (3.44)

When a planet is at perihelion, its velocity is entirely tangential (vpe = vt), and its distance
from the Sun is q = a(1 − e). This implies that for a planet at perihelion,

v2
pea

2(1 − e)2 = GMa(1 − e2), (3.45)

or

vpe =
[
GM

a

1 + e

1 − e

]1/2

. (3.46)

A similar analysis of the planet’s speed at aphelion, where its velocity is also entirely
tangential (vap = vt), tells us that

vap =
[
GM

a

1 − e

1 + e

]1/2

. (3.47)

3.1.3 Kepler’s Third Law

Kepler’s second law (equation 3.21) tells us that the area swept out per unit time by the
planet–Sun line is a constant, L/(2m). The area swept out in one orbital period, P , is
the area of the ellipse, given by the standard formula A = πab. For one complete orbital
period, then, we may write

πab

P
= L

2m
. (3.48)

By squaring this equation and making the substitution b2 = a2(1 − e2), we have

π2a4(1 − e2)

P 2
= L2

4m2
. (3.49)
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Since equation (3.43) gives us a relation among L, a, and e, namely,

L2

m2
= GMa(1 − e2), (3.50)

we can substitute back into equation (3.49) to find

π2a4(1 − e2)

P 2
= GMa(1 − e2)

4
, (3.51)

or

P 2 = 4π2

GM
a3, (3.52)

which we recognize as Kepler’s third law, P 2 = Ka3, with the proportionality constant
K ∝ 1/M . With somewhat more exertion, taking into account the acceleration of the
Sun (mass M) as well as the lower-mass planet (mass m), it is possible to reach the more
general form

P 2 = 4π2

G(M + m)
a3. (3.53)

Within the solar system, however, even the most massive of the planets, Jupiter, has a
mass only 1/1000 that of the Sun, so the approximation M + m ≈ M is adequate.

The masses of celestial bodies are measured by how they accelerate nearby masses. In
particular, we can use the orbital periods and semimajor axes of the planets to determine
the mass of the Sun:

M = 4π2a3

GP 2
. (3.54)

The orbital period of the Earth, for instance, is 365.256 days × 86,400 s day−1 = 3.16 ×
107 s.6 The semimajor axis of the Earth’s orbit is a = 1 AU = 1.496 × 1011 m. Thus, we
can compute the mass of the Sun as

M = 4π2(1.496 × 1011 m)3

6.67 × 10−11 m3 s−2 kg−1(3.16 × 107 s)2

= 1.98 × 1030 kg ≡ 1M�. (3.55)

Later in this book, we will find that the solar mass (M�) is a useful unit for expressing
the masses of stars (and larger objects).7

6 A useful approximation is that the length of the year is π × 107 s.
7 The “dot in a circle” symbol � is the standard astronomical symbol for the Sun. It is of great antiquity, being
identical to the Egyptian hieroglyph for the Sun god Ra, seen here, for instance, as the first syllable in the name

of the pharaoh Ramses the Great:
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3.2 ORBITAL ENERGETICS

Suppose you place a particle of mass m at a location �r relative to an object of mass M;
you give it a kick so that it is initially moving at a velocity �v. What determines whether
its orbit is closed (a circle or ellipse, with e < 1) or open (a parabola or hyperbola, with
e ≥ 1)? In a sense, it’s all about the energy. The particle will have an energy E that is the
sum of its kinetic energy K and its gravitational potential energy U :

E = K + U = 1

2
mv2 − GMm

r
. (3.56)

The square of the velocity can be determined by squaring equation (3.28):(
L

GMm

)2

�v . �v = θ̂ . θ̂ + 2eθ̂ . ĵ + e2ĵ . ĵ

(
L

GMm

)2

v2 = 1 + 2eθ̂ . ĵ + e2. (3.57)

Since θ̂ . ĵ = cos θ , from equation (3.3), we may now write the kinetic energy as

K = 1

2
mv2 = 1

2
m

(
GMm

L

)2

(1 + e2 + 2e cos θ). (3.58)

The kinetic energy is greatest at perihelion (θ = 0), which is as it should be, since that’s
when the particle is moving fastest. Now using equation (3.34) for r as a function of θ ,
we can write the potential energy as

U = −GMm

r
= − (GM)2m3

L2
(1 + e cos θ). (3.59)

The amplitude of the potential energy, |U |, is greatest at perihelion (θ = 0), which is as
it should be, since that’s when the particle is closest to the mass M . By adding together
the kinetic energy (equation 3.58) and the potential energy (equation 3.59), and doing a
bit of rearranging, we find

E =
(

GMm

L

)2
m

2
(e2 − 1). (3.60)

This is constant, which is as it should be, since energy is conserved for this isolated two-
body system. We can also, if we so choose, write the orbital eccentricity as a function of
energy E and angular momentum L:

e =
(

1 + 2EL2

G2M2m3

)1/2

. (3.61)

We can readily identify three distinct cases:

1. Hyperbolic orbits: As we recall from our discussion of conic sections (page 68),
the case e > 1represents a hyperbola. Equation (3.60) shows that e > 1corresponds
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to a total energy E > 0; that is, K > |U |. This is an open orbit; the mass m is
not gravitationally bound to the mass M . The mass m makes a single perihelion
passage at θ = 0 and does not return—its value of r , the distance from the mass
M , continues to increase monotonically after perihelion passage.

2. Parabolic orbits: In the case where e = 1 exactly, the mass m is marginally un-
bound to M; that is, its velocity approaches zero asymptotically as r approaches
infinity. In the case of a parabolic orbit, equation (3.60) shows that e = 1 corre-
sponds to E = 0, or K = |U |. Equation (3.56) reveals that a particle will be on a
parabolic orbit if its speed is equal to the escape speed:

vesc(r) =
(

2GM

r

)1/2

. (3.62)

If its velocity is greater than vesc, it will be on a hyperbolic orbit.
3. Elliptical orbits: In the case where e < 1, the mass m is gravitationally bound;

it goes around the mass M on an elliptical orbit. The total energy, when e < 1, is
E < 0, corresponding to K < |U |. The special case e = 0 corresponds to a perfectly
circular orbit. Equation (3.60) shows that a circular orbit is the orbit that minimizes
the energy E for a given angular momentum L.

3.3 ORBITAL SPEED

It is not possible in general to obtain a simple equation that gives the time dependence
of a planet’s distance from the Sun, r(t), or orbital speed, v(t).8 However, it is possible
to find the orbital speed v as a simple function of r , which can be useful. We start with
the equation for a conic section (equation 3.42), which we write in the form

e cos θ = a(1 − e2) − r

r
. (3.63)

The orbital speed as a function of θ is given by equation (3.58):

v2 = 2K

m
=

(
GMm

L

)2

(1 + e2 + 2e cos θ). (3.64)

Thus, by combining equations (3.63) and (3.64), we find an equation that gives the orbital
speed as a function of r:

v2 = G2M2m2

L2

(
1 + e2 + 2

r
[a(1 − e2) − r]

)
. (3.65)

Using equation (3.43), which tells us L2/m2 = GMa(1 − e2), we find

8 This also implies that there is no simple equation for θ(t), since if we had one, we could use the conic section
equation for r(θ) to find r(t).
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v2 = G2M2

GMa(1 − e2)

(
r + e2r + 2a(1 − e2) − 2r

r

)

= GM

a(1 − e2)

(
2a(1 − e2) − r(1 − e2)

r

)

= GM

a

(
2a

r
− 1

)
= GM

(
2

r
− 1

a

)
. (3.66)

The resulting equation

v2 = GM

(
2

r
− 1

a

)
(3.67)

is called the vis viva equation. The Latin term vis viva, which translates literally to “living
force,” is an archaic bit of scientific terminology that was first employed by Gottfried
Leibniz (best known as the other discoverer of calculus). Leibniz used the term vis viva
to refer to the quantity mv2, what we would now call 2K , or twice the kinetic energy. The
vis viva equation is a statement of how the kinetic energy of an orbiting object changes
as a function of r . By using Kepler’s third law (equation 3.52), we can also write the vis
viva equation in the form

v(r) = 2πa

P

(
2
a

r
− 1

)1/2

. (3.68)

This implies that the orbital angular speed ω = v/r of a planet is

ω(r) = 2π

P

a

r

(
2
a

r
− 1

)1/2

. (3.69)

At perihelion, where r = q = a(1 − e), the angular speed of the planet is

ωpe = 2π

P

(1 + e)1/2

(1 − e)3/2
, (3.70)

and at aphelion, where r = Q = a(1 + e), the angular speed is

ωap = 2π

P

(1 − e)1/2

(1 + e)3/2
. (3.71)

Here on Earth, for instance, the observed average angular speed of the Sun along the
ecliptic is equal to 2π radians per sidereal year, or ω = 0.986◦/day. However, since the
Earth’s orbit has an eccentricity e = 0.017, the observed angular speed is greatest at the
time of perihelion (early January), when ωpe = 1.020◦/day, and smallest at the time of
aphelion (early July), when ωap = 0.953◦/day.

An interesting application of the vis viva equation (eq. 3.68) addresses the problem
of the transfer orbit. In traveling from the Earth to another planet, the transfer orbit
is the route you would take from the Earth to the other planet’s orbit. The Hohmann
transfer orbit, illustrated in Figure 3.10, is an ellipse whose perihelion is at the orbit of
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Mars at arrival Earth at launch
Sun

FIGURE 3.10 A Hohmann transfer orbit for interplanetary travel (here from
Earth to Mars). The transfer orbit is an ellipse with its perihelion at Earth and its
aphelion at the orbit of Mars.

the inner planet and whose aphelion is at the orbit of the outer planet. As the German
engineer Walter Hohmann pointed out in the 1920s, the Hohmann transfer orbit has two
desirable properties. First, it requires only two engine burns when done properly: one
when leaving Earth and one when the destination planet is reached. The rest of the time,
the spacecraft is “coasting” on a Newtonian orbit. Second, it is economical in its fuel
use; launching your spacecraft on a hyperbolic orbit will cause it to reach its destination
faster but requires more energy.

As a concrete example, suppose you want to send a spacecraft to Mars. As a first
approximation, we can assume that the orbit of the Earth is a circle of radius a⊕ = 1 AU =
1.50 × 108 km, with orbital period P⊕ = 1 yr = 3.16 × 107 s.9 We further assume that the
orbit of Mars is a larger circle, of radius aMars = 1.52a⊕ = 2.27 × 108 km, with orbital
period PMars = 1.88 yr = 5.94 × 107 s. The semimajor axis of the Hohmann transfer orbit
from Earth to Mars is

ato = a⊕ + aMars

2
= 1 AU + 1.52 AU

2
= 1.26 AU. (3.72)

The orbital period for the transfer orbit is then

Pto[ yr] = (a[ AU])3/2 = (1.26)3/2 = 1.41. (3.73)

Traveling from Earth to Mars requires half an orbit, or a time t = Pto/2 = 0.71 yr ≈
260 days.

The average speed of the Earth on its orbit is

v⊕ = 2πa⊕
P⊕

= 2π(1.50 × 108 km)

3.16 × 107 s
= 29.8 km s−1. (3.74)

9 The “cross in a circle” symbol ⊕ is the standard astronomical symbol for the Earth.
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The average speed of Mars is slower:

vMars = 2πaMars

PMars
= 2π(2.27 × 108 km)

5.94 × 107 s
= 24.0 km s−1. (3.75)

When the spacecraft has just left the Earth, it is at the perihelion of the Hohmann transfer
orbit. Its speed, from the vis viva equation (eq. 3.68), is

vpe = 2πato

Pto

(
2ato

a⊕
− 1

)1/2

= 2π(1.26 AU)(1.50 × 108 km AU−1)

(1.41 yr)(3.16 × 107 s yr−1)

[
2(1.26 AU)

1.00 AU
− 1

]1/2

= 26.7 km s−1(1.52)1/2 = 32.9 km s−1. (3.76)

Thus, at the perihelion of the Hohmann transfer orbit, the spacecraft must be going
faster than the Earth by an amount �v = vpe − v⊕ = 3.1 km s−1. When the spacecraft
is just reaching Mars, it is at the aphelion of the Hohmann transfer orbit. Its speed, from
equation (3.68), is then

vap = 2πato

Pto

(
2ato

aMars
− 1

)1/2

= 26.7 km s−1
[

2(1.26 AU)

1.52 AU
− 1

]1/2

= 21.7 km s−1. (3.77)

Thus, in order to match its velocity to that of Mars, the spacecraft must increase its speed
by �v = vMars − vap = 2.3 km s−1. (If you want your spacecraft to go into orbit around
Mars, like the Mars Reconnaissance Orbiter, the time, direction, and duration of your
engine burn depend on the orbital parameters you want to attain.)

Use of a Hohmann transfer orbit requires careful timing. If you are sending a space-
craft to Mars, for instance, the craft must reach the aphelion of its orbit just as Mars
reaches that point. This restricts launches to certain times, known as launch windows.
If you fail to launch during one launch window, you could wait for one synodic period
of the target planet before launching again. For a mission to Mars, whose synodic period
is 2.1 years, this could be a frustrating wait.

3.4 THE VIRIAL THEOREM

If a system contains only two spherical bodies, such as a star and planet, there is a simple
analytic solution (first seen in Section 2.5) for the planet’s trajectory, r(θ). Similarly,
Section 3.2 yields simple formulas for the planet’s kinetic energy K(θ) and potential
energy U(θ), while Section 3.3 gives the vis viva equation for v as a function of r . In a
system containing more than two bodies, however, there are no longer any simple analytic
solutions for the bodies’ properties. Thus, when astronomers study large stellar systems
such as star clusters and galaxies, they generally use numerical techniques to compute the
stellar orbits using a computer. However, despite the complexity of many-body systems
such as star clusters, it is possible to find useful statistical results that describe the average
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global properties of the system. One such result is the virial theorem, which relates the
total kinetic energy of a system to its total potential energy.

To derive the virial theorem, let’s suppose we have a system containing N stars (or
planets, or other compact massive bodies). The mass of the ith star is mi, and its location
is �ri. We can define a function

A ≡
N∑

i=1

mi

d�ri

dt
. �ri. (3.78)

The reason for defining this function starts to become a bit more obvious when we take
the time derivative of A:

dA

dt
=

N∑
i=1

(
mi

d�ri

dt
.
d�ri

dt
+ mi

d2�ri

dt2
. �ri

)
. (3.79)

The first term on the right-hand side of equation (3.79) is twice the kinetic energy, and
the second term can be transformed using Newton’s second law,

mi

d2�ri

dt2
= �Fi, (3.80)

where �Fi is the net force acting on the ith star. Thus, we may write

dA

dt
= 2K +

N∑
i=1

�Fi
. �ri, (3.81)

where K is the sum of the kinetic energies of all the stars in the system. The term
∑ �Fi

. �ri

was named the virial by the physicist Rudolf Clausius.10

Equation (3.81) is the most general form of the virial theorem. It applies to any system
of bodies that follow Newton’s second law, regardless of the forces �Fi acting on them.
A more useful form of the virial theorem can be found by taking the time average of
equation (3.81). If we average over the time interval t = 0 → t = τ , we find

2〈K〉 + 〈
N∑

i=1

�Fi
. �ri〉 = 〈dA

dt
〉

= 1

τ

∫ τ

0

dA

dt
dt

= A(τ) − A(0)

τ
. (3.82)

If the system is bound, then the velocity of each particle, as well as its displacement from
the origin, remains finite. In that case, A(t), as given by equation (3.78), is finite at all

10 Clausius also coined the term “entropy,” probably his most memorable contribution to the scientific
vocabulary.



80 Chapter 3 Orbital Mechanics

times, and the right-hand side of equation (3.82) goes to zero in the limit τ → ∞. Thus,
for any bound system of particles, the time-averaged virial theorem has the form

2〈K〉 + 〈
N∑

i=1

�Fi
. �ri〉 = 0. (3.83)

The virial theorem as expressed in equation (3.83) can be applied to any bound system,
for instance, to a gas of molecules enclosed within a box. However, as astronomers, we
are interested in the specific case of an isolated bound stellar system, in which the force
acting on the ith star is the sum of the gravitational forces exerted by the other N − 1
stars in the system:

�Fi =
∑
j �=i

Gmimj(�rj − �ri)

|�rj − �ri|3
. (3.84)

For such a system, what is the value of the virial,
∑ �Fi

. �ri? Let’s start with a simple
system containing only two stars. For this system, the virial will be

�F1
. �r1 + �F2

. �r2 = Gm1m2(�r2 − �r1) . �r1

|�r2 − �r1|3
+ Gm2m1(�r1 − �r2) . �r2

|�r1 − �r2|3

= −Gm1m2|�r2 − �r1|2
|�r2 − �r1|3

= − Gm1m2

|�r2 − �r1|
. (3.85)

The right-hand side of equation (3.85) is simply the potential energy U of the two-star
system. By extension, for a three-star system, the virial will be equal to the sum of
the potential energies of all three pairs: (1,2), (2,3), and (3,1). For a system containing
N stars, the virial will be equal to the sum of the potential energies of all Npair =
N(N − 1)/2 pairs of stars that can be drawn from the system. We can thus write

N∑
i=1

�Fi
. �ri = U =

N∑
i=1

∑
j>i

− Gmimj

|�ri − �rj |
, (3.86)

and the virial equation (eq. 3.83) becomes

2〈K〉 + 〈U〉 = 0. (3.87)

The virial theorem is useful to astronomers, as we find in Section 20.2, when it enables
us to estimate the mass of distant galaxies.
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PROBLEMS

3.1 Comet Hale-Bopp has an orbit about the Sun with eccentricity e = 0.9951 and
semimajor axis length a = 186.5 AU. What is the sidereal orbital period of Comet
Hale-Bopp? What is Comet Hale-Bopp’s distance from the Sun at perihelion? What
is its distance from the Sun at aphelion? Comet Hale-Bopp passed through perihelion
on 1997 April 1; did the previous perihelion passage of Comet Hale-Bopp occur
before or after the birth of Aristotle?

3.2 The asteroid Eros is seen in opposition from the Earth once every 847 days. What
is the sidereal orbital period of Eros? What is the length a of the semimajor axis of
Eros’ orbit? The eccentricity of the orbit of Eros is e = 0.223. Does Eros ever come
within 1 AU of the Sun?

3.3 Consider a satellite in a circular, low-Earth orbit; that is, the satellite’s elevation above
the Earth’s surface is h 
 R⊕. Show that the orbital period P for such a satellite is
approximately

P = C

(
1 + 3h

2R⊕

)
.

What is the numerical value of the constant C in minutes? When Puck, in A
Midsummer Night’s Dream, boasted, “I’ll put a girdle round about the Earth in
forty minutes” (Act 2, Scene 1), could he have done so by traveling on a circular
orbit, accelerated by the Earth’s gravity alone? If so, what would be his elevation h?

3.4 What is the orbital period for a low-lunar orbit (as was used by the Apollo command
modules)?

3.5 (a) Io is the innermost Galilean satellite of Jupiter. The orbital period of Io is
P = 1.769 days; the semimajor axis of its orbit is a = 421,600 km (slightly
larger than the Moon’s orbit about the Earth). Given this information, find the
mass of Jupiter.

(b) Phobos is the inner moon of Mars. The orbital period of Phobos is P = 0.32 days;
the semimajor axis of its orbit is a = 9370 km. Find the mass of Mars. (Hint: you
may assume the masses of Io and Phobos are negligible compared to those of
their parent planets.)

3.6 Communications and weather satellites are often placed in geosynchronous orbits. A
geosynchronous orbit is an orbit about the Earth with orbital period P exactly equal
to one sidereal day. What is the semimajor axis ags of a geosynchronous orbit? What
is the orbital velocity vgs of a satellite on a circular geosynchronous orbit?
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3.7 Starting with the equation for an ellipse in polar coordinates (eq. 3.42), derive the
more familiar Cartesian form,

x2

a2
+ y2

b2
= 1.

3.8 The Hubble Space Telescope (HST) is on a circular, low-Earth orbit, at an elevation
h = 600 km above the Earth’s surface. What is its orbital period? For an observer
who sees HST pass through the zenith, how long is HST above the horizon during
each orbit?

3.9 One way of lifting a satellite into geosynchronous orbit is to use the space shuttle to
lift it into a circular, low-Earth orbit (with h = 300 km above the Earth’s surface),
and then use a booster rocket to place the satellite on a Hohmann transfer orbit
(see Section 3.3) up to a circular geosynchronous orbit. What is the orbital velocity
vss of the satellite while it is still in low-Earth orbit? What is the orbital velocity
at pericenter, vpe, of the appropriate Hohmann transfer orbit? What is the orbital
velocity at apocenter, vap, of the Hohmann transfer orbit? How long does it take the
satellite to travel from the low-Earth orbit to the geosynchronous orbit?

3.10 A small particle of mass m is on a circular orbit of radius R around a much larger mass
M . Suppose that we suddenly increase the speed at which the mass m is moving, by
a factor α (that is, vfinal = αvinitial, with α > 1). Compute the major axis, minor axis,
pericenter distance, and apocenter distance for the new orbit; express your answers
in terms of R and α alone.



4 The Earth–Moon System

In the previous chapter, we treated all massive bodies as if they were point masses. This
provides a good first-order approximation of how bodies in the solar system interact.
However, a better description requires that we take into account the fact that stars,
planets, and satellites are extended bodies that do not have a perfectly spherical shape. In
addition, when computing the orbits of planets around the Sun, we must take into account
the fact that there are many sources of gravitational force besides the Sun. These cause
perturbations of what would otherwise be a perfectly elliptical orbit. In this chapter, we
will see how these effects influence the dynamics of the Earth–Moon system in particular.
As we will see, the more subtle, second-order effects of gravity, such as precession and
tides, have significant long-term effects.

4.1 PRECESSION

A rapidly rotating plastic body will distort from a spherical shape.1 The rotation causes
the body to take the shape of an oblate spheroid, with its short axis coinciding with the
rotation axis. A pliable, rapidly rotating lump of pizza dough will become a thin disk;
the Earth is more rigid than pizza dough, but it still has a slight equatorial bulge, shown
grossly exaggerated in Figure 4.1. In reality, the Earth’s equatorial radius (the average
distance from the Earth’s center to the equator) is Req = 6378.14 km; its polar radius
(the distance from the Earth’s center to the north or south pole) is Rpol = 6356.75 km,
smaller by about 21.4 km, or 0.3%.

The equatorial bulge of the Earth provides an extra “spare tire” of material at the
Earth’s equator on which the Moon and Sun can pull. Neither the Sun nor the Moon
lies in the Earth’s equatorial plane; thus, the pull of the Sun and Moon on the Earth’s
equatorial bulge works to align the equatorial and ecliptic planes. If we consider a small
bit of mass m within the Earth’s equatorial bulge, the force exerted on it by the Moon
will be

1 We are using “plastic” here in its original sense, meaning “able to flow slowly.” We don’t mean to imply that
the planets are made of polyethelene or polyvinyl chloride.
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FIGURE 4.1 Gravitational torque on the Earth’s equatorial bulge results in
precession of the rotation axis. The torque vector is pointing out of the page.

F = −GMMoonm

r2
Moon

. (4.1)

Because of the tilt of the Earth’s axis relative to the Moon’s orbit, the direction of this
force will not be exactly parallel to the vector �r from the Earth’s center to the mass bit
m. The mass m will thus experience a torque �τ given by the relation (see equation 3.15)

�τ = �r × �F �= 0. (4.2)

If the Earth were perfectly spherical, then the net torque on the entire Earth would vanish,
by symmetry arguments. However, the “spare tire” of the equatorial bulge has a net torque
exerted on it. As seen from above the Earth’s north pole, this torque causes the Earth’s
rotation axis to precess clockwise. The combined torque of the Sun and the Moon acting
on the Earth’s equatorial bulge causes the observed precession period of 25,800 years.

4.2 TIDES

Around an isolated spherical body, the equipotential surfaces (contours of constant
gravitational potential) will be perfect spheres. However, if another massive object is
brought close, the equipotential surfaces will become distorted. To the extent that the
initially spherical body is fluid, it will change its shape to fill a nonspherical equipotential
surface. The distortions of the equipotential surfaces, and of the body within them,
are called tides. Because the Earth has a large, nearby Moon, its shape is measurably
distorted by the tidal effect of the Moon.2 The most spectacular manifestation of tides for

2 The gravitational effects of the Sun also have a significant tidal effect on the Earth, as we’ll compute later,
but let’s use the lunar tides as our example.
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(a) (b)

FIGURE 4.2 (a) High tide in the Bay of Fundy. (b) Low tide at the same location.

an inhabitant of the Earth is the rise and fall of the water level at the seashore; Figure 4.2
shows “high tide” and “low tide” in the Bay of Fundy. The fluid water is more easily
distorted by the differential tidal forces than is the rigid rock. However, even the solid
crust of the Earth is significantly distorted in shape by the tidal forces.

To compute the differential tidal force, let’s start by considering the gravitational
force of the Moon acting on the matter of which the Earth is made. A small bit of matter
(perhaps a drop of ocean water, or perhaps a pebble) has mass m. The gravitational force
exerted on it by the Moon is

FMoon(r) = −GMMoonm

r2
, (4.3)

where MMoon = 7.4 × 1022 kg is the Moon’s mass, and r is the distance of the bit of
matter from the Moon’s center. The average distance r0 between the center of the Earth
and the center of the Moon is 384,000 km, about 60 times the Earth’s mean radius of
R⊕ = 6370 km. Thus, the force of gravity at a distance r from the Moon’s center can
be profitably expanded as a Taylor series for locations within the Earth or on the Earth’s
surface:

FMoon(r) ≈ FMoon(r0) + (r − r0)
dFMoon

dr

∣∣∣
r=r0

. (4.4)

Since, from equation (4.3), we know that

dFMoon

dr
= 2GMMoonm

r3
, (4.5)
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FIGURE 4.3 The differential gravitational force of the Moon (right) on the Earth
(left).

we can write the differential gravitational force near the Earth’s center as

�FMoon ≡ FMoon(r) − FMoon(r0) = (r − r0)
2GMMoonm

r3
0

. (4.6)

The point on the Earth’s surface nearest the Moon has r = r1 = r0 − R⊕, as shown in
Figure 4.3. This means that the differential force at this near point is

�FMoon(r1) = −2GMMoonmR⊕
r3

0

. (4.7)

Similarly, we can compute the differential force at the point on the Earth’s surface farthest
from the Moon, r = r2 = r0 + R⊕; it is

�FMoon(r2) = 2GMMoonmR⊕
r3

0

, (4.8)

equal in magnitude but opposite in sign to the differential force at the near point.
Note that the differential force associated with tides falls off as the cube of the Earth–

Moon distance. The differential force due to the Sun can similarly be written as

�F� = 2GM�mR⊕
a3⊕

, (4.9)

where a⊕ = 1 AU = 1.50 × 108 km is the average Earth–Sun distance. The ratio of the
differential forces due to the Sun and the Moon is

�F�
�FMoon

= M�
MMoon

(
r0

a⊕

)3

= 2.0 × 1030 kg

7.4 × 1022 kg

(
3.8 × 105 km

1.5 × 108 km

)3

≈ 0.44. (4.10)

We thus see that the differential effects of the Moon’s gravity are about twice as large
as those due to the Sun’s gravity. Although the mass of the Sun is 27 million times the
Moon’s mass, the cube of an astronomical unit is (390)3 ≈ 59 million times the cube of
the Earth–Moon distance.
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θ φ

FIGURE 4.4 Geometry for computing tidal distortion of the shape of the Earth.

Thus, a back-of-envelope calculation tells us that Moon-related tides should have
roughly twice the amplitude of Sun-related tides. We can consider tidal effects in more
detail, over the entire surface of the Earth, by using Figure 4.4 as a starting point.

At the center of the Earth, the force on a test mass m due to the Moon’s mass MMoon
is

�Fc = GMMoonm

r2
ı̂, (4.11)

where r is the distance from the Earth’s center to the Moon’s center. At a point P on the
Earth’s surface (where mass m lies in the figure), the force on the test mass m is

�FP = GMMoonm

s2
(ı̂ cos φ − ĵ sin φ). (4.12)

The difference in force between these two locations is

��F = �FP − �Fc = GMMoonm

[
ı̂

(
cos φ

s2
− 1

r2

)
− ĵ

sin φ

s2

]
. (4.13)

Inspection of Figure 4.4 tells us that the relation between the distance s, the Earth’s radius
R⊕, and the Earth–Moon distance r is

s2 = (r − R⊕ cos φ)2 + (R⊕ sin φ)2

= r2 − 2rR⊕ cos φ + R2
⊕ cos2 φ + R2

⊕ sin2 φ

= r2

[
1 − 2R⊕

r
cos φ + R2

⊕
r2

]
. (4.14)

Since R⊕/r 
 1, we can do an expansion, ignoring terms of order (R⊕/r)2 and higher:

1

s2
≈ 1

r2

(
1 − 2R⊕

r
cos φ

)−1

≈ 1

r2

(
1 + 2R⊕

r
cos φ

)
. (4.15)
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Referring again to Figure 4.4, we can also write the equation

sin φ = R⊕ sin θ

s
≈ R⊕ sin θ

r

(
1 − 2R⊕

r
cos θ

)−1/2

≈ R⊕ sin θ

r

(
1 + R⊕

r
cos θ

)

≈ R⊕ sin θ

r
, (4.16)

discarding, as before, terms of order (R⊕/r)2 and higher. Similarly, we may write

cos φ = r − R⊕ cos θ

s

= r − R⊕ cos θ

r

(
1 − 2R⊕

r
cos θ

)−1/2

≈
(

1 − R⊕
r

cos θ

) (
1 + R⊕

r
cos θ

)
≈ 1. (4.17)

By substituting equations (4.15), (4.16), and (4.17) back into equation (4.13), we find
the differential force as a function of r and θ :

��F ≈ GMMoonmR⊕
r3

(
ı̂ 2 cos θ − ĵ sin θ

)
. (4.18)

Figure 4.5 shows the differential force vectors for several locations on the surface of
the Earth. Notice that in addition to producing extension along the x axis, the differential
forces also produce compression along the y axis. Since the Earth–Moon system pos-
sesses rotational symmetry about the Earth–Moon line, there will also be compression

FIGURE 4.5 A plot of tidal distortion vectors at different locations on the Earth.
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(a) Spring tide

Sun Moon

Moon

Sun

(b) Neap tide

FIGURE 4.6 (a) Spring tides occur when the tidal bulges produced by the Sun
and the Moon are aligned. (b) Neap tides occur when the tidal bulges are at right
angles.

along the z axis, and the differential forces will mold the Earth into a prolate shape,
elongated along the x axis. Thus, the Earth has two tidal bulges, one on the side of the
Earth facing the Moon, and the other on the opposite side. Since the Moon makes an
upper transit once every 24h50m, observers on Earth experience high tide every 12h25m,
as one of the tidal bulges reaches their location. The height of the tidal bulges raised
by the Moon is typically 1 m in the open ocean and only 0.2 m on land. Irregularities
of the ocean floor, however, can cause dramatic local variations in the height of tides.
For instance, the Bay of Fundy, between New Brunswick and Nova Scotia, is a long bay
gradually narrowing toward its head. As the tidal bulges are funneled into the Bay of
Fundy, they can produce high tides as much as 12 m above the low tides.3

The tidal bulges created by the Sun are about half as high as those created by the
Moon, and thus are not negligible when computing the actual height of tides. When the
Sun and Moon are separated by either 180◦ or 0◦, as seen from the Earth, their tidal
bulges add constructively, causing relatively high-amplitude tides called spring tides

3 Please don’t fall into the beginner’s error of confusing the Earth’s tidal bulges with its equatorial bulge. The
equatorial bulge is an oblate distortion due to the Earth’s rotation, with an amplitude of several kilometers. The
tidal bulges are a prolate distortion due to the effect of the Moon or Sun, with an amplitude of only a meter
or so.
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(Figure 4.6).4 When the Sun and Moon are separated by 90◦, as seen from the Earth,
their tidal bulges sum destructively, causing relatively low-amplitude tides called neap
tides.5 For sailors, a knowledge of the tides is essential. This was especially true in the
age of sail, when every mariner feared being “neaped”; that is, running aground at the
height of a spring tide and being stuck during the subsequent neap tides.6

High tide does not occur exactly at the instant when the Moon makes an upper or
lower transit. In the open ocean, there is an average delay of ∼ 40 minutes between the
Moon’s transit and the following high tide.7 This lag is caused by the effects of friction
on the Earth’s tidal bulges. The Earth rotates once per sidereal day. However, the Moon-
induced tidal bulges go around the Earth’s center at the same angular rate as the Moon’s
orbital motion, that is, one circuit per month. This means that friction between the tidal
bulges and the more rapidly rotating body of the Earth tends to drag the bulges forward
of where they would otherwise be; the angle by which they are dragged forward turns
out to be 10◦ (Figure 4.7). The observable consequence is that high tide occurs when
the Moon is slightly west of the upper meridian, that is, shortly after its upper transit
(and also, of course, shortly after its lower transit, given the two tidal bulges on opposite
sides of the Earth). Since the Moon pulls slightly more strongly on the nearer tidal bulge
than the farther tidal bulge, there is a net torque acting to slow the rotation of the Earth;
this decrease of the Earth’s rotational angular momentum is referred to as tidal braking.
Conversely, because the nearer tidal bulge pulls slightly more strongly on the Moon than
does the farther tidal bulge, the Moon is pulled forward in the direction of its orbital
motion, increasing its orbital angular momentum.

If we approximate the Moon’s orbit as a circle of radius r , the Moon’s orbital angular
momentum is

Lorb = MMoonvr = MMoon

(
GM⊕

r

)1/2

r = (GM⊕M2
Moonr)

1/2. (4.19)

If the rate of increase of the Moon’s orbital angular momentum is small (so that the
orbit is always well approximated as Keplerian) then an increase of the orbital angular
momentum results in an increased orbit size:

dLorb

dt
=

(
GM⊕M2

Moon

)1/2 1

2
r−1/2 dr

dt
. (4.20)

4 The name “spring tides” has nothing to do with the season of spring; they can occur at any time of year. The
name refers to the fact that high tides spring higher into the air when the Sun and Moon are aligned.
5 The word “neap” is of obscure etymology; scholars of Old English surmise that its original meaning was
“lacking power.”
6 Captain James Cook, for instance, had the misfortune to run aground on the Great Barrier Reef on 1770
June 11, just at high tide. Thus, he had to wait until the next high tide, over 12 hours later, to be floated free.
Unfortunately, he had the further misfortune to run aground during a high spring tide, and the next high tide
was significantly lower in amplitude. The ship’s crew, as Cook’s log recorded, had to jettison “Guns, Stone &
Iron Ballast, Casks, Hoop Staves, Oil Jars, decay’d Stores, etc.” before the ship floated.
7 On your next moonlit vacation at the seashore, you are likely to notice a delay larger or smaller than 40
minutes. This is because continents, acting as obstacles to the tidal flow, significantly alter the times of high
tide.
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10°

Moon

Earth

FIGURE 4.7 The Moon, by pulling on the Earth’s tidal bulges, decreases the
rotation speed of the Earth and increases the orbital angular momentum of the
Moon.

If the Earth–Moon system is regarded as an isolated two-body system, then the angular
momentum gained by the Moon must be equal to that lost by the Earth:

dLorb

dt
= −dLrot

dt
, (4.21)

where Lrot is the angular momentum of the Earth’s rotation. In general, for a rotating
body, the angular momentum can be written as Lrot = Iω, where ω is the angular speed
of rotation and I is the moment of inertia of the rotating body. If we approximate the
Earth as a constant-density sphere,8 its moment of inertia is

I = 2

5
M⊕R2

⊕. (4.22)

With the approximation of constant density, the Earth’s rotational angular momentum is

Lrot = 2

5
M⊕R2

⊕

(
2π

Prot

)
, (4.23)

and the rate of change of the rotational angular momentum is

dLrot

dt
= 4πM⊕R2

⊕
5

(
− 1

P 2
rot

dProt

dt

)
. (4.24)

Because angular momentum is conserved (equation 4.21), we can equate the Earth’s loss
of rotational angular momentum (equation 4.24) to the Moon’s gain of orbital angular

8 Since the Earth is differentiated, becoming denser near the center, the constant-density approximation actually
overestimates the Earth’s true moment of inertia by about 20%.
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momentum (equation 4.20):

(GM⊕M2
Moon)

1/2

2r1/2

dr

dt
= 4π

5

M⊕R2
⊕

P 2
rot

dProt

dt
. (4.25)

Solving for the rate at which the Moon is receding from the Earth, we find

dr

dt
= 8π

5

(
M⊕r

G

)1/2 R2
⊕

MMoonP
2
rot

dProt

dt
. (4.26)

As we discussed in Section 1.5, the rate of slowing of the Earth’s rotation is measurable
and amounts to

dProt

dt
= 0.0016 s century−1 = 5.2 × 10−13 s s−1. (4.27)

That is, the length of the sidereal day increases by 0.0016 s every century. Inserting this
measured quantity into equation (4.26), and using the known masses of the Earth and
Moon, the known radius of the Earth, and the known (present) Earth–Moon distance r ,
we find that the Moon must be receding from the Earth at the rate

dr

dt
≈ 4 cm yr−1. (4.28)

For comparison, this is roughly the rate at which London and New York are moving
apart due to continental drift, which in turn is approximately equal to the rate at which
your fingernails grow. The rate at which the Moon is moving away from the Earth has
been confirmed experimentally by lunar laser ranging experiments. In these experiments,
powerful lasers are aimed at reflectors left on the Moon’s surface by the Apollo astro-
nauts; the round-trip travel time t is measured with exquisite accuracy, permitting a
calculation of the one-way distance d = ct/2.9

4.3 LIMITS ON THE SIZE OF ORBITS

Just as the Moon produces tidal bulges on the Earth, the Earth produces tidal bulges
on the Moon. Since the differential gravitational force acting on the Moon is inversely
proportional to the cube of the Earth–Moon distance, if we could bring the Moon closer
to the Earth, the tidal distortions of the Moon would increase dramatically. At some
critical distance, the differential gravitational forces would tear the Moon apart. Thus,
tidal effects impose a minimum permissible orbit size. Conversely, there is a maximum
possible size for the orbit of the Moon, beyond which the differential gravitational
acceleration caused by the Sun would exceed the acceleration of the Moon by the
Earth. The Moon would then escape into a solar orbit. This section will discuss first
the minimum orbit size (the Roche limit), then the maximum orbit size (the Hill radius).

9 The rate at which your fingernails grow can be confirmed experimentally by letting them grow unclipped for
a year; more practically, you can save up a year’s worth of fingernail clippings and place them side by side.
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FIGURE 4.8 The two small spheres, which have center-to-center separation �r ,
are a self-gravitating system experiencing a differential gravitational force from the
larger mass M at a distance r .

4.3.1 Minimum Orbit Size: Roche Limit

Every object has a self-gravity that tends to hold it together and mold it into a spherical
body. However, if a small mass is sufficiently close to a larger mass, the differential
gravitational force on the smaller mass can exceed its self-gravity, causing the small
mass to be ripped apart. How close does the smaller mass have to come to the larger one
for this tidal disruption to occur? To answer this question, let’s first consider the artificial
yet illustrative case of two spherical masses, each of mass m and diameter �r , that are
just touching each other, as shown in Figure 4.8. The centers of the two masses are thus
separated by a distance �r . This two-body system is separated from a larger mass M by
a distance r > �r . The differential force on the two masses is

�F = dF

dr
�r = 2GMm

r3
�r. (4.29)

The self-gravity holding the two masses together is

F = −Gmm

(�r)2
. (4.30)

As we make r smaller, there is a critical distance known as the Roche limit, rR, at which
the differential tidal force, which tends to pull the masses apart, is larger in magnitude
than the self-gravity force, which tends to bring the masses together. By comparing
equations (4.29) and (4.30), we find that the Roche limit rR is given by the relation

2GMm

r3
R

�r = Gmm

(�r)2
. (4.31)

Solving for rR, we find

rR =
(

2M

m

)1/3

�r. (4.32)

It is frequently more convenient to express the Roche limit in terms of the mass density
of the objects involved, rather than their masses. Since we have assumed the objects are
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spherical, we can write

M = 4π

3
R3ρM, (4.33)

where R is the radius of the larger mass, and ρM is its mass density. Similarly, for each
of the two smaller objects,

m = 4π

3

(
�r

2

)3

ρm, (4.34)

where ρm is the mean mass density. Substituting these two relations into equation (4.32),
we obtain

rR =
(

16ρM

ρm

)1/3

R ≈ 2.5

(
ρM

ρm

)1/3

R. (4.35)

Admittedly, approximating the Moon as a pair of spheres touching each other is an
extraordinarily crude approximation. A more exact treatment of the problem treats the
smaller-mass object not as a pair of hard spheres but as a deformable fluid. This more
exact approach changes only the numerical coefficient; the Roche limit then becomes

rR = 2.44

(
ρM

ρm

)1/3

R. (4.36)

Thus, if a planet and its satellite are of comparable density, once the satellite comes
within ∼ 2.4 planetary radii of its parent planet, the differential gravitational forces will
be greater than the satellite’s self-gravity.

Let’s consider how close the Moon could come to the Earth before it would be tidally
disrupted. The mean density of the Earth is

ρ⊕ = 3M⊕
4πR3⊕

= 3(5.97 × 1024 kg)

4π(6.38 × 106 m)3
≈ 5500 kg m−3, (4.37)

about 5.5 times the density of water. Similarly, the density of the Moon is

ρMoon = 3MMoon

4πR3
Moon

= 3(7.35 × 1022 kg)

4π(1.74 × 106 m)3
≈ 3300 kg m−3. (4.38)

The Roche limit for the Moon is therefore

rR = 2.44

(
5500

3300

)1/3

R⊕ ≈ 2.9R⊕. (4.39)

Thus, the Moon is quite safe from tidal disruption; as mentioned in Section 4.2, its actual
distance from the Earth is r ≈ 60R⊕.

It should be noted, however, that if a satellite ventures inside the Roche limit, it is not
necessarily torn apart instantly. For instance, Phobos is the inner satellite of Mars; it’s
an irregularly shaped body with a density ρPhobos ≈ 1900 kg m−3. Its parent planet Mars
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M⊕ MMoon M�

a⊕

r

FIGURE 4.9 The Moon and the Earth, with masses MMoon and M⊕, respectively,
form a gravitationally bound system with separation r . The Sun, with mass M� at a
distance a⊕ from the Earth, perturbs the Earth–Moon system. (Not to scale.)

has a density ρMars ≈ 3900 kg m−3 and a radius RMars = 3397 km. The Roche limit for
Phobos is therefore

rR = 2.44

(
3900

1900

)1/3

RMars = 3.10RMars, (4.40)

or about 10,500 km. However, the orbit of Phobos, which is nearly circular, has a
semimajor axis of only aPhobos = 9400 km = 2.76RMars. Phobos is inside its Roche
limit. It hasn’t been torn apart by tides because it is not held together purely by self-
gravity. Instead, the electrical forces binding together the material of which it is made
are sufficient to keep it intact.10

4.3.2 Maximum Orbit Size: Hill Radius

The maximum distance at which the Moon could orbit the Earth is the distance at which
the differential acceleration of the Moon away from the Earth, due to the Sun’s gravity,
is equal to the acceleration of the Moon toward the Earth, due to the Earth’s gravity.

Consider the three masses illustrated in Figure 4.9, which may be thought of as the
Earth, the Moon, and the Sun. The Earth, of mass M⊕, and the Moon, of mass MMoon,
are separated by a distance r . The much larger mass of the Sun, M�, is separated from
the Earth by a distance a⊕ � r . The difference between the Earth’s acceleration due to
the Sun, g⊕, and the Moon’s acceleration due to the Sun, gMoon, is

�g = gMoon − g⊕ = GM�
(a⊕ − r)2

− GM�
a2

. (4.41)

In the case of the Earth–Moon system, r 
 a⊕, so we may make the approximation

(a⊕ − r)−2 = a−2
⊕ (1 − r/a⊕)−2 ≈ a−2

⊕

(
1 + 2r

a⊕

)
. (4.42)

10 Similarly, you are not torn apart by tides, despite being inside the Roche limit; you are held together by
strong electrical forces that prevent you from being disrupted by the relatively feeble differential gravitational
force between your head and feet.
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This means that the differential acceleration �g is roughly

�g ≈ GM�
a2⊕

(1 + 2r

a⊕
) − GM�

a2⊕
≈ 2GM�r

a3⊕
. (4.43)

(Note the now-familiar inverse cube law for a differential gravitational effect. Now,
however, instead of a differential force stretching out the Earth, we have a differential
force stretching out the Earth–Moon system.)

As we make the Earth–Moon separation r larger, the differential acceleration �g

increases. At a critical distance known as the Hill radius, rH, the differential accel-
eration �g is equal in magnitude to the Moon’s acceleration due to the Earth. Using
equation (4.43), we find

2GM�rH

a3⊕
= GM⊕

r2
H

. (4.44)

Solving for the Hill radius rH, we find

rH =
(

M⊕
2M�

)1/3

a⊕. (4.45)

The similarity in appearance between the equation for the Roche limit (eq. 4.32) and
the equation for the Hill radius (eq. 4.45) is not coincidental. In each case, we were
computing the radius at which a differential gravitational force was sufficient to pull
apart something bound by gravity. When computing the Roche limit, the “something”
was a single extended object, such as a satellite; when computing the Hill radius, the
“something” was a two-body system, such as a planet and its satellite.

We can now compute a numerical value for the Hill radius of the Earth–Moon system
while it is being perturbed by the Sun’s gravity:

rH =
(

M⊕
2M�

)1/3

a⊕ =
(

6.0 × 1024 kg

2(2.0 × 1030 kg)

)1/3

× (1 AU)

= 0.011 AU ≈ 1.7 × 106 km, (4.46)

or about 4.5 times the Moon’s present average distance from the Earth. Although the
Moon is well inside the Hill radius, and will not be lost in a tug-of-war with the Sun,
solar tidal forces are sufficient to distort the Moon’s orbit from a true elliptical shape.
The Sun also causes eastward precession of the line of apsides (the major axis of the
Moon’s orbit) with a period of 8.85 years. Finally, the Sun’s tidal forces cause westward
precession of the line of nodes (the intersection of the Moon’s orbital plane with the
ecliptic) with a period of 18.6 years.11 If you find it difficult to see where these two types

11 You may have noted that although we carefully described where the ecliptic lies on the celestial sphere, we
didn’t provide a similarly careful description of the great circle along which the Moon travels. That’s because
of the short period of the precession of the line of nodes; a description that would be valid today would be
obsolete after only a few years.
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of precession come from, you might take some comfort in knowing that Isaac Newton
once stated that “his head never ached but when he was studying that subject [the motions
of the Moon].”

4.4 PHASES OF THE MOON

As the Moon orbits the Earth, an Earthly observer sees the Moon go through its complete
set of phases, as different fractions of the sunlit hemisphere of the Moon are visible from
the Earth. Figure 4.10 shows the relative orientation of Sun, Moon, and Earth for each
Moon phase. At new Moon, the Moon is almost directly between the Earth and the Sun,
presenting its dark side to the Earth. As the Moon orbits the Earth, an increasing fraction
of the sunlit face is visible from the Earth as a waxing crescent Moon. About a week
after new Moon, approximately half of the illuminated face is presented toward us, at
the phase we call first quarter Moon; the name “first quarter” comes from the fact that this
phase occurs one-quarter of the way through the complete cycle of phases, starting at new
Moon. In subsequent days, the lunar phase becomes waxing gibbous.12 About two weeks
after new Moon, we see full Moon, when the Sun is opposite the Moon in the sky and
we see the complete illuminated face of the Moon. Following full Moon, the lunar phase
proceeds through the waning (decreasing) gibbous Moon, to the third quarter (sometimes
called “last quarter”) Moon, to the waning crescent Moon, ultimately returning to the
new phase, one synodic month after the previous new Moon.

The orbit of the Moon about the Earth is tilted by 5.1◦ relative to the Earth’s orbit
around the Sun. This means that the declination of the Moon can never be greater
than δ = 23.5◦ + 5.1◦ = 28.6◦, and can never be less than δ = −23.5◦ − 5.1◦ = −28.6◦.
Because the Moon never strays far from the celestial equator as seen from Earth, most
observers on Earth can see the Moon in the sky for about half of each day (ignoring the
technicality that it is difficult to see the Moon when its phase is nearly new, because
of its proximity to the Sun). However, the time of day when the Moon is visible varies
with its phase. For instance, we see from Figure 4.10 that an observer on Earth would
see the first quarter Moon rise above the eastern horizon about the time of local noon;
the Moon would then transit the local meridian around sunset, and set around midnight.
The waxing crescent Moon rises shortly after the Sun does, and sets shortly after sunset;
conversely, the waning crescent Moon rises shortly before the Sun does, and sets shortly
before sunset.

Because the Earth is orbiting the Sun at the same time the Moon is orbiting the
Earth, the sidereal month (another name for the sidereal orbital period of the Moon)
is shorter than the synodic month (the time that elapses between one new Moon and the
next). Expressed mathematically, the relation between the sidereal month and the synodic
month is similar to that between the sidereal period and the synodic period of a planet, as
described in Section 2.3. In both cases, you need to convert between an orbital period as

12 The adjective “gibbous” comes from a Latin word meaning “hunchbacked”; the lopsided appearance of the
gibbous Moon (seen as images D and F in Figure 4.10b) gave rise to this analogy.
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FIGURE 4.10 Phases of the Moon. (a) What an outside observer sees. (b) What an Earthly
observer sees.

measured in the sidereal frame of reference to an orbital period as measured in a frame of
reference co-rotating with the Earth–Sun line. As before, let �ωE be the angular velocity
of the Earth’s orbital motion about the Sun, measured in the sidereal frame. Let �ωsid be
the angular velocity of the Moon’s orbital motion about the Earth, also measured in the
sidereal frame. If �ωsyn is the angular velocity of the Moon’s orbital motion, measured in a
frame of reference co-rotating with the Earth–Sun line, then (compare with equation 2.7)

�ωsid = �ωE + �ωsyn. (4.47)

If we ignore the 5.1◦ tilt between the Moon’s orbit and the Earth’s orbit, we can reduce
the problem to a scalar equation:

ωsid = ωE + ωsyn. (4.48)

If we further ignore the eccentricities of the Moon’s orbit and the Earth’s orbit, we can
write

2π

Psid
= 2π

PE
+ 2π

Psyn
, (4.49)
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where Psid is the length of the sidereal month, PE is the length of the sidereal year
(PE = 365.256 days), and Psyn is the length of the synodic month. The synodic month
has been carefully measured over the course of human history, since it is the unit of time
on which lunar calendars, such as the Muslim calendar, are based. The length of the
synodic month is Psyn = 29.531 days. We can now compute the length of the sidereal
month:

Psid =
(

1

PE
+ 1

Psyn

)−1

(4.50)

=
(

1

365.256 days
+ 1

29.531 days

)−1

= 27.322 days.

4.5 ROTATION OF THE MOON

The Moon raises tidal bulges on the Earth; similarly, the Earth raises tidal bulges on the
Moon. The differential gravitational acceleration across the Earth due to the Moon is
(see equation 4.7)

�g = �F

m
∝ MMoonR⊕

r3
, (4.51)

where r is the distance between the Earth’s center and the Moon’s center. Conversely,
the differential gravitational acceleration across the Moon due to the Earth is

�g ∝ M⊕RMoon

r3
. (4.52)

Since the Earth’s mass is roughly 80 times that of the Moon, and the Earth’s radius is
roughly four times that of the Moon, we see that M⊕RMoon ∼ 20MMoonR⊕. Tidal bulges
on the Moon are thus larger than those on the Earth, and tidal braking is more effective
on the Moon than on the Earth. In fact, tidal braking has been so effective that the Moon
is now locked into synchronous rotation; that is, its sidereal period of rotation is equal
to its sidereal period of revolution, Psid = 27.322 days. Since the rotation period of the
Moon is equal to its orbital period, the Moon always presents the same hemisphere toward
the Earth. For much of human history, the “far side of the Moon” was symbolic of all
that is mysterious and unknown; in October 1959, the Soviet spacecraft Luna 3 took the
first photographs of the Moon’s far side.

Synchronous rotation has resulted in permanent tidal bulges on the Moon that are
aligned with the Earth–Moon line, making the synchronous rotation stable against
perturbations. If, for example, the Moon’s rotation rate speeded up, the tidal bulges would
be dragged ahead of the Earth–Moon line, and tidal braking would slow the Moon’s
rotation until the tidal bulges were aligned again. Conversely, if the Moon’s rotation
rate slowed down, the tidal bulges would fall behind the Earth–Moon line, and the tidal
braking effect would work in reverse, adding angular momentum to the Moon’s rotation
until the tidal bulges were once again aligned.
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FIGURE 4.11 Diurnal libration is caused by motion of the observer due to the
Earth’s rotation between moonrise and moonset.

During the course of one sidereal month, somewhat more than 50% of the Moon’s
surface is visible from the Earth. As seen by an observer on Earth, the Moon “wobbles”
in the east–west direction and “nods” in the north–south direction. These motions are
known as lunar librations, of which there are three distinct types.13

First, there is the effect known as diurnal libration. This is essentially an effect due
to diurnal parallax, as shown in Figure 4.11, which depicts an observer looking at the full
Moon at moonrise (when the Sun is setting) and at moonset (when the Sun is rising). The
Earth’s rotation carries an observer a distance of nearly 13,000 km between moonrise
and moonset. The change in viewpoint means that at moonrise an observer can see 1◦
farther east in lunar longitude than average; at moonset, the observer can see 1◦ farther
west in lunar longitude.

Second, there is the physical effect known as libration in longitude. Although the
Moon’s rotation rate is constant, at exactly 2π radians per sidereal month, its orbital
angular speed varies because of the eccentricity of the Moon’s orbit. Thanks to the
conservation of angular momentum (Kepler’s second law), the orbital angular speed is
greatest when the Moon is at perigee (closest to the Earth) and lowest when the Moon is at
apogee (farthest from the Earth); this is shown schematically in Figure 4.12. Immediately
after perigee, when the Moon’s orbital angular speed is greater than average, the Moon
travels through more than one-quarter of an orbit during the time it takes to make one-
quarter of a rotation (going from point 1 to point 2 in Figure 4.12). This enables us, here
on Earth, to see a little more of the Moon’s right-hand limb than usual when it’s at point
2 on its orbit. Conversely, the Moon’s slower orbital speed just after apogee enables us

13 The word “libration” comes from the Latin word libra meaning “balance” or “scales” (as in the name of
the zodiacal constellation). When you think of how an old-fashioned two-arm balance wobbles back and forth
before coming to an equilibrium, you can understand the origins of the word “libration.”
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FIGURE 4.12 Libration in longitude is caused by the variable orbital speed of
the Moon along its elliptical orbit.
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FIGURE 4.13 Libration in latitude is caused by the tilt of the Moon’s rotation
axis relative to the Moon’s orbit around the Earth.

to see a little more of the Moon’s left-hand limb than usual when it’s at point 4 on its
orbit. The Moon’s orbit has an eccentricity of e = 0.055, which provides a libration in
longitude of about 6◦.

Third and last is the effect known as libration in latitude. As shown in Figure 4.13,
the Moon’s rotation axis is not perpendicular to the plane of its orbit around the Earth.
Instead, the Moon’s rotation axis is tilted by ∼ 6.5◦; intriguingly, the direction of the tilt
is such that the Moon’s rotation axis is nearly perpendicular to the ecliptic plane. As a
consequence of the axial tilt, observers on the Earth can see slightly beyond the Moon’s
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north pole when the Moon is south of the ecliptic, and slightly beyond the Moon’s south
pole when the Moon is north of the ecliptic. Adding together the effects of all three
types of libration, it is possible over time to see 59% of the Moon’s surface without the
necessity of leaving the Earth.

4.6 ECLIPSES

In general, an eclipse can be defined as the passage of one body through the shadow of
another. Here on Earth, we experience a lunar eclipse when the Earth casts a shadow on
the Moon, and a solar eclipse when the Moon casts a shadow on the Earth. For the Earth
to cast a shadow on the Moon, it must be directly between the Sun and Moon; thus, lunar
eclipses occur during full Moon (see Figure 4.10). For the Moon to cast a shadow on the
Earth, it must be directly between the Sun and Earth; thus solar eclipses occur during new
Moon. The reason there is not a lunar eclipse every full Moon and a solar eclipse every
new Moon is that the Moon’s orbit is not coplanar with the Earth’s orbit. The tilt of 5.1◦
between the two means that during most full Moons, the Earth’s shadow passes north or
south of the Moon; similarly, during most new Moons, the Moon’s shadow passes north
or south of the Earth.

As seen on the celestial sphere, the ecliptic intersects the Moon’s path at two points,
called the nodes. These two points are actually projections onto the celestial sphere
of the line of intersection, or line of nodes, of the ecliptic plane and the plane of the
Moon’s orbit. For an eclipse to occur, both the Sun and the Moon must be near a node;
a solar eclipse happens when they’re near the same node, and a lunar eclipse happens
when they’re near opposite nodes.14 Because the Sun and Moon are not point sources
but subtend angles of ∼ 0.5◦ as seen from Earth, an exact alignment of Sun and Moon
is not required for an eclipse to occur.

The geometry of solar eclipses is shown in Figure 4.14. If the Sun were a geometric
point of light, the Moon would cast a simple, sharply defined shadow. Since the Sun
is an extended source, however, the Moon’s shadow has two parts. The umbra is the
inner region of the shadow, shaped like a long, tapering cone stretching away from the
Moon; within the umbra, the Sun is completely hidden from view and objects are in total
shadow.15 The penumbra is the outer region of the shadow, shaped like a widening cone,
stretching out to infinity; within the penumbra, the Sun is only partially hidden from view
and objects still receive some light from the Sun. Observers in the Moon’s penumbra will
experience a partial solar eclipse; they will see the Sun’s disk partially obscured by the
Moon. Observers in the Moon’s umbra will experience a total solar eclipse; the Sun’s
disk will be completely obscured by the Moon. During a total solar eclipse, observers
can see the faint, tenuous outer atmosphere of the Sun, called the corona.

14 Put another way, eclipses occur when the Moon is near the ecliptic. The word “eclipse” comes from a Greek
word meaning “to fail to appear”; the word “ecliptic” is a truncation of the Latin phrase linea ecliptica, meaning
“line of eclipses.”
15 “Umbra” is the Latin word for “shadow” (from which we deduce that umbrellas were originally used as
sunshades rather than as protection from the rain).
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FIGURE 4.14 The geometry of a solar eclipse, showing the Earth’s central
shadow cone (umbra) and outer partial shadow (penumbra).
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FIGURE 4.15 (a)–(c): total solar eclipse, partial solar eclipse, and annular eclipse.

Figure 4.14 is not to scale, of course. The Sun–Moon distance is actually very long
compared to the Sun’s radius, and hence the Moon’s umbra is very long compared to
the Moon’s radius. The actual length of the Moon’s umbra is � ≈ 380,000 km; by a
striking coincidence, this is nearly equal to the semimajor axis of the Moon’s orbit,
a = 384,000 km.16 The Moon’s orbit is significantly eccentric, though, with e = 0.055;
this means that the actual Earth–Moon distance varies from q = (1− e)a = 363,000 km
at perigee to Q = (1 + e)a = 405,000 km at apogee. As a consequence, observers on
the Earth can see a total solar eclipse only when the Moon is close to perigee. When the
Moon is near apogee, the tip of the Moon’s umbra falls short of the Earth’s surface; in
that case, observers on Earth can see an annular eclipse. During an annular eclipse, the
Moon is too small in angular size to blot out the entire disk of the Sun, so observers see
a ring, or annulus, of Sun surrounding the Moon. Figure 4.15 shows images of a total
solar eclipse (with the Sun’s corona prominent), a partial solar eclipse, and an annular
eclipse.

Because the Earth’s diameter is nearly four times that of the Moon, the Earth’s umbra
is nearly four times longer than the Moon’s. At the average distance of the Moon, the
Earth’s umbra has a width of about 9000 km; this is more than twice the diameter of the
Moon, so the Moon is easily able to fit within the Earth’s umbra. The geometry of lunar

16 The coincidence is a temporary one; remember that the Moon’s orbit is increasing in size by 40 km per
million years.
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FIGURE 4.16 The geometry for lunar eclipses: total, partial, and penumbral.

eclipses is shown in Figure 4.16. A total lunar eclipse occurs when the Moon passes
entirely into the Earth’s umbra. A partial lunar eclipse occurs when only part of the
Moon enters the Earth’s umbra. A penumbral lunar eclipse, which happens when the
Moon passes through the penumbra but not the umbra of the Earth, is a fairly frequent
occurrence but is barely noticeable from the Earth.

Because the Sun and Moon are of finite angular size, they don’t have to be exactly at a
node for an eclipse to occur. However, computing how far away they can be from a node
while still undergoing an eclipse is a bit complicated. Let’s consider, for concreteness, the
case of a solar eclipse. The average angular radius of the Sun, as seen from the Earth, is

θ� = R�
a⊕

= 6.96 × 105 km

1.50 × 108 km
= 0.00465 rad = 0.27◦. (4.53)

The average angular radius of the Moon is

θMoon = RMoon

r0
= 1.74 × 103 km

3.84 × 105 km
= 0.00453 rad = 0.26◦. (4.54)

If an observer on the Earth’s surface sees the centers of the Sun and Moon separated by an
angular distance θ <∼ θ� + θMoon = 0.53◦, then that particular observer will experience
a solar eclipse. However, the Moon, since it’s so nearby, has a significant amount of
diurnal parallax when viewed from different points on the Earth. An observer at one
location might see a total solar eclipse, while an observer at a second location sees a
partial eclipse, and an observer at a third location sees no eclipse at all.17

Because of the effects of diurnal parallax on the Moon’s apparent location on the
celestial sphere, when astronomers talk about the angular distance between the Sun’s
center and the Moon’s center, they use the angular distance � as measured by an idealized
observer at the center of a perfectly transparent Earth. This has the advantage of removing
the diurnal parallax effects due to observing the Sun and Moon from different locations

17 When Hipparchus measured the distance to the Moon (see Section 2.1), he started with the observation
that when a total solar eclipse was seen from the Hellespont, the Moon’s disk covered only 80% of the Sun’s
diameter as seen from Alexandria, 10◦ of latitude away.



4.6 Eclipses 105

Earth

Moon

To the Sun’s
center

MC

EC

ES

R⊕

θ⊕

θ

Δ

r�

FIGURE 4.17 Geometric arrangement of Earth, Moon, and Sun (offstage left)
when the Moon just grazes the Sun as seen from point ES on Earth. (Not to scale.)

on the Earth. Let’s now compute the maximum possible angular separation � between
the Sun’s center and the Moon’s center (as measured from the Earth’s center) that would
still allow a minimal partial solar eclipse to be seen from somewhere on the Earth’s
surface. The geometry of this bare-minimum solar eclipse is shown in Figure 4.17. In
this configuration, an observer at point ES on the Earth will see the limb of the Moon just
barely grazing the limb of the Sun. This means that for the observer at ES, the centers of
the Sun and Moon are separated by an angle θ = θ� + θMoon = 0.53◦. What, then, will
be the angle � between the centers of the Sun and Moon as seen from the transparent
Earth’s center?

To simplify matters, we can ignore the effects of diurnal parallax on the distant Sun
and assume that the direction of the Sun’s center as seen from point ES is the same as the
direction as seen from the Earth’s center.18 In this case, when we look back at Figure 4.17,
we see that the triangle formed by point ES, point EC (the Earth’s center), and point MC
(the Moon’s center) has vertices with angles 90◦ + θ (at ES), 90◦ − � (at EC), and θ⊕
(at MC). The angle θ⊕ is the shift in the Moon’s apparent location as a result of moving
from the Earth’s center to point ES on its surface. From the law of sines applied to the
triangle ESECMC, we may write

R⊕
sin θ⊕

= r0

sin(90◦ + θ)
, (4.55)

where r0 is the distance from the Earth’s center to the Moon’s center. However, since
θ � 90◦, it’s safe to make the approximation sin(90◦ + θ) ≈ 1, and thus

θ⊕ ≈ R⊕
r0

= 6.37 × 103 km

3.84 × 105 km
= 0.0166 rad = 0.95◦. (4.56)

18 This is very similar to the assumption made by Eratosthenes (see Section 2.1) when he stated that the direction
from Alexandria to the Sun was the same as the direction from Syene to the Sun. Because the Earth is much
smaller than the Earth–Sun distance, no matter where we stand on (or in) the Earth, the shift in the Sun’s
apparent position will be tiny.
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FIGURE 4.18 As seen in projection on the celestial sphere, the Moon and Sun
are just barely close enough to the node for an eclipse to occur.

In other words, θ⊕ is approximately equal to the angular radius of the Earth as seen
from the Moon. Since the angles at the vertices of a triangle add up to 180◦, the triangle
ESECMC must satisfy the equation

(90◦ + θ) + (90◦ − �) + θ⊕ = 180◦. (4.57)

Solving for �, we find

� = θ⊕ + θ (4.58)

≈ θ⊕ + θ� + θMoon ≈ 0.95◦ + 0.27◦ + 0.26◦ ≈ 1.48◦.

Thus, even if the Sun’s center and the Moon’s center are nearly 1.5 degrees apart as seen
from the Earth’s center, one lucky observer at point ES on the Earth’s surface will glimpse
a minimal partial solar eclipse.

When the centers of the Sun and the Moon are separated by an angular distance
� = 1.48◦ on the celestial sphere, what is their maximum possible angular distance from
a node? Figure 4.18 shows the configuration in which the Sun is at the maximum possible
distance δθ from a node while still being within a center-to-center angular distance � of
the Moon. From the right triangle in Figure 4.18, we find that

δθps = �

sin(5.1◦)
= 11.3� = 16.65◦. (4.59)

Thus, there exists an “eclipse window” of width 2δθps = 33.3◦ centered on each of the two
nodes, within which the Sun can undergo a partial solar eclipse. Geometric arguments
similar to those presented in Figure 4.17 tell us that the value of � required for a central
(total or annular) solar eclipse is

� ≈ θ⊕ + θ� − θMoon ≈ 0.96◦, (4.60)

creating an eclipse window for central solar eclipses of width

2δθcs = 2�

sin(5.1◦)
≈ 21.6◦. (4.61)
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The width of the eclipse window for lunar eclipses (both partial and total) can also be
computed. For partial lunar eclipses, the width of the eclipse window is 2δθpl ≈ 21.2◦;
for total lunar eclipses, the width of the eclipse window is 2δθtl ≈ 9.6◦.19

The rate at which the Sun moves along the ecliptic is(
360◦

365.26 days

)
×

(
29.53 days

1 synodic month

)
= 29.1◦/ synodic month. (4.62)

When we compare this rate to the width of the eclipse window for partial solar eclipses,
2δθps = 33.3◦, we note that the Sun cannot pass entirely through this window during
one synodic month. Thus, there must be at least one and at most two solar eclipses each
time the Sun passes through a node. However, the distance moved by the Sun during one
synodic month is greater than the width of the eclipse window for central solar eclipses
or the width of the eclipse window for lunar eclipses (either partial or total). Thus, there
will be no more than one central solar eclipse and no more than one lunar eclipse each
time the Sun passes through a node.

Because of the westward precession of the line of nodes, the interval between nodal
passages by the Sun is about nine days less than half a year. Thus, up to three opportunities
for eclipses can present themselves in a single calendar year. The minimum number of
eclipses during a calendar year is two; if this is the case, both eclipses will be solar
eclipses. The number of central solar eclipses in one calendar year ranges from zero to
three. However, the Moon’s umbral shadow on the Earth is small compared to the Earth’s
radius, and central eclipses are therefore seen only along a narrow path on the Earth’s
surface. The number of lunar eclipses per year is also in the range zero to three, but these
are seen by many more people, since they are visible to everyone on the night side of the
Earth.

Total solar eclipses, as mentioned above, are seen over a limited region of Earth,
the path of totality. The Moon orbits the Earth at a speed vMoon ∼ 3400 km hr−1, so its
umbra, tied to the Moon, moves at this speed from the west to the east. The Earth also
rotates in an eastward direction, but at a speed of only vrot = 1670 cos � km hr−1, where
� is the latitude. Thus, the Earth’s rotation cannot keep up with the speed of the Moon’s
shadow, and the tip of the umbra sweeps along a path of totality from west to east.
Depending on the relative separations of the Sun, Earth, and Moon, the path of totality
can be infinitesimally narrow, or as wide as 270 km (such a wide path requires that the
Moon be at perigee). Similarly, the duration of totality at any point on the path can be
instantaneously short, or as long as 7.5 minutes.

Some eclipses occur in series when specific conditions repeat; the eclipses in the series
are thus nearly identical. The most famous eclipse cycle is the Saros cycle, which was
known to the ancient Babylonians. They noticed, from their observations, that eclipses
with similar durations and paths of totality occurred, separated by intervals of 6585-1/3

19 The numbers quoted here for the width of the eclipse windows are averages only. Since the Earth–Moon
distance and the Earth–Sun distance both vary, the width of the eclipse windows around the nodes vary with
time.
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days (about 18 years, 11 days). The length of the Saros interval is almost exactly 223
synodic months, which comes to 6585.32 days. It is also almost the same as 242 nodical
months, where the “nodical month” is the time it takes the Moon to make a complete
orbit relative to the precessing line of nodes; 242 nodical months amount to 6585.36
days.

Finally, the Saros interval is almost equal to 239 anomalistic months, where the
“anomalistic month” is the time it takes the Moon to make a complete orbit relative
to its precessing perigee; 239 anomalistic months amount to 6585.54 days. Moreover,
since the Saros interval is nearly an integral number of years, the Sun will be at nearly
the same location on the ecliptic at times separated by one Saros interval. If an eclipse
takes place at some time t , then at time t + 6585.333 days, the relative positions of the
Earth, Moon, and Sun will be nearly identical, and a very similar eclipse will occur. As
an example, the total solar eclipse of 1999 August 11 was part of a Saros cycle labeled
by astronomers as “Saros 145” (Figure 4.19). The previous eclipse of this Saros cycle
took place on 1981 July 31; the next eclipse of the cycle will happen on 2017 August
21. The number of days in a Saros interval is greater than an integer by about 1/3; thus,
you will notice in Figure 4.19 paths of successive solar eclipses in a Saros are rotated
westward by about 120◦ in longitude.

FIGURE 4.19 Central solar eclipses associated with Saros 145.
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PROBLEMS

4.1 What is the largest angular distance possible between the center of the Moon’s disk
and the ecliptic? What is the largest angular distance possible between the center of
the Moon’s disk and the celestial equator? (Give your answers to the nearest tenth of
a degree.)

4.2 How close to the Sun could the planet Jupiter come without suffering tidal disruption?

4.3 Compute the differential tidal force �F exerted on the Earth by Mars when it’s at
opposition. Express your result as a numerical fraction of the differential tidal force
exerted by the Moon,

�FMoon = 2GMMoonmR⊕
r3

0

,

where r0 = 384,000 km = 0.00257 AU is the Earth–Moon distance and MMoon =
7.2 × 1022 kg is the mass of the Moon. Repeat to find the differential tidal force �F

exerted by Jupiter at opposition, also expressed as a fraction of �FMoon. (Assume
that the Moon, Earth, Mars, and Jupiter are on circular coplanar orbits.)

4.4 Imagine a test particle of mass m at the point on the Earth’s surface closest to the
Moon. Compute the ratio of the differential tidal force |��F| acting on this particle at
spring tide to the differential tidal force acting at neap tide.

4.5 A satellite orbits a planet; at the same time, the satellite–planet system orbits a star.
Show that if the satellite–planet distance is less than the Hill radius, the sidereal
period of the satellite about the planet must be shorter than the sidereal period of the
satellite–planet system about the star. (You may assume circular coplanar orbits.)

4.6 Given the amplitudes of lunar librations given in the text, demonstrate that over time
59% of the lunar surface can be seen from the Earth.

4.7 In the timeline used by geologists, the Cambrian period began 542 million years
ago. What was the length of the apparent solar day at the beginning of the Cambrian
period? (Assume that the slowing of the Earth’s rotation, dProt/dt , has been constant.)

4.8 The Earth will be in synchronous rotation with the Moon once its rotation period has
increased to 47 days.

(a) How far away will the Moon be from the Earth when this happens?
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(b) How long will it be until the Earth attains this synchronous rotation, assuming
that dProt/dt is approximately constant?

4.9 Standing at the Kennedy Space Center (latitude 28◦ N), you notice the third quarter
Moon at your zenith.

(a) Approximately what time of day is it?
(b) Approximately what time of year is it?
(c) Half a synodic month later, what will be the altitude of the first quarter Moon

when it makes its upper transit?



5 Interaction of Radiation
and Matter

Much of what we know about the universe comes from collecting and analyzing electro-
magnetic radiation, otherwise known as “light.” Thanks to wave–particle duality, light
can be thought of either as electromagnetic waves or as a stream of massless particles,
called photons. Electromagnetic waves are characterized by their wavelength λ, or fre-
quency ν = c/λ, where c is the speed of light. Photons are characterized by their energy
E = hν, where h is the Planck constant, h = 6.626 × 10−34 J s. In studying atomic struc-
ture, a handy unit of energy is the electron volt (eV), defined as the change in energy of
an electron when the electrical potential drops by one volt. When expressed in terms of
joules, the electron volt is seen to be a small amount of energy: 1 eV = 1.602 × 10−19 J.
Using electron volts as our unit of energy, the Planck constant is h = 4.135 × 10−15 eV s.

Early astronomers could detect only visible light, that is, light that stimulates a
response in the retina of the human eye. Visible light lies in the wavelength range
4 × 10−7 m < λ < 7 × 10−7 m, corresponding to photons in the energy range 1.8 eV <

E < 3.1 eV. Modern astronomers, as we see in Chapter 6, have instruments that enable
them to detect photons over a much broader range of energies. It has proved convenient
for scientists to subdivide the continuous electromagnetic spectrum into different wave-
length ranges, from radio waves, which have the longest wavelength and smallest photon
energy, to gamma rays, which have the shortest wavelength and highest photon energy.
A summary of the main subdivisions of the full spectrum, with approximate ranges in
wavelength and photon energy, is given in Table 5.1.

In this chapter, we will study how light and matter interact at the level of individual
particles. To begin, we’ll explore the nature of atomic structure by examining Niels
Bohr’s model of the hydrogen atom. Although this derivation is semiclassical rather
than fully quantum mechanical, it will give us the insight we need to understand basic
atomic structure and its relation to the emission and absorption of light.

5.1 ATOMIC STRUCTURE

The Bohr model for a hydrogen-like atom begins with a nucleus consisting of Z protons,
each with positive electric charge +e and mass mp, and A − Z neutrons, each with zero
electric charge and mass mn ∼ mp. The number A, called the mass number, is the total
number of nucleons (protons and neutrons) in the atomic nucleus. The mass of the nucleus
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TABLE 5.1 Electromagnetic Spectrum

λ hν

Type (meters) (eV)

radio 1 → ∞ 0 → 10−6

microwave 10−3 → 1 10−6 → 10−3

infrared 7 × 10−7 → 10−3 10−3 → 1.8

visible 4 × 10−7 → 7 × 10−7 1.8 → 3.1

ultraviolet 10−8 → 4 × 10−7 3.1 → 100

X-ray 10−10 → 10−8 100 → 104

gamma ray 0 → 10−10 104 → ∞

is ∼ Amp, and its charge is Ze. Orbiting the nucleus of the Bohr atom is a single electron
with negative charge −e and mass me ≈ mp/1836. If we treat the electron as a classical
particle traveling on a circular orbit of radius r about the atomic nucleus, its acceleration
must be −v2/r , where v is the electron’s orbital speed. Equating the electromagnetic
attraction between the nucleus and electron with the force necessary to keep it on its
circular orbit, we have

− (Ze)e

4πε0r
2

= −mev
2

r
, (5.1)

where ε0 is the vacuum permittivity (sometimes called the permittivity of free space);
in the SI system, ε0 = 8.854 × 10−12 C2 J−1 m−1.1 The kinetic energy of the orbiting
electron is

K = 1

2
mev

2 = Ze2

8πε0r
, (5.2)

and its potential energy is

U = − Ze2

4πε0r
. (5.3)

Thus, the total energy of the electron is

E = K + U = Ze2

8πε0r
− Ze2

4πε0r
= − Ze2

8πε0r
. (5.4)

So far, the electron, moving on a circular orbit under the influence of an attractive
force that follows an inverse square law, is strongly analogous to a planet moving around
a star. Bohr’s key insight, though, was that unlike gravitational orbits, the orbital angular
momentum of an electron is quantized. That is, it can’t have an arbitrary value. Only

1 The coulomb (C) is the SI unit of electric charge; the charge of a single proton is e = 1.602 × 10−19 C.
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angular momenta that are integer multiples of some constant value are allowed; more
specifically, the orbital angular momentum of an electron must be

L = mevr = nh

2π
= n�, (5.5)

where the quantum number n must be an integer. In equation (5.5), h is the Planck
constant and � is the reduced Planck constant, � ≡ h/(2π) = 1.052 × 10−34 J s.

By squaring the angular momentum (given by equation 5.5), we find that

m2
e
v2r2 = n2

�
2. (5.6)

However, the kinetic energy relation (equation 5.2) tells us that

mev
2 = Ze2

4πε0r
. (5.7)

By substituting equation (5.7) into equation (5.6), and solving for r , we find that the
orbital radius for an electron with quantum number n is

rn = 4πε0�
2

Ze2me

n2 = 5.29 × 10−11 m

Z
n2. (5.8)

We are now, obviously, entering the realm of the small. When discussing atomic structure,
a common unit of length is the angstrom (Å), defined as 1 Å ≡ 10−10 m. In these units,
the orbital radius of the Bohr atom is

rn = 0.529 Å

Z
n2. (5.9)

A schematic drawing of the first three orbits of a Bohr atom is shown in Figure 5.1. Using
the relation for the orbital radius (equation 5.8) in the equation for the total electron
energy (equation 5.4), we find the energy as a function of the quantum number n:

En = − Ze2

8πε0

(
Ze2me

4πε0�
2

)
1

n2
= −

(
e2

4πε0

)2
me

2�2

Z2

n2
. (5.10)

A useful dimensionless number, in this context, is the fine-structure constant,
defined as

α ≡ 1

4πε0

e2

�c
≈ 7.30 × 10−3 ≈ 1

137
. (5.11)

Using the fine-structure constant α, the electron orbital energy can be written in the more
convenient form

En = −mec
2

2
α2 Z2

n2
, (5.12)
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Nucleus

n = 3

n = 2

n = 1

1 Å
Z

FIGURE 5.1 The n = 1, n = 2, and n = 3 orbits of a Bohr atom depicting the
relative size of the orbits; the scale bar in the lower right has a length of 1 Å divided
by the charge Z of the central nucleus.

which expresses the orbital energy in terms of the rest energy of the electron, mec
2 =

8.19 × 10−14 J = 0.511 MeV. Since α2/2 ≈ 3 × 10−5, the orbital energy is small com-
pared to the rest energy. Expressed in units of electron volts, the orbital energy is

En ≈ −0.511 MeV

2

(
1

137

)2
Z2

n2
≈ −13.6 eV

Z2

n2
. (5.13)

The orbital radius can also be written conveniently using α:

rn = �

mec

1

α

n2

Z
= λc

2π

1

α

n2

Z
, (5.14)

where λc ≡ h/(mec) = 0.0243 Å is the Compton wavelength of the electron.
According to classical physics, since the electron is accelerated, it should be radiating

at the rate

P = 2

3

e2

4πε0

a2

c3
= 2

3
�α

a2

c3
, (5.15)
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where a is the acceleration of the electron.2 For the electron moving on its circular orbit,

a = v2

r
= Ze2

4πε0

1

mer
2

= Zα�c

me

1

r2
, (5.16)

and using equation (5.14) to give us the appropriate radius rn for each orbit,

a = Zα�c

me

m2
e
c2α2Z2

�2n4
= Z3α3mec

3

�n4
. (5.17)

Substituting the acceleration back into the formula for power radiated, we find

P = 2

3
α7 (mec

2)2

�

Z6

n8
. (5.18)

If the orbiting electron actually radiated at this classical rate, the lifetime of the orbit
would be

τ = E

dE/dt
= En

P

= 3

4

1

α5

�

mec
2

n6

Z4

≈ 4.7 × 10−11 s

(
n6

Z4

)
. (5.19)

The time for an electron in the n = 2 orbit of hydrogen (Z = 1) to decay to the n = 1
orbit is then

τ ≈ (4.7 × 10−11 s)(26) ≈ 3 × 10−9 s. (5.20)

The actual lifetime of the n = 2 state in hydrogen is τ = 1.6 × 10−9 s, so the semiclassical
Bohr analysis gives a result correct to within a factor of 2.

The only truly stable state of a Bohr atom is the ground state, with n = 1. Electrons
in excited states, those with n ≥ 2, will decay to states with lower n, losing energy by
emitting photons whose energy is equal to the energy difference �E between the two
states. If an electron transfers from level n to level n′, where n > n′, the emitted photon
will have energy

�E = En − En′ = mec
2

2
α2Z2

[
1

(n′)2
− 1

n2

]

= 13.6 eV Z2
[

1

(n′)2
− 1

n2

]
. (5.21)

2 This is just the Larmor formula for the power radiated by an accelerated charged particle; it’s a standard
formula from classical electromagnetic theory.
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The photon energy can be translated into a frequency ν or wavelength λ for the emitted
light:

�E = hν = hc

λ
. (5.22)

In terms of wavelength,

λ = hc

�E
=

(
2h

mecα
2Z2

) [
1

(n′)2
− 1

n2

]−1

= 911.6 Å

Z2

[
1

(n′)2
− 1

n2

]−1

. (5.23)

Equations (5.21) and (5.23) enable us to compute the photon energies or wavelengths that
are emitted or absorbed by hydrogen gas as the electrons undergo atomic transitions
between one permitted orbit and another. Transitions from higher-energy states to lower-
energy states result in emission of photons; transitions from lower to higher energy result
from absorption of photons.

The energy level differences in hydrogen follow distinct and recognizable patterns.
For example, all the downward transitions that end in the n = 1ground state correspond to
wavelengths in the ultraviolet range of the spectrum. This group of transitions is known
as the Lyman series, named after the physicist Theodore Lyman. In Figure 5.2, we
show an energy level diagram for hydrogen based on equation (5.21) and specifying
the transitions of the Lyman series. The first line in the Lyman series is the one with the
lowest energy (that is, n = 2 → n′ = 1) and is called Lyman α, or Lyα λ1216. The number
1216 is the wavelength, in angstroms, of the light emitted by the transition, as computed
in equation (5.23). The next highest energy transition is Lyβ λ1026 (n = 3 → n′ = 1),
the next is Lyγ λ972 (n = 4 → n′ = 1), and so forth. The series limit for the Lyman
series corresponds to n = ∞, with a wavelength λ = 912 Å. When an electron in the
ground state (n = 1) absorbs a photon with wavelength λ < 912 Å, the electron becomes
unbound and has an energy E > 0 that is unquantized.

A second series of transitions in the hydrogen atom is called the Balmer series,
named after the mathematician Johann Balmer. The Balmer series consists of transitions
in which the lower-energy level is the n = 2 state, not the n = 1ground state. The first line
in the Balmer series corresponds to the n = 3 → n′ = 2 transition; this is the Hα λ6563
line. A wavelength of 6563 Å lies in the red range of the visible spectrum. The Balmer
β line is Hβ λ4861, corresponding to a blue-green color. The Balmer series limit is at
3650 Å, in the near ultraviolet.

The Paschen series, named after the physicist Friedrich Paschen, consists of the
transitions for which the lower-energy level is the n = 3 state. In the Paschen series,
the lowest energy transition is Paα λ1.87 μ m and the series limit is at 8220 Å, in the
near infrared. There are also the Brackett series (to and from the n = 4 level), the Pfund
series (to and from n = 5), and the Humphreys series (to and from n = 6). Those series
for which the lower energy level is at n > 6 don’t have special names.
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n = 1

n = 2

n = 3
n = 4
n = 5

−13.61 eV

−3.40 eV

−1.51 eV
−0.85 eV
−0.54 eV
E = 0 eV

Lyman

Balmer

Paschen

Brackett

FIGURE 5.2 The energy level diagram for hydrogen, showing the lower-order
lines of the Lyman, Balmer, Paschen, and Brackett series. The transitions of the
Lyman series are labeled on the left.

The Bohr model of the atom is a useful starting point for studying atomic structure; it
helps us to understand some basic principles involving energy and angular momentum,
and it accurately predicts the energy levels for a hydrogen-like atom with a single
electron. However, for multielectron atoms, the semiclassical approach of the Bohr
model fails miserably, and we must compute the energy levels using the full power of
quantum mechanics. Although a complete review is beyond the scope of this book, a few
key results from quantum mechanics should be remembered.

. Electrons are fermions, particles with half-integer spin. As such, they obey the
Pauli exclusion principle, which states that any given atomic state can be occupied
by no more than one electron.



118 Chapter 5 Interaction of Radiation and Matter

. Atomic systems spontaneously tend toward their lowest permissible energy state.
That is, electrons in high-energy states will emit photons as they cascade down to
the lowest unoccupied electron energy state.

. The quantum number n in the Bohr model is called the principal quantum
number. In actuality, there are several quantum numbers that specify the orbital
angular momentum and spin angular momentum of the bound electrons, as well
as their distribution about the nucleus. Electron orbits, in the quantum mechanical
picture, are best described in terms of probability distributions that indicate where
the electron might be found.

. For most excited states, there are a number of paths that might be taken to the lowest
unoccupied state. The relative probability of an electron making the transition for
any particular lower state can be predicted quantum mechanically; it depends on
the quantum numbers associated with the upper state and the lower state. The
probabilities can be described in terms of selection rules. Transitions that do not
violate selection rules are called permitted transitions. Those that do violate
selection rules are called forbidden transitions; this is something of a misnomer,
since these transitions are not absolutely forbidden, but merely of much lower
probability than the permitted transitions.

5.2 ATOMIC PROCESSES

Now let us consider, at a schematic level, how a single photon interacts with a single
atom. In Figure 5.3a, we show the energy level diagram for a simple (and imaginary)
two-level atom. The energy difference between the upper level, or excited state (energy
E2), and the lower level, or ground state (energy E1), is �E = E2 − E1. If the electron is
in the ground state, then the atom can absorb a photon if the photon energy hν matches
the energy difference �E. Absorption of a photon with hν = �E leaves the electron in
the excited state. From the atom’s point of view, we call this process photoexcitation;
from the photon’s point of view, we call it absorption. In any case, the energy formerly
carried by the photon has been transferred to the atom as internal energy. We can describe
the process of photoexcitation symbolically as

X + hν → X∗, (5.24)

where X represents the atom in its ground state, and X∗ represents the atom in its excited
state.

Excitation can also be brought about by a collision with a particle, usually a free
electron, as shown in Figure 5.3b. In this case, some of the free electron’s kinetic energy
is transferred to the internal energy of the atom through collisional excitation. We can
describe the process of collisional excitation symbolically as

X + 1

2
mev

2 → X∗ + 1

2
me(v

′)2, (5.25)
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n = 2

hν
ΔE

e–

n = 1
(a) (b)

FIGURE 5.3 A schematic two-level atom with states separated by �E.
(a) Photoexcitation, in which the electron is moved to the upper level by absorption
of a photon of energy hν = �E. (b) Collisional excitation, in which the electron is
moved to the upper level by collision with a free electron.

2

1
(a) (b) (c)

hν e–
hν

hν

hν

FIGURE 5.4 A schematic two-level atom as in Figure 5.3. (a) Spontaneous
emission of a photon. (b) Interaction with a photon resulting in stimulated emission.
(c) Collisional de-excitation, which does not result in the emission of a photon.

where v and v′ are the speed of the electron before and after the collision; since the
electron loses kinetic energy in the process of collisional excitation, v > v′ ≥ 0. Since
the electron must initially have at least enough kinetic energy to raise the electron to the
excited state, the threshold criterion for collisional excitation is

1

2
mev

2 ≥ �E, (5.26)

leaving the outgoing electron with a kinetic energy me(v
′)2/2 = mev

2/2 − �E.
As illustrated in Figure 5.4, the reciprocal processes to photoexcitation and collisional

excitation can also occur. If an atom starts in an excited state, photodeexcitation yields a
photon that carries away some of the internal energy of the atom; this can happen by either
spontaneous or stimulated emission. Spontaneous emission, illustrated in Figure 5.4a,
is a result of the inherent instability of excited states; eventually Humpty Dumpty will
fall to the ground, even if he isn’t pushed. If vacant lower levels exist, eventually an
electron in an excited state will spontaneously decay to a lower energy state, producing
a photon of energy hν = �E. Symbolically, the process of spontaneous emission can be
written as

X∗ → X + hν. (5.27)
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In the case of stimulated emission, the downward transition of the electron in the excited
state is triggered, or stimulated, by interaction with a photon of energy hν = �E. An
interesting feature of stimulated emission is that the new photon has the same direction
and phase as the photon that triggered the transition. The process of stimulated emission
can be written as

X∗ + hν → X + hν + hν. (5.28)

The rate of stimulated emission is proportional to the intensity of the radiation field
at the relevant frequency ν = �E/h. Since stimulated emission increases the number
of photons at this frequency, the process of stimulated emission, under the correct
conditions, can greatly amplify the intensity of light with frequency ν = �E/h. This
is the process that is utilized in lasers.3

Figure 5.4c shows that collisional de-excitation can occur. In this case, the energy
�E is transferred to the free electron:

X∗ + 1

2
mev

2 → X + 1

2
me(v

′)2, (5.29)

where in this case v′ > v. During the process of collisional de-excitation, a photon is not
emitted; all the energy is transferred to the kinetic energy of the outgoing free electron.

When a sufficiently energetic photon is absorbed by a bound electron, the electron
can become unbound, as shown schematically in Figure 5.5a. This process is called
photoionization, and requires a photon of energy hν > χ , where χ is the ionization
potential; unbound states are unquantized, so any photon with hν > χ can be absorbed.
The photoionization process releases an electron whose kinetic energy equals hν − χ .
Written in symbolic terms, photoionization is the reaction

X + hν → X+ + 1

2
mev

2, (5.30)

where X+ is a positively charged ion.
Collisional ionization can occur when a free electron with kinetic energy greater than

the ionization potential χ collides with the atom (see Figure 5.5b). In this case,

X + 1

2
mev

2 → X+ + 1

2
me(v

′)2 + 1

2
me(v

′′)2, (5.31)

where v and v′ are the precollision and postcollision speed of the ionizing free electron,
and v′′ is the postcollision speed of the liberated electron. The speeds v′ and v′′ are
determined by conservation of energy and momentum.

Finally, a free electron can be captured by an ion, with a photon carrying away the
excess energy (Figure 5.6); this process is known as recombination. During recombi-
nation, the electron’s kinetic energy contributes to the energy of the photon produced:

X+ + 1

2
mev

2 → X + hν. (5.32)

3 The word “laser” is an acronym for light amplification by stimulated emission of radiation.
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FIGURE 5.5 A schematic two-level atom with ionization potential χ . (a) Pho-
toionization from the ground state by a photon with energy hν > χ . (b) Collisional
ionization from the ground state by a high-energy electron.
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FIGURE 5.6 A schematic two-level atom as in Figure 5.5. (a) A free electron
undergoes radiative recombination to the ground state. (b) A free electron undergoes
radiative recombination to the upper level, followed by transition to the ground state.

Recombination can occur directly to the ground state, as shown in Figure 5.6a; this
produces a photon with energy hν = χ + mev

2/2. However, recombination can also
occur to excited states, as shown in Figure 5.6b; this results in a downward cascade that
produces a series of photons whose energies sum to χ + mev

2/2.

5.3 EMISSION AND ABSORPTION SPECTRA

The spectrum of an object is its distribution of photons as a function of wavelength or
energy. The processes described in the previous section produce identifiable spectra. De-
excitations produce photons only at energies corresponding to energy level differences
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in the atoms in which they originate. Thus, de-excitations produce a distinctive emission
spectrum. Color Figure 2 shows the emission spectra of the elements hydrogen, helium,
oxygen, and neon. Note the Balmer lines in the hydrogen spectrum, and notice how the
emission lines in the neon spectrum cluster toward the red end of the visible band; this
accounts for the characteristic red color of neon lights. Each emission line is due to a
transition between a specific pair of energy levels. Since the energy-level differences are
a unique feature of each ion, the pattern of emission lines leads to a unique identification
of the ion that produced the photons.

Similarly, if a continuous spectrum (one with light at all wavelengths) is passed
through a gas, an absorption spectrum is produced. That is, individual absorption lines
are produced at energies that correspond to atomic transitions in the ions that make up the
gas. Photons at other energies pass freely through the gas. Since the atomic transitions
that produce the absorption lines are the same as those that produce emission lines, the
distribution of lines in wavelength again uniquely identifies the ion responsible. The
basic results for emission and absorption are summarized in empirical principles known
as Kirchhoff’s laws:

. A solid, liquid, or dense gas produces a continuous spectrum (discussed in more
detail in Section 5.7).

. A tenuous gas seen against a hot, glowing background produces an absorption
spectrum.

. A tenuous gas seen against a cool, dark background produces an emission spec-
trum.

A schematic summary of Kirchhoff’s laws is shown in Color Figure 3; the solid filament
of an incandescent lightbulb produces a continuous spectrum; a hydrogen cloud seen in
projection against the bulb produces an absorption spectrum; and the hydrogen cloud
seen in projection against a dark background produces an emission spectrum.

Real emission and absorption lines obviously have a finite width in wavelength, �λ,
about their central wavelength, λ. To determine what this width will be, let’s go back to
the case of spontaneous emission, illustrated in Figure 5.4. The excited state has a finite
lifetime τ before it suddenly undergoes a transition to a lower state. The probability,
per second, that this transition will occur can be computed quantum mechanically and
is known as the Einstein A coefficient.4 If there are n2 ions per unit volume in the
n = 2 excited state, the number of photons expected per second per unit volume from
spontaneous emission will be

dNphot

dt
= n2A21, (5.33)

where A21 is the Einstein coefficient for transitions from the n = 2 state to the n = 1
state. The numerical value of A depends strongly on whether the transition in question

4 Yes, that Einstein. Although he wasn’t tremendously fond of the probabilistic aspects of quantum physics,
Einstein was quite adept at quantum mechanical calculations.
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is permitted or forbidden. Typical values are

A21 ∼ 108 s−1 (permitted lines)

∼ 1 s−1 (forbidden lines). (5.34)

Thus, an electron that must make a forbidden transition to jump to a lower energy level
will dawdle for τ ∼ 1 s in the higher energy level, but an electron that can make a
permitted transition will leap to the lower level in τ ∼ 10 nanoseconds.

Since the Einstein coefficients simply give transition probabilities, the lifetime of an
excited state is uncertain. Thus, the Heisenberg uncertainty principle tells us that the
energy of the state is also uncertain, which leads in turn to an uncertainty in the energy
of the photon produced by the transition from the excited state to a lower state. More
specifically, the Heisenberg uncertainty principle states that a particle’s position x and
momentum p have uncertainties �x and �p such that

�x . �p >∼ �. (5.35)

For a photon, with speed c, energy E = hν, and momentum p = E/c, the Heisenberg
uncertainty principle can also be written as(

�x

c

)
(c�p) = �t . �E >∼ �, (5.36)

where �E is the uncertainty in the photon energy and �t is the uncertainty in its time of
creation; we equate �t with the lifetime τ associated with the transition that produces
the photon. Thus, permitted transitions, with τ ∼ 10−8 s, produce broader emission (and
absorption) lines than forbidden transitions, with τ ∼ 1 s.

Thanks to the Heisenberg uncertainty principle, uncertainty in the lifetimes of energy
states leads to natural broadening of spectral lines. An excited state with principal
quantum number n can make a transition to any state with n′ < n. It thereby becomes
useful to define a damping constant

γn =
∑
n′<n

Ann′. (5.37)

The line profile associated with a particular transition is the observed flux of light per unit
frequency (or wavelength) as a function of frequency (or wavelength). For an emission
line that shows only natural broadening, the line profile is given by a function called the
Lorentz distribution:5

φ(ν)dν = (γn/4π)

(ν − ν0)
2 + (γn/4π)2

dν

π
, (5.38)

where ν0 is the frequency at the line center. The Lorentz distribution is compared with a
Gaussian distribution in Figure 5.7. A notable feature of the Lorentz distribution is that
for |ν − ν0| � γn, the distribution falls off only as φ ∝ γn(ν − ν0)

−2. The wings of the

5 In probability theory, this function is also called the Cauchy distribution.
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FIGURE 5.7 A Lorentz distribution (dotted line) and a Gaussian distribution
(solid line). For each distribution, the function falls to half its maximum value at
ν − ν0 = ±1. The amplitudes are normalized so that the area under each curve is
equal to 1.

Lorentz distribution become important when |ν − ν0| = �ν ∼ γn/4π . For the Lyα line
of hydrogen, for instance, the damping constant is measured to be γ2 = 6.26 × 108 s−1

(from which we deduce that the Lyman α line is permitted). The width of the Lyα line
core is

�λ

λ
= �ν

ν
≈ γn/4π

λ/c
≈ (6.26 × 108 s−1)(1215 Å)

4π(3 × 108 m s−1)(1010 Å m−1)
≈ 2 × 10−8. (5.39)

Thus, natural broadening smears out the Lyman α line by only 20 parts per billion.
There are, however, physical mechanisms that can produce much broader emission

and absorption lines. Random thermal motions of particles in a gas will produce a
temperature-dependent distribution of line-of-sight velocities. Photons emitted or ab-
sorbed by a gas at temperature T > 0 will thus have a distribution of Doppler shifts,
effectively broadening the emission or absorption lines that arise in the gas.

From thermodynamics, we know that the equilibrium distribution of particle speeds
in an ideal gas is given by the Maxwell-Boltzmann distribution,

F(v)dv = 4π

(
m

2πkT

)3/2

v2 exp

(
−mv2

2kT

)
dv, (5.40)
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where m is the particle mass, T is the gas temperature, and k is the Boltzmann constant,
k = 1.38 × 10−23 J K−1 = 8.62 × 10−5 eV K−1. Since F(v) is a probability distribution,
the constants in front are chosen to normalize the function such that∫ ∞

0
F(v)dv = 1. (5.41)

The most probable speed vp for a particle is the speed v for which F(v) is a maximum.
This speed is

vp =
(

2kT

m

)1/2

≈ 1.41

(
kT

m

)1/2

. (5.42)

The average speed 〈v〉 of particles in the gas is given by

〈v〉 =
∫

vF (v)dv. (5.43)

Performing this integration yields

〈v〉 =
(

8kT

πm

)1/2

≈ 1.60

(
kT

m

)1/2

. (5.44)

The Maxwell-Boltzmann distribution can also be expressed as a distribution of par-
ticle kinetic energy E, rather than particle speed v, using the relation E = mv2/2.
Expressed as a distribution of kinetic energy, the Maxwell-Boltzmann distribution is

F(E) = F(v)
dv

dE
(5.45)

= 2√
πkT

(
E

kT

)1/2

exp

(
− E

kT

)
.

From this equation, we can compute the mean kinetic energy per particle:

〈E〉 =
∫ ∞

0
EF(E)dE = 3

2
kT, (5.46)

independent of the particle mass. This implies a mean square speed

〈v2〉 = 2〈E〉
m

= 3kT

m
(5.47)

and a root mean square (rms) speed of

〈v2〉1/2 =
(

3kT

m

)1/2

≈ 1.73

(
kT

m

)1/2

. (5.48)

If we set up a Cartesian coordinate system, the distribution of speeds along any one
axis, given a Maxwell-Boltzmann velocity distribution, is
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φ(vz)dvz =
(

1

2πσ 2
z

)1/2

exp

(
− v2

z

2σ 2
z

)
dvz, (5.49)

where the one-dimensional velocity dispersion is given by the relation σ 2
z

= kT /m.
Knowing the distribution of one-dimensional speeds is useful because when you measure
Doppler shifts, in the nonrelativistic regime, you detect only the (one-dimensional) speed
along the line of sight.

Because the mass m of a gas particle is a very small number when expressed in
kilograms, it is frequently useful to use the dimensionless molecular mass μ of the gas
particle, defined as its mass m divided by the atomic mass unit u. Technically, the atomic
mass unit is defined as 1/12 the mass of a carbon-12 nucleus, or u = 1.6605 × 10−27 kg.
In practice, the atomic mass unit differs from the mass of a proton by less than 1%
(mp = 1.6726 × 10−27 kg = 1.0073u); thus, we usually write the molecular mass as
μ = m/mp.6 In terms of the molecular mass μ, the line-of-sight velocity dispersion is

σz =
(

kT

μmp

)1/2

≈ 100 m s−1
(

T

1 K

)1/2

μ−1/2. (5.50)

For a gas of atomic hydrogen, which has μ = 1, a temperature T = 100 K corresponds
to σz = 1 km s−1. If helium (μ = 4) is present at the same temperature, its velocity
dispersion will be only half as great.

The spread in Doppler shift introduced by thermal motions is

�λ

λ
≈ σz

c
≈ 3 × 10−7

(
T

1 K

)1/2

μ−1/2. (5.51)

Comparison of this value with the width of the Lorentz distribution due to natural
broadening (equation 5.39) shows that even at low temperatures and high molecular
masses, the Doppler broadening is greater than the natural broadening.

In addition to natural broadening and thermal Doppler broadening, there are other
physical mechanisms that can broaden spectral lines:

. Turbulent Doppler broadening is similar to thermal broadening, except that it
involves chaotic bulk motions of gas rather than random motions of individual
atoms or ions. In principle, turbulent broadening is distinguishable from thermal
broadening by the fact that turbulent broadening doesn’t depend on the molecular
mass μ of individual particles. We are also likely to suspect that turbulent broad-
ening is present if the line widths are larger than expected given the temperature of
the gas (as happens, for instance, in supernova remnants and the broad line regions
of active galactic nuclei).

. Rotational Doppler broadening occurs in rotating stars, since the line-of-sight
velocity varies across the visible hemisphere of the star (unless the rotational axis

6 The name “molecular mass” is used (in an admittedly sloppy manner) even when the gas particles are atoms,
or ions and free electrons.
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2

1

∝B

FIGURE 5.8 A schematic two-level atom illustrating Zeeman splitting of the
upper level by a magnetic field B.

of the star happens to be pointing straight toward us). Again, rotational broadening
is distinguishable from thermal broadening by the fact that rotational broadening is
independent of μ; thus, all the star’s absorption lines will be rotationally broadened
by the same amount. In addition, rotational broadening produces lines that are not
Gaussian in shape.

. Pressure broadening, also called collisional broadening, occurs when the number
density of atoms and ions is sufficiently high that they cannot be regarded as
isolated systems. When an atom, for instance, undergoes a close encounter with
another atom, or an ion, or a free electron, the electric field of the intruding particle
causes an upward or downward shift of the atom’s energy levels. For an ensemble
of atoms, the random upward and downward shifts in energy levels have the effect
of broadening the observed emission or absorption lines. When this “pressure
broadening” is a significant effect, the line profile can be written in the form

φ(ν)dν = (�/4π)

(ν − ν0)
2 + (�/4π)2

dν

π
, (5.52)

where � = γn + 2Ncol; here, γn is the usual damping constant given in equa-
tion (5.37) and Ncol is the rate at which atoms or ions undergo encounters close
enough to significantly shift their energy levels.

. Zeeman broadening or Zeeman splitting occurs in the presence of a magnetic
field. The magnetic field breaks the degeneracy of certain atomic states. In the
simplest case, known as the normal Zeeman effect, the initial energy E of the
affected atomic state is split into three levels, E − �EB , E, and E + �EB ,
where �EB ∝ B, as shown in Figure 5.8. With a sufficiently high-resolution
spectrograph, the individual lines can be seen, and the effect is known as Zeeman
“splitting.” With a lower-resolution spectrograph, the individual lines blur together
into a single broadened line, and the effect is called Zeeman “broadening.”

5.4 THE EQUATION OF RADIATIVE TRANSFER

We are now ready to consider how photons interact with matter on scales larger than
the size of an atom. We begin with a simple case: photons pass through a gas in which
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FIGURE 5.9 A volume element of surface area S and thickness �x. The number
density of absorbing particles is n; each particle has a cross-section σ for absorption.

some of the photons are absorbed by atoms. In Figure 5.9, we consider light entering
a medium with some intensity I , where the intensity specifies the number of photons
passing through a unit area in a particular direction per unit time.7 We consider the
interactions occurring in a volume element of surface area S and thickness �x, where
�x is sufficiently small that the individual atoms (or other absorbing particles) within
the volume do not overlap or shadow each other. The intensity of the stream of light
emerging from our box of gas is I + �I ; if there are no sources of light within the box,
then we expect �I ≤ 0.

It is a useful convention to express the probability that a photon will be absorbed by
an absorbing particle in terms of a cross-section σ . Although the cross-section has units
of area, it isn’t necessarily equal to the geometric cross-section of the absorbing particle.
In fact, the cross-section is usually a strong function of wavelength if the absorption is
due to atomic processes such as photoexcitation. If we assume that the volume element
in Figure 5.9 has only a single absorbing particle within it, then the fraction of light lost
in passing through is

�I

I
= −σ

S
, (5.53)

where the right-hand side is simply the fraction of the surface area occupied by a single
particle. If there are N nonoverlapping, absorbing particles within the volume element,
then the fraction of light lost is N times greater. The number of absorbing particles within
the volume element is

N = nS�x, (5.54)

7 As we will see later, we can also define the intensity in terms of the energy carried by the photons. For the
moment, however, we will simply count the photons instead of undertaking the more arduous bookkeeping
task of adding up their energies.
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where n is the number density of particles. Thus, equation (5.53) becomes

�I

I
= −(nS�x)

σ

S
= −nσ�x. (5.55)

In the limit where the volume element becomes infinitesimally thin (�x → 0), this
becomes the simple differential equation

dI

I
= −nσdx. (5.56)

If the number density n and cross-section σ of absorbing particles are independent of x,
equation (5.56) is easily integrated to yield

ln I = −nσx + C, (5.57)

where C is a constant of integration. If we impose the boundary condition that I = I0 at
x = 0, this equation becomes

I (x) = I0e
−nσx. (5.58)

Equation (5.58) is the simplest form of the equation of radiative transfer. The only
physical process going on is absorption; we see, in this case, that the light becomes
attenuated exponentially as it shines through the gas.

We can generalize equation (5.58) slightly to the case where the number density n is a
function of x, but the cross-section σ is not. Specifically, we define the column density
of the gas as

N(x) ≡
∫ x

0
n(x′)dx′. (5.59)

The column density has units of m−2 and represents the total number of absorbing
particles in a column with a cross-sectional area of 1 m2 and a length of x. The column
density of the Earth’s atmosphere, for instance, integrated from sea level upward, is
N ∼ 2 × 1029 molecules m−2. We can also define a dimensionless number called the
optical depth:

τ(x) = σ

∫ x

0
n(x′)dx′ = σN(x). (5.60)

The optical depth is a measure of how much the intensity of light is attenuated by traveling
through the gas; if n is constant, then τ(x) = nσx. In terms of the optical depth, the
intensity I (x) can be written

I (x) = I0e
−τ(x). (5.61)

If a particular blob of gas (or other material) has τ � 1, it is referred to as “optically thin,”
or “transparent”; if it has τ � 1, it is called “optically thick,” or “opaque.” The average
distance that a photon will travel through a gas before being absorbed is the mean free
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path. For a gas with constant n and σ , the mean free path can be computed as

〈x〉 =
∫ ∞

0 xe−nσxdx∫ ∞
0 e−nσxdx

= 1

nσ
. (5.62)

The mean free path is thus the distance over which the optical depth grows from τ = 0
to τ = 1.

The cross-section σν is, in general, a function of frequency. Thus, the equation of
radiative transfer (eq. 5.61) should more properly be written in the form

Iν = Iν,0e
−τν(x) = Iν,0e

−σνN(x), (5.63)

where the specific intensity is a frequency-dependent quantity. For a single absorption
line, σν = σ0φ(ν), where σ0 is the total cross-section for that particular absorption
line and φ(ν) is the profile function, which for a single absorbing atom is the Lorentz
distribution (equation 5.38).

5.5 THE CURVE OF GROWTH

Consider the absorption line due to one particular atomic transition in one particular type
of atom or ion. We expect the shape of that absorption line to depend on the optical depth
at the line center, τ0. At low optical depth, τ0

<∼ 1, the shape and width of the absorption
line is usually determined by thermal Doppler broadening; the shape in this case will
be Gaussian, and the width will depend on the temperature of the gas and the molecular
mass of the absorbing particles (equation 5.51).

At larger optical depth, 1<∼ τ0
<∼ 104, the line core saturates; that is, the line is black

at the line center, because none of the photons with a wavelength near the line center
make it through the absorbing gas. The observed width of the line, however, grows only
very slowly with optical depth. For example, Figure 5.10 shows the Lyman α absorption
line for τ0 = 1, 3, 10, 30, and 100. The wings of the Gaussian are produced by those very
few absorbing atoms that are traveling much faster than σz toward us or away from us
along the line of sight; even when you increase the number of absorbing atoms along the
line of sight, there aren’t going to be many of those anomalously fast atoms.

At large optical depth, τ0
>∼ 104, the cumulative effect of the (ν − ν0)

−2 wings of the
Lorentz profile (see Figure 5.7) becomes important. While the wings for a line with small
optical depth are weak, the column density of atoms is now so large that even photons far
displaced from the line center (|ν − ν0| � γn) have a fair probability of being absorbed.

In many astronomical applications, the line profiles are not fully resolved. The prin-
cipal challenge of astronomical observations is that the observed sources tend to be very
faint. It is thus impractical to disperse light into a spectrum that has such high resolution
in wavelength that line profiles can be studied in great detail. Fortunately, as we will
show, high resolution spectra are not necessary for many purposes.

Even at fairly low spectral resolution, absorption lines are still easily detected, and the
amount of light missing from the spectrum due to absorption is a measurable quantity.
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FIGURE 5.10 Lyman α absorption for τ0 ranging from 1 to 100. Note that as τ0
more than triples from 30 to 100, the line width increases by only a small amount.

As shown on the right in Figure 5.11, we can define an artificial absorption line that is
completely black at its bottom (Iλ = 0) and has perfectly vertical sides. The width W of
the artificial absorption line can be varied until the area of the artificial line is the same
as that of the real absorption line. When this is the case, we refer to the parameter W as
the equivalent width of the line. The equivalent width is usually found by plotting Iλ

versus λ (as opposed to Iν versus ν) and thus has wavelength units. A formal definition
of the equivalent width, based on Figure 5.11, is

W =
∫

Icontinuum − Iline

Icontinuum
dλ =

∫ [
1 − e−τλ

]
dλ. (5.64)

The equivalent width is a useful parameter for astronomers who are doing spectroscopy. It
is easily measured even in low-resolution spectra, and it is a function of the not-so-easily
measured parameter τ0, the optical depth at the center of the absorption line.

A plot of an absorption line’s equivalent width W as a function of τ0 (or alternatively,
as a function of the column density N of the absorbing atoms) is called the curve of
growth. A curve of growth for a particular absorption line is shown in Figure 5.12,
where the dependence of W upon τ0 is seen to have three different regimes:
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FIGURE 5.11 Determining the equivalent width W of an absorption line; the two
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FIGURE 5.12 Curve of growth for the Lyman α absorption line, showing
equivalent width W as a function of τ0.
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1. When τ0
<∼ 1, W ∝ τ0. In this regime, the absorption line has not saturated, and its

strength is directly dependent on the number of absorbers along the line of sight.
This is the “linear part” of the curve of growth.

2. When 1 <∼ τ0
<∼ 104, the center of the line is saturated, and the equivalent width

grows only slowly with increasing τ0 as the optical depth grows in the weak
Doppler wings of the absorption lines. In this “Doppler part” of the curve of growth,
W ∝ √

ln τ0. This function grows so slowly with increasing τ0 that it is sometimes
called the “flat part” of the curve of growth.

3. When τ0
>∼ 104, even the Doppler wings have saturated. Now, though, such a large

number of absorbing atoms are along the photon path that the damping wings of
the Lorentz distribution become important. In this regime, W ∝ τ

1/2
0 ; this is called

the “square root part,” or the “damping part,” of the curve of growth.

5.6 LOCAL THERMODYNAMIC EQUILIBRIUM

In everyday life, when we talk about the temperature of an object, we are referring to
what thermodynamicists technically call the kinetic temperature, which is a measure
of the average kinetic energy per particle associated with random thermal motions. For
instance, suppose that the air around you has a temperature of 68◦ Fahrenheit, equivalent
to 20◦ Celsius, or 293 Kelvin. This means that the random speeds of the air molecules
reflects a Maxwell–Boltzmann distribution (equation 5.40):

F(v) ∝ v2 exp

(
−mv2

2kT

)
, (5.65)

where m is the mass of a molecule, T is the kinetic temperature of the gas, and k ∼
10−4 eV K is the Boltzmann constant. As we have already seen (from equation 5.46),
the average kinetic energy per molecule is

1

2
m〈v2〉 = 3

2
kT . (5.66)

Because of the frequent collisions between molecules, all the molecules in the air—
nitrogen, oxygen, carbon dioxide, and so forth—all have the same average kinetic energy
(3/2)kT = 0.038 keV, and thus have the same kinetic temperature T = 293 K.8

If every component of a system is characterized by the same temperature T , that
system is in thermodynamic equilibrium. Isolated systems have a natural tendency
to approach thermodynamic equilibrium, as heat flows from high-temperature regions
to low-temperature regions; this is just a result of the second law of thermodynamics.
However, in real systems, absolute thermodynamic equilibrium is rare. Consider the air

8 This implies that the more massive molecules are moving more slowly, on average, than the less massive
molecules. At room temperature, nitrogen molecules, with molecular mass μ = 28, have an average random
speed v ≈ 490 m s−1. Carbon dioxide molecules, with μ = 44, have an average speed of only v ≈ 390 m s−1

at the same temperature.
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inside the room where you are reading this book.9 The temperature of the air will not
be identical throughout the room. (For one thing, you provide a heat source, raising
the temperature in your immediate vicinity.) In addition, at any given location in the
room, not all the particles will be in thermodynamic equilibrium with each other. The
air molecules have an average kinetic energy 〈E〉 ≈ 0.04 eV. However, the photons of
visible light that stream through the air and enable you to read the book have an average
energy hν ≈ 3 eV. Although the molecules and photons coexist spatially, they have a low
probability of interaction; in other words, the mean free path for the photons is much
larger than the size of the room. This means that the molecules and photons fail to come
into equilibrium.

Although absolute thermodynamic equilibrium is rare, it is useful to employ the
concept of local thermodynamic equilibrium (LTE). Consider a cube of air (or any
other material) with a side of length L. If the length L is much larger than the mean
free path λ for particle collisions, and much smaller than the length scale over which
temperature varies significantly, then we state that the particles in the cube are in local
thermodynamic equilibrium. For instance, at sea level on Earth, the number density of
molecules in the atmosphere is n ≈ 2.5 × 1025 m−3; for the most common molecules in
the atmosphere, the cross-section for molecule–molecule collisions is σ ≈ 1× 10−18 m2,
or approximately 100 square angstroms. The mean free path for molecules is then

λ ≈ 1

nσ
≈ 4 × 10−8 m ≈ 400 Å. (5.67)

An air molecule will travel just 400 Å, on average, before colliding with another
molecule. If a cube is much larger than 400 Å on a side, then the molecules within it will
collide many times and will be able to come to temperature equilibrium. In general, a
macroscopic cube will have a temperature difference �T between its hottest neighbor-
hood and its coolest. However, as long as �T � T , where T is the average temperature
in the cube, we may safely make the approximation that the colliding particles in the
cube are in LTE at a temperature T .

Since the Earth’s atmosphere is transparent to many wavelengths of light, the
molecules in the air are in LTE with each other, but not with the photons passing through.
Gaseous interstellar nebulae and the atmospheres of stars are also examples of transpar-
ent systems in which the photons are not in LTE with the massive particles present.10

The interior of a star, which is composed of dense, ionized gas, is an example of a system
where the mean free path for photons is short compared to the total system; thus, it is
possible to carve out regions of a stellar interior where the assumption of LTE holds true
for photons as well as for the ions and free electrons present. For local thermodynamic
equilibrium to apply to photons as well as to the massive molecules, atoms, and ions in
a system, the following conditions suffice:

1. Both photons and massive particles have a high number density.

2. The system is optically thick (τ � 1) at all wavelengths.

9 If you are doing your reading al fresco, imagine yourself inside a room.
10 Although LTE is not formally true in the atmospheres of stars, we will still find that it is not a wretchedly
bad first approximation.
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If the system is optically thin, photons will not be able to come into equilibrium with
the massive particles. If the number density of particles is low, their mean free path for
collisions will be long, and they may not be able to come into equilibrium with each
other.

The assumption of local thermodynamic equilibrium is a very powerful one, since
it allows us to bring up the big guns of statistical mechanics and thermodynamics.
For instance, in LTE, the relative populations of different states of an atom or ion are
described by the Boltzmann equation. For the simple two-level atom from Figure 5.3,
the Boltzmann equation is

n2

n1
= g2

g1
exp

(
−�E

kT

)
, (5.68)

where n1 and n2 are the number density of atoms with electrons in level 1 and level 2; g1
and g2 are the statistical weights of the first and second levels, accounting for degeneracy
(multiple states with the same energy); and �E is the energy gap between the two
levels. For a system in LTE, the temperature T in equation (5.68) is just the local kinetic
temperature. The Boltzmann equation is the reflection of a statistical equilibrium; while
any individual electron will undergo a round of excitations, de-excitations, ionizations,
and recombinations, a large ensemble of electrons will satisfy the Boltzmann equation
in a statistical sense.

Similarly, for a system in LTE, the Saha equation gives the relative population of
different ions of a particular element:

ni+1ne

ni
= 2

Qi+1

Qi

(
mekT

2π�2

)3/2

exp

(
− χi

kT

)
, (5.69)

where ne is the number density of free electrons, ni is the number density of particles in
ionization state i (with i electrons stripped away), and χi is the ionization potential from
state i to state i + 1. The numbers Qi and Qi+1 are partition functions, which can be
thought of as a sum of the statistical weights of all possible excitation states of an ion,
weighted by the relative probability that the ion is in that state. For our purposes, we
need merely note that the factor 2Qi+1/Qi in equation (5.69) is a dimensionless number
that is usually of order unity.

By combining the Boltzmann equation and Saha equation, we can determine the
population for any particular atomic state, and thus predict the strength of the absorption
lines produced by a gas. Stellar absorption lines are produced in the atmospheres of stars,
where LTE is only a rough approximation, but the assumption of LTE is a useful place
to start. As an example, consider the population of the n = 2 level of atomic hydrogen;
this is a useful example because the Balmer absorption lines, much used by astronomers,
arise from this state. Hydrogen has only two ionization states, neutral and singly ionized,
so the total number density of hydrogen is

n = n0 + n1, (5.70)

where n0 is the number density of neutral hydrogen atoms and n1 is the number density
of positive hydrogen ions—in other words, bare protons. A neutral hydrogen atom has
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a large number of energy levels (technically, an infinite number), so the total number
density of neutral hydrogen atoms is

n0 =
∑

i

n0
i
. (5.71)

(Please remember that we are using superscripts to designate ionization states, and
subscripts to designate excitation states of an ion.) To determine the strength of Balmer
absorption, we need to know the number density of neutral hydrogen atoms with electrons
in the n = 2 level. Relative to the total number of hydrogen atoms and ions, this is

n0
2

n
= n0

2

n0 + n1
= n0

2

n0
1

(
n0

1

n0 + n1

)

= n0
2

n0
1

(
1

(n0/n0
1) + (n1/n0

1)

)
. (5.72)

The temperature in typical stellar atmospheres is T <∼ 50,000 K, corresponding to ther-
mal energy kT <∼ 4 eV. This means that the Boltzmann factor exp(−�E/kT ) in equa-
tion (5.68) is small, since it takes an energy �E = 10.2 eV to lift an electron to the n = 2
energy level. Thus, most of the neutral hydrogen atoms in a stellar atmosphere are in the
ground state: n0 ≈ n0

1 � n0
2. Accordingly, in equation (5.72) we may safely make the

substitution n0
1 = n0, yielding

n0
2

n
≈ n0

2

n0
1

(
1

1 + (n1/n0)

)
. (5.73)

The first term on the right-hand side of this equation is given by the Boltzmann equation
(eq. 5.68); the second term can be found from the Saha equation (eq. 5.69). Figure 5.13
shows a plot of n0

2/n0
1 from the Boltzmann equation, a plot of n1/n0 from the Saha

equation, and a plot of n0
2/n from equation (5.73). We see that the fraction of hydrogen

that has a bound electron in the n = 2 state peaks at a temperature T ≈ 10,000 K.
At temperatures much cooler than 10,000 K, most of the bound electrons are in the
ground state (n = 1), because collisions are not sufficiently energetic to populate the
higher levels. At temperatures much hotter than 10,000 K, few of the electrons are
bound to hydrogen atoms at all, since collisions are sufficiently energetic to ionize the
hydrogen. Consequently, stars with atmospheric temperatures around 10,000 K are those
that produce the strongest Balmer absorption lines.

We can repeat this analysis for all atomic species, finding that different absorption
lines of different ionization states of different atoms have maximum strength at different
temperatures. Thus, the relative strength of the absorption lines in a stellar atmosphere
can be used to determine the star’s temperature. This is the physical underpinning for
stellar spectral classification, which we discuss in Chapter 14.
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FIGURE 5.13 Dotted line: the ratio n1/n0 from the Saha equation (a free electron
density ne = 1020 m−3 is assumed). Dashed line: the ratio n0
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1 from the Boltzmann

equation. Solid line: the ratio n0
2/n from equation (5.73), that is, the fraction of

hydrogen atoms that have a bound electron in the n = 2 state.

5.7 BLACKBODY RADIATION

So far, we have discussed the production of emission and absorption spectra by low-
density gas. It is time to consider why dense gases, liquids, and solids produce a
continuous spectrum, as described empirically in the first of Kirchhoff’s laws. Let’s start
by considering the simple case of an ideal gas in LTE.

The technical definition of the specific intensity Iν can be illustrated by considering a
small, perfectly transparent window of area dA. We create a unit vector n̂ that is normal
to the surface of the window, and select a small angular area d� around the point on
the celestial sphere at which n̂ is pointing. We then ask how much energy dE is carried
through the window during a time dt , carried by photons coming from the solid angle
d� with frequencies in the range ν → ν + dν. The answer to our question is

dE = Iν dt dA d� dν. (5.74)

The intensity Iν thus has units of J s−1 m−2 steradian−1 Hz−1.11 The specific intensity
can also be expressed as a function of wavelength rather than frequency, Iλ rather than

11 1 joule per second is widely known as the “watt,” abbreviated W .
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Iν. The intensity I is simply the integral of the specific intensity over all frequencies (or
wavelengths):

I =
∫ ∞

0
Iνdν. (5.75)

In general, the specific intensity Iν is a function of the orientation n̂ of our window
as well as its location �r in the universe. In many cases, though, the anisotropy of the
photons’ motion is irrelevant; for instance, when we simply want the number of photons
that are available to excite an electron to some specific state, the direction of motion of
the photons doesn’t matter. When direction is unimportant, we are really interested in
the mean specific intensity Jν, averaged over all directions (that is, averaged over all
possible orientations of our little window):

Jν = 1

4π

∫
Iνd�. (5.76)

We want to know why dense gases, liquids, and solids produce a continuous spectrum,
and what the shape of that spectrum is. In other words, what is Iν as a function of ν?
Dense bodies are distinguished from tenuous gas clouds by the fact that they satisfy the
sufficient conditions for being in LTE (page 134): their atoms are packed closely together,
and they are optically thick.

To begin our investigation of radiation from dense bodies, let’s consider a simple gas
made of our familiar two-level atoms, each of which has energy states separated by �E,
as illustrated in Figure 5.3. The atomic gas coexists with an isotropic radiation field with
intensity Jν. The photons that have frequency ν = �E/h are able to interact with the
two-level atoms, causing photoexcitation and stimulated emission. In addition, photons
with ν = �E/h are created when excited atoms undergo spontaneous emission. The rate
at which level 1 (the ground state) is depopulated is the radiative excitation rate:

dn1

dt
= −n1B12Jν, (5.77)

where n1 is the number density of atoms in the n = 1state, Jν is the mean specific intensity
at ν = �E/h, and B12 is the Einstein absorption coefficient, which can be computed
quantum mechanically, and is proportional to the cross-section for photon absorption.

Similarly, the rate at which level 2 (the excited state) is depopulated is

dn2

dt
= −n2B21Jν − n2A21, (5.78)

where the first term is due to stimulated emission and the second term is due to sponta-
neous emission. In equation (5.78), n2 is the number density of atoms in the n = 2 state,
and B21 is the Einstein stimulated emission coefficient, which can also be calculated
quantum mechanically.

Now let us assume that the population of two-level atoms is in statistical equilibrium;
this is a weaker assumption than LTE, since it merely assumes that the net populations
of the two atomic levels are constant with time. In this case, the rate at which electrons
go from level 1 to level 2 (equation 5.77) must be equal to the rate at which they go from
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level 2 to level 1 (equation 5.78). Thus,

n1B12Jν = n2B21Jν + n2A21 (5.79)

and the ratio of excited atoms to atoms in the ground state must be

n2

n1
= B12Jν

B21Jν + A21
. (5.80)

This looks like a complicated relation, involving three different Einstein coefficients, but
the laws of quantum mechanics actually provide a simple relation among the Einstein
coefficients (here cited without proof):

A21 = 2hν3

c2
B21, (5.81)

where ν = �E/h, and

B12 = g2

g1
B21, (5.82)

where g1 and g2 are the statistical weights of the two levels, as in the Boltzmann equation
(eq. 5.68). Substituting these two relations back into equation (5.80), we find that when
the levels are in statistical equilibrium,

n2

n1
= (g2/g1)Jν

Jν + (2hν3/c2)
. (5.83)

Thus, if we knew n2/n1, the ratio of excited to ground-state atoms, we would know the
mean intensity Jν required to keep that ratio constant with time.

If we make the stronger assumption that the mix of atoms and photons is in local
thermodynamic equilibrium at a temperature T , then the ratio n2/n1 is given by the
Boltzmann equation (eq. 5.68):

n2

n1
= g2

g1
exp

(
− hν

kT

)
, (5.84)

where we are now writing hν instead of �E. So now, by equating the Boltzmann
equation, which assumes LTE, with equation (5.83), which makes the weaker assumption
of statistical equilibrium, we find that

(g2/g1)Jν

Jν + (2hν3/c2)
= (g2/g1)e

−hν/kT . (5.85)

By canceling the factors of g1/g2 and solving for Jν, the intensity of light required to
keep the system in LTE at temperature T , we reach our result:

Jν(T ) = 2hν3

c2

1

ehν/kT − 1
. (5.86)
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FIGURE 5.14 The Planck function for the temperatures T = 10,000 K, 8000 K,
6000 K, 4000 K, and 2000 K (top to bottom).

This is the Planck function for radiation, first derived by Max Planck in the year 1900.
In LTE, the radiation field is isotropic, so we can write Iν = Jν. The Planck function for
three different temperatures is plotted in Figure 5.14.

We derived the Planck function for a two-level atom with a totally arbitrary energy
level difference �E and photon frequency ν = �E/h. In a dense gas, pressure broad-
ening becomes so significant that the medium becomes optically thick at all frequencies,
and photons of all energies can be absorbed and emitted. Thus, the particular elements
of which the gas is made becomes irrelevant; the dense gas radiates a spectrum that is
equal to the Planck function (equation 5.86) at all frequencies. The Planck function thus
is the spectrum produced by a perfect emitter (a body that can emit photons at all fre-
quencies); since a perfect emitter is also a perfect absorber, we often refer to light that has
a Planck spectrum as blackbody radiation. Objects made of dense gas, or of opaque
liquid or solid material, produce radiation that is, to a first approximation, blackbody
radiation.

In the limit that hν � kT , representing photon energies much smaller than the thermal
energy per particle, the Planck function (equation 5.86) reduces to the simple power law

Iν ≈ 2kT

c2
ν2. (5.87)
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This limit of low photon energy is known as the Rayleigh–Jeans limit. In the opposite
limit, where hν � kT , the Planck function reduces to the form

Iν ∝ ν3e−hν/kT . (5.88)

In this limit, known as the Wien limit, the Boltzmann equation imposes an exponential
cutoff on the flux of high-energy photons.

It is sometimes useful to express the Planck function in terms of wavelength rather
than frequency. The intensity Iνdν in the frequency interval ν → ν + dν must be the
same as the intensity Iλdλ in the corresponding wavelength interval λ → λ + dλ. Thus,
we can write

Iλdλ = Iνdν = Iν

∣∣∣∣dν

dλ

∣∣∣∣ dλ, (5.89)

Since ν = c/λ, |dν/dλ| = c/λ2, we can write

Iλdλ =
[

2h

c2

(
c

λ

)3 1

ehc/λkT − 1

]
c

λ2
dλ

= 2hc2

λ5

1

ehc/λkT − 1
dλ. (5.90)

(A plot of the Planck function Iλ for a variety of temperatures is shown in Figure 5.15).
Since the main body of a star is made of dense gas, we can approximate the radiation

emitted by a star as having a Planck spectrum. Let’s consider the energy carried away by
photons from a small area �A on the surface of the star, as shown in Figure 5.16. The
escaping energy �E, integrated over all directions, is

�E

�t�ν
=

∫
Iν�A cos θd�, (5.91)

where �A cos θ is the projected area on the surface for radiation headed at an angle θ

relative to the normal (see Figure 5.16 for the geometry). Thus, the specific flux through
the star’s surface, in watts per square meter per Hertz, is

Fν = �E

�t�A�ν
=

∫
Iν cos θd�. (5.92)

Since we are at the star’s surface, the intensity is highly anisotropic; we can assume that
the intensity is given by the Planck formula for radiation coming from within the star
(0 ≤ θ ≤ π/2) and is zero for radiation coming from the darkness of interstellar space
outside the star (θ > π/2). With this approximation, the specific flux passing through
the surface is
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FIGURE 5.15 The Planck function, as a function of wavelength λ, for tempera-
tures T = 8000 K, 6000 K, and 4000 K (top to bottom).

Fν =
∫ 2π

φ=0
dφ

∫ π/2

θ=0
Iν cos θ sin θdθ

= 2πIν

∫ π/2

θ=0
sin θd(sin θ)

= πIν. (5.93)

To obtain the total flux emitted per unit area by the star, we integrate over all frequencies:

F =
∫ ∞

0
Fνdν = π

∫ ∞

0
Iνdν

= 2πh

c2

∫ ∞

0

ν3dν

exp(hν/kT ) − 1
. (5.94)

The integral over frequency can be transformed by setting x ≡ hν/kT , and thus

F =
(

2πh

c2

) (
kT

h

)4 ∫ ∞

0

x3dx

ex − 1
. (5.95)

The definite integral in the above equation is simply a numerical factor; it turns out to
be π4/15 ≈ 6.5, yielding a flux
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FIGURE 5.16 Radiation emerging from a star at an angle θ to the perpendicular.

F = 2π5

15

k4

c2h3
T 4 = σSBT 4, (5.96)

where the Stefan-Boltzmann constant is

σSB ≡ 2π5

15

k4

c2h3
= 5.67 × 10−8 J s−1 m−2 K−4. (5.97)

The Sun, for instance, has a surface temperature T� ≈ 5780 K; thus, it has a flux of about
63 megawatts for every square meter of its surface.12

If a star is approximated as a spherical blackbody with temperature T and radius R,
its total luminosity, in watts, is

L = 4πR2σSBT 4. (5.98)

For the Sun, with a radius R� = 6.96 × 108 m and a surface temperature T� ≈ 5780 K,
the total luminosity is

L� = 4πR2
�σSBT 4

� = 3.8 × 1026 J s−1 = 3.8 × 1026 W, (5.99)

and of course, the luminosity of other stars can be scaled to that of the Sun:

L = 1L�

(
R

R�

)2 (
T

T�

)4

. (5.100)

12 You have a surface temperature T ≈ 310 K, so you produce about 520 watts for every square meter of your
surface.
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PROBLEMS

5.1 Verify that the Maxwell-Boltzmann distribution (equation 5.40) has its maximum at
a speed

vp =
(

2kT

m

)1/2

.

5.2 Verify that for the Maxwell-Boltzmann distribution (equation 5.40), the average speed
is

〈v〉 =
(

8kT

πm

)1/2

.

(Hint: you may find it useful to know the definite integral
∫ ∞

0 x3 exp(−x2)dx = 1/2.)

5.3 Verify that for the Maxwell-Boltzmann distribution (eq. 5.46), the mean kinetic
energy per particle is

〈E〉 = 3

2
kT .

(Hint: you may find it useful to know the definite integral
∫ ∞

0 x3/2e−xdx = 3
√

π/4.)

5.4 Molecules have additional degrees of freedom that atoms don’t possess, namely,
rotation and vibration. The energies associated with molecular rotation and vibration
are quantized, and photons can be emitted or absorbed by molecules making
transitions from one rotational or vibrational state to another.

(a) Show that the rotational energy of a system can be written as

Erot = L2

2I
,

where L is the angular momentum and I is the moment of inertia.
(b) Suppose that angular momentum is quantized according to Bohr’s hypothesis:

L = j�, with j being a positive integer. Consider the case of a diatomic molecule
where the two atoms have equal mass M (for instance, H2, O2, or N2). Derive an
expression for the rotational energy Erot in terms of j , �, M , and r0, the separation
between the two atomic nuclei in the molecule.

(c) In the case of molecular hydrogen (H2), which has r0 ≈ 1 Å, estimate the
wavelength of light produced by the j = 2 → 1 rotational transition. Is this
longer or shorter than the wavelength of visible light?
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5.5 (a) A neutral sodium atom has an ionization potential of χ = 5.1 eV. What is the
speed of a free electron that has just barely enough kinetic energy to collisionally
ionize a sodium atom in its ground state? What is the speed of a free proton with
just enough kinetic energy to collisionally ionize this atom?

(b) What is the temperature T of a gas in which the average particle kinetic energy
is just barely sufficient to ionize a sodium atom in its ground state?

(c) At the temperature T computed in part (b), what is the expected thermal Doppler
broadening, �λ/λ, of a sodium spectral line? (Hint: the only stable isotope of
sodium has mass number A = 23.)

5.6 For the Planck function Iν(T ) (see equation 5.86), what is the most probable frequency
νp at a given temperature T ? For the Planck function expressed as a function of
wavelength, Iλ(T ) (see equation 5.90), what is the most probable wavelength λp at
a given temperature T ? For what range of temperatures does λp fall in the visible
range of the electromagnetic spectrum?

5.7 A slab of glass 0.2 m thick absorbs 50% of the light passing through it. How thick
must a slab of identical glass be in order to absorb 90% of the light passing through
it? How thick must it be to absorb 99% of the light? How thick to absorb 99.9% of
the light?

5.8 If an incandescent light bulb has a luminosity L = 60 W and a filament temperature
of T = 2900 K, what must be the surface area of its filament? If the filament consists
of a cylindrical wire with diameter d = 4.6 × 10−5 m (as in a standard incandescent
60 watt, 120 volt bulb), what is the length of the wire?

5.9 Demonstrate that the Lorentz distribution as given in equation (5.38) is correctly
normalized so that ∫ ∞

0
φ(ν)dν = 1.

5.10 Show that for an ensemble of particles with temperature T and particle mass μmp,
the line profile from thermal Doppler broadening will be

φ(ν)dν = c

ν0

√
μmp

2πkT
exp

[
−μmpc2(ν − ν0)

2

2kT ν2
0

]
dν,

where ν0 is the frequency at the line center.



6 Astronomical Detection
of Light

As the previous chapter revealed, there is a wealth of information to be gained from
observing the stars. In particular, spectroscopy of stars yields temperatures, elemental
abundances, stellar rotation rates, and magnetic field strengths, among other information.
While stars are intrinsically luminous, they are (except for the Sun) at extremely large
distances, and hence appear to be very faint. The challenge facing astronomers over the
centuries has been to collect the faint light from distant stars and other astronomical
objects, and preserve and analyze the information it contains. Large telescopes and
sophisticated instrumentation are required.

6.1 THE TELESCOPE AS A CAMERA

In many ways, a telescope and its associated instrumentation can be thought of as a
camera, albeit one with a very large and unwieldy telephoto lens. A review of how
cameras work will thus be useful for understanding the basics of imaging science. The
word “camera” is the Latin word for “room,” and is a shortening of the term “camera
obscura,” or “darkened room.” A camera obscura, the earliest and simplest of all cameras,
was an unlit room with a tiny hole cut in one wall; Figure 6.1 is an illustration of a camera
obscura from the sixteenth century, before the invention of the telescope. Because the
hole in the wall is small, only light rays headed in a specific direction can reach the far
wall of the room. Thus, there is a one-to-one mapping between points on the object (the
source of light) and the image.

A compact version of the camera obscura is the pinhole camera (Figure 6.2), an opaque
box with a tiny pinhole in the middle of one wall. If a permanent record of the projected
image is required, an electronic detector or a piece of photographic film can be placed on
the wall where the image is located. From Figure 6.2, we see that the image is inverted,
and its size is proportional to the length F of the box, called the focal length. Because
the pinhole is small, it admits photons at a slow rate. A detector such as a piece of film
requires a certain number of photons per unit area to yield a detectable signal; thus, the
exposure time t required to produce a detectable image using a pinhole camera can be
very long. For a fixed pinhole size, the exposure time is directly proportional to the area
of the image; thus, t ∝ F 2, where F is the focal length of the pinhole camera. Because of

146
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FIGURE 6.1 A camera obscura, as used to project the image of a nearby church.

Object

(a)

(b)

Pinhole Image

FIGURE 6.2 A pinhole camera, which is simply a miniature camera obscura.
Points on the object, to the left, map onto the image plane on the right. A long
camera (a) produces a larger image than a short camera (b).
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Object Lens Image

FIGURE 6.3 By replacing the pinhole in Figure 6.2 with a convex lens, we can
admit more light. The image plane is now fixed, and its location depends on the
shape of the lens.

the relation between focal length and exposure time, a camera with a short focal length
is called a fast system, and a camera with a long focal length is called a slow system.

In order to reduce exposure times while keeping the image size large, photons must
be admitted into the camera at a faster rate. The easiest way to do this is to increase the
size of the pinhole. This has the unfortunate consequence of destroying the one-to-one
mapping between the object and the image; now many light rays from different parts of
the object can reach the same point on the image plane. This yields a blurry image. To
restore the one-to-one mapping, we place a convex lens in the aperture where the pinhole
used to be, as illustrated in Figure 6.3.

A lens is made from a transparent material (often glass) whose refractive index is
different from that of the air surrounding it. The refractive index of a material is defined
as n ≡ c/vm, where c is the speed of light in a vacuum and vm is the speed of light in
the material. The refractive index of air is n = 1.0003. Most types of glass have n ≈ 1.5;
flint glass, which contains lead oxide and is therefore quite dense, can have a refractive
index as large as n ≈ 2. As light travels from one medium to another—from air to glass,
for instance, or from glass to air—its path will be bent, or refracted, unless it happens to
strike the air/glass interface exactly at a right angle.

A properly shaped lens will refract the light rays from a luminous object in such a
way that all the light from a particular point on the object is directed to a single point on
the image plane. One consequence of inserting a lens into the camera is that the focal
length of the system is now fixed. In a pinhole camera, the image plane can be placed
at an arbitrary distance from the pinhole; in a camera with a lens, the image will be in
focus only at a fixed distance F from the lens. The distance F to the focal plane depends
on the shape of the lens, as well as on its refractive index. A highly curved lens made
of material with a large refractive index n will have a short focal length; a gently curved
lens with smaller n will have a longer focal length. For lenses, a useful parameter is the
focal ratio f = F/D, where D is the diameter of the lens. Among photographers, it is
conventional to write the focal ratio as the “f-number”: for instance, f/8 for a lens with
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Focal planeLensStars
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FIGURE 6.4 Two stars separated by a small angle θ on the sky have images that
are separated by a physical distance d on the focal plane.

F/D = 8.1 The size of the image produced is not affected by the diameter D of the lens
but only by the focal length F .

Another useful parameter, in addition to the focal length, is the scale of the image on
the focal plane, known for historical reasons as the plate scale.2 Specifically, an angular
distance θ on the celestial sphere is related to a physical distance d on the image plane
by the plate scale s:

θ [arcsec] = s[arcsec/mm] . d[mm]. (6.1)

From Figure 6.4, we can compute the separation d between a pair of images when the pair
of objects we are observing (let’s call them stars) are separated by an angular distance θ

on the celestial sphere. If the angular distance θ between the two stars is small, we can
use the small-angle approximation:

θ [radians] = d

F
, (6.2)

where F is the focal length, or

θ [arcsec] = θ [radians]

(
180◦

π radians

) (
3600 arcsec

1◦

)
= 206,265

(
d

F

)
. (6.3)

Combining equations (6.1) and (6.3), we have a relationship between the plate scale s

and the focal length F :

s[arcsec/mm] = 206,265

F [mm]
. (6.4)

1 In the human eye, the distance F from the lens to the retina is nearly constant, but the diameter D of the
pupil changes significantly as it constricts and dilates. In bright surroundings, the focal ratio of the eye is
approximately f/8; in dark surroundings, it’s roughly f/2.
2 In the past, it was common for astronomical images to be taken using photographic emulsions deposited on
glass plates, hence the term “plate scale.” Glass was used rather than plastic film because glass is more rigid.
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The human eye, for instance, has a focal length F ≈ 17 mm, and hence a “plate scale”
s ≈ 12,100 arcsec/mm, or s ≈ 3.4◦/mm; when you look at the full Moon, its image
covers an area of your retina less than 0.15 mm across.3

Large astronomical telescopes have focal lengths that are more conveniently ex-
pressed in meters than in millimeters. For these big telescopes, we may write

s[arcsec/mm] = 206.265

F [m]
= 206.265

f D[m]
, (6.5)

where f is the focal ratio, and D is the diameter of the telescope’s aperture. As an
example, the famous “forty-inch” Yerkes Telescope (at Williams Bay, Wisconsin) has
an aperture D = 1.02 m and a focal ratio f = 19. The plate scale of the Yerkes Telescope
is thus

s = 206.265

19(1.02)
arcsec/ mm = 10.6 arcsec/ mm. (6.6)

An image of the full Moon produced by the Yerkes Telescope is therefore 170 mm across,
about the size of a salad plate.4

For a given aperture size D, we can increase the size of the image simply by increasing
the focal ratio f of the lens. However, it is important to realize that by increasing the
focal ratio f , we do not necessarily produce images with more detail. At the level of
fundamental physics, the image quality is limited by diffraction. When light from a
point source passes through a circular aperture of finite size, diffraction produces an
image that looks like a central bright disk surrounded by a series of alternately dark and
bright rings (illustrated in Figure 6.5). The diameter of the central bright disk, known as
the “Airy disk” after its discoverer George Airy, is determined by the aperture size D and
the wavelength λ of the observed light. Two point sources can be resolved as separate
objects when the center of the Airy disk of one source falls into the dark ring surrounding
the Airy disk of the other source. This happens when the centers of the two light sources
are separated by a distance

θmin[rad] = 1.22
λ

D
. (6.7)

If we observe at visible wavelengths, λ ≈ 5000 Å ≈ 5 × 10−7 m, then resolving two
stars separated by an angular distance θ = 1′′ = 4.8 × 10−6 rad requires a telescope of
minimum diameter

D = 1.22λ

θ
≈ 1.22(5 × 10−7 m)

4.8 × 10−6
≈ 0.13 m. (6.8)

If diffraction were the only limit to angular resolution, we could see astronomical objects
with finer detail simply by building larger telescopes. However, for those of us living

3 The image is also, as shown in Figure 6.3, inverted. Your brain processes the signal coming from the optic
nerve to return the image right-side-up.
4 Which gives another meaning to the phrase “plate scale.”
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FIGURE 6.5 The diffraction pattern produced by monochromatic light from a
point source passing through a circular aperture of finite size.

near the surface of the Earth, there is an additional factor to consider. Image quality
for telescopes on Earth is generally limited by what is referred to as atmospheric seeing.
That is, turbulence in the Earth’s atmosphere blurs the images of stars, and causes them to
jitter back and forth (the process that produces “twinkling” of stars). The blurring caused
by turbulence in the Earth’s atmosphere is typically about 1′′. At the best observing sites,
where turbulence in the air flow is minimized, the atmospheric seeing is rarely better
than ∼ 0.25′′.5

Thus, for an ordinary ground-based telescope, making the aperture larger than D ∼
0.5 m does not improve the resolution of the image. Nevertheless, there are advantages
to an aperture many meters across. The primary advantage of a large-aperture telescope
is that it gathers more photons. The light-gathering power of a telescope is proportional
to D2, so a larger aperture enables you to see fainter objects during a given exposure
time.

6.2 REFRACTING AND REFLECTING TELESCOPES

So far, we have assumed that the primary light-gathering element of the telescope (called
the primary for short) is a lens. Telescopes that use lenses to gather light and bend it
toward the focal plane are called refracting telescopes, or refractors. Although small
refractors are commonly used, there are serious intrinsic problems in making very large
refracting telescopes. First, the weight of a lens rapidly becomes unwieldy, since the

5 The technique termed “adaptive optics,” described in Section 6.7, affords an opportunity to achieve better
resolution.
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Focal point
for blue light

Focal point
for red light

FIGURE 6.6 Chromatic aberration in a refractor; the focal length for blue light
is shorter than for red light.

volume, and hence the weight, of a lens scales as D3. Since light must pass freely through
the lens, it can only be supported around its edges; this means that a large heavy lens
tends to sag in the middle, distorting the images that it produces.

Matters are made worse by the fact that the heavy lens is at the top of a long tube
that must be extremely stiff; otherwise, the tube will flex and wobble as it swings around
to point in different directions on the sky. In addition, lenses suffer from the problem
known as chromatic aberration; since the refractive index decreases with wavelength,
short wavelengths of light are bent through a greater angle than long wavelengths. This
means that the focal length for shorter wavelengths of visible light (violet and blue) is
shorter than the focal length for longer wavelengths (orange and red). As illustrated in
Figure 6.6, this means that if the red light from a star is in optimum focus, the blue light
will be blurred, and vice versa. The effect of chromatic aberration can be reduced by
making compound lenses out of two pieces of glass with different refractive indices.
However, this does not completely eliminate chromatic aberration.6

An alternative to using lenses is to bring the light to a focus by using a concave
mirror. A telescope that uses a mirror as its primary is called a reflecting telescope, or
a reflector. Like a correctly shaped lens, a correctly shaped mirror takes the light from
a distant object and creates an image on a focal plane (Figure 6.7). Like a refractor, a
reflector can be described in terms of its focal length F and its aperture diameter D—
in this case, the diameter of the primary mirror. Reflectors have a number of advantages
over refractors, particularly at large apertures. For instance, reflecting telescopes do not
suffer from chromatic aberration. In addition, a mirror, unlike a lens, can be supported
over its entire back surface, which prevents sagging and the consequent distortion of
images.

6 In the mid-sixteenth century, Huygens tried to minimize chromatic aberration by building telescopes of
extremely high focal ratio; one of his telescopes had a lens with D = 2 inches and F = 123 feet, yielding
a telescope with f/738. He eliminated the flexing, wobbling tube altogether, which had the unfortunate side
effect of making the lens and the eyepiece nearly impossible to keep aligned.
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Primary
mirror

FIGURE 6.7 The primary mirror of a reflecting telescope brings light to a focus.

The preferred material for mirrors is glass, because it can be shaped to extremely high
accuracy; if you are observing at a wavelength λ, you want any bumps and valleys on
the mirror surface to be smaller than ∼ λ/4 in height. The front surface of the mirror is
coated with a thin layer of metal, usually aluminum. Silver is actually more reflective
than aluminum at visible wavelengths, but it tarnishes rapidly. Mirrors intended for
observations at infrared wavelengths are frequently coated with gold, which is highly
reflective in the infrared, but not at the blue/violet end of the visible spectrum.7 A gold-
plated mirror might seem extravagant, but the layer of gold can be very thin; coating a
D = 2 m mirror with a layer of gold 1 micron thick requires less than a hundred grams
of gold. The entire purpose of the large, massive glass mirror, if you think about it, is to
keep the extremely thin layer of metal on its surface in the right shape to bring light to a
focus.

An obvious problem with reflectors is that the focal plane lies between the mirror
and the light source. For a large reflecting telescope using a relatively small detector,
the detector can be placed directly at the prime focus of the telescope, as shown in
Figure 6.8a. If the detector is much smaller in cross-sectional area than the primary
mirror, the amount of light it blocks is negligible.8 When Isaac Newton constructed a
reflecting telescope in the year 1668, he diverted the converging beam of light from the
primary mirror by using a flat secondary mirror, as shown in Figure 6.8b. Most small
reflectors use this Newtonian focus, but it is unwieldy for large telescopes with heavy
detectors, which would have to be attached to the side of the telescope tube, throwing it
off-balance.

The most commonly used focus in moderate-size research telescopes, a few meters in
aperture, is the Cassegrain focus (Figure 6.8c). In a Cassegrain telescope, the converging
beam from an approximately parabolic primary mirror is directed back toward the
primary by an approximately hyperbolic secondary mirror; a hole in the primary mirror

7 Poor reflectivity in the blue is actually desirable for infrared observations, since this provides short-wavelength
moonlight suppression.
8 Placing an opaque object within the light path doesn’t cause a “hole” in the image on the focal plane; instead,
it results in an overall dimming of the image.
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(a)
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Newtonian
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Focus
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FIGURE 6.8 (a)–(d) Four different configurations of a reflecting telescope,
observing a light source off to the right.

allows the light to come to a focus behind the primary mirror. The Cassegrain telescope
enables us to make a telescope with a long focal length that is still reasonably compact
in size. It also permits the use of large spectrographs and cameras, since the heaviest
parts of the telescope, the mirror and the detectors, are close together at the base of the
telescope; this reduces balance problems. The Coudé focus (Figure 6.8d) is useful for
instruments that either are too large to be attached to the telescope or require a great deal
of mechanical stability. The Coudé telescope relies on multiple mirrors to direct the light
beam to a location distant from the telescope.



6.3 Quality of Images 155

In general, multiple reflections in a telescope are undesirable. Even under good
conditions, no more than 90% of the light incident on a mirror will be reflected. This
fraction can become much lower with time as the reflective coating degrades with
exposure to the elements.9 In a Coudé telescope requiring four reflections, the fraction of
incident light that survives the reflections is only (0.9)4 ≈ 0.66. Throwing away a third
of the scarce photons from a distant star is not something to be done frivolously; the
Coudé focus of a telescope is used only when absolutely necessary.

6.3 QUALITY OF IMAGES

All optical systems suffer from different types of aberrations, some of which are inherent
to the design of the system, and some of which arise due to errors in manufacture or
the wear and tear of everynight use. We have already noted the existence of chromatic
aberration, which is unique to refracting telescopes. Five other types of aberration can
appear in both refractors and reflectors.

1. Spherical aberration, illustrated in Figure 6.9, occurs when different annuli of a
lens or mirror have different focal lengths. In this case, there is not a unique focal
plane; wherever you place your detector, light from some or all of the annuli will
be out of focus. The name “spherical” aberration comes from the fact that this type
of aberration is seen when the surfaces of a lens or mirror are sections of a sphere.
The nonspherical surfaces that create images free of spherical aberration are more
difficult, and hence more expensive, to make than spherical surfaces.

2. Coma, illustrated in Figure 6.10, is the aberration that occurs when light rays
near the edge of the lens or mirror come to a focus at a larger distance from the
optical axis than light rays passing through the center of the mirror.10 Coma is
characteristic of the off-axis images formed by parabolic mirrors. Coma is the
Latin word for “hair,” and describes the fuzzy-looking appearance of images that
suffer from this type of aberration. Figure 6.11 shows the image of a star displaying
coma.

3. Astigmatism, illustrated in Figure 6.12, is the aberration that occurs when the
radius of curvature of the lens or mirror is different along different axes. This
means that the focal length is different in the vertical plane, for instance, than in
the horizontal plane. Astigmatism causes a point source of light to produce an
elongated, distorted image, as shown in Figure 6.13. Astigmatism is a commonly
found aberration in the human eye.

9 Telescope mirrors are periodically stripped and recoated, but this is a process that consumes time and money;
at most research telescopes, it happens every two or three years.
10 The “optical axis” of a simple telescope is the axis passing through the middle of the primary lens or mirror,
perpendicular to the primary’s surface at that point.
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Focal plane

FIGURE 6.9 Spherical aberration in a refracting telescope.

Focal plane

FIGURE 6.10 Coma for an off-axis image in a refracting telescope.

FIGURE 6.11 An example of coma, reminding us that “coma” and “comet” come
from the same Latin root.

4. Curvature of field, illustrated in Figure 6.14, is the aberration that occurs when
the focal surface is not a flat plane but is curved. In fact, curvature of field is so
common that it’s regarded as a benign feature rather than a bug. Your eye, for
instance, has curvature of field; this is necessary to produce a focused image on
your curved retina.
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FIGURE 6.12 Astigmatism in a refracting telescope.

FIGURE 6.13 Astigmatic images of a star.

5. Distortion, illustrated in Figure 6.15, is the aberration that occurs when the
mapping from object to image does not have a constant plate scale. Distortion
comes in two types: pincushion distortion, also called positive distortion, and barrel
distortion, also called negative distortion. Both types of distortion do not lower the
angular resolution of the image; they simply change its shape.

There exist two special types of telescope that are designed to circumvent some of these
aberrations. The Schmidt telescope uses a spherical primary mirror, which affords a
very large field of view. Spherical aberration, which would ordinarily be present for
a spherical primary, is suppressed by using a correcting lens in front of the primary
mirror. The Ritchey-Chrétien telescope uses primary and secondary mirrors that are
both hyperboloids. This design, intended for use with the Cassegrain focus, produces
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Spherical focal surface

FIGURE 6.14 Curvature of field in a refracting telescope.

Object Pincushion distortion Barrel distortion

(a) (b) (c)

FIGURE 6.15 An object covered with a Cartesian grid (a) is mapped to an image
with pincushion distortion (b) and an image with barrel distortion (c).

round images of stars, free of coma and spherical aberration. Most modern telescopes,
including the Hubble Space Telescope, are of the Ritchey-Chrétien design.11

Astronomical images of point-like sources, such as distant stars, are never observed
to be true mathematical points. This is because of diffraction limits, atmospheric seeing,
or the types of aberration listed above. It is common to describe the observed angular
distribution of light from a point source in terms of a point spread function, or PSF.
Depending on the particular optical system and on the types of aberration present, the

11 The Hubble Space Telescope notoriously suffered from spherical aberration when it was first deployed. This
was due to an error in manufacturing the primary mirror, however. It wasn’t the fault of the telescope’s design.
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PSF need not be circularly symmetric, and it may have considerable structure (such as
the Airy disk and rings shown in Figure 6.5). It is customary to characterize the PSF
either by the angular size (often the full width at half maximum) of the image of a point
source, or by the angular radius that encircles some specified percentage of the total
light. The PSF at a given telescope generally changes with time; a common lament of
astronomers on an observing run is “The seeing has just gone to hell!”

6.4 ASTRONOMICAL INSTRUMENTS AND DETECTORS

Astronomical instruments fall into two basic categories: imaging cameras and spectro-
graphs. Most instruments are one or the other, but some are a hybrid of the two.

Imaging cameras are designed to produce high-quality images over a suitably large
field of view. Most of them have interchangeable filters that can be put into the light
beam to restrict the wavelengths observed to some desired range. The pretty colored
images of nebulae that you see in coffee-table astronomy books, for instance, are made
by combining images taken through filters admitting different wavelengths. As we see
in Chapter 13, images taken through different filters are not merely an aid to creating
pretty pictures; they also permit estimates of stellar temperatures and provide other useful
information.

Spectrographs are designed to disperse light by wavelength, in order to produce spec-
trograms of astronomical sources. The basic elements in an astronomical spectrograph
are illustrated in Figure 6.16. The dispersing element can be a prism, such as Isaac New-
ton used to disperse sunlight into a spectrum. However, the dispersion is more frequently
performed by a reflection grating, as shown in the figure.12 Sometimes a transmission
grating or a “grism” (a combination of a transmission grating and a prism) is used instead.
The dispersing elements are usually interchangeable, to allow observation of different
regions of the spectrum at different spectral resolutions. If a spectrograph can barely
distinguish two spectral features at wavelengths λ and λ + dλ, its spectral resolution is
R = λ/dλ.

Many types of detector technologies are used in astronomical observations; we will
restrict ourselves to making a few general observations. The quantum efficiency of a
detector describes how effectively it responds to light. In general, the quantum efficiency
of a device is the number of photons detected divided by the number of photons that
strike the detector. In photographic emulsions, photons are detected when they trigger
a chemical reaction (in classic black-and-white film, the reaction is the conversion of a
silver salt to metallic silver). The quantum efficiency of a photographic plate is typically
only ∼ 1%. In the dark-adapted human retina, photons are detected when they trigger
a structural change in the rhodopsin molecule. Under ideal conditions, the quantum
efficiency of the dark-adapted human eye is ∼ 10%.

12 The finely spaced pits on a DVD act as a reflection grating, as do the regularly spaced spheres of silicon
dioxide within an opal and the parallel rods of melanin within a peacock feather.
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FIGURE 6.16 Schematic diagram of a spectrograph. The collimator creates a
parallel beam of light which falls on a reflection grating. The grating disperses the
light by wavelength, and a camera brings the dispersed light to a focus on the detector,
in this case a charge-coupled device (CCD).

Most modern astronomical detectors fall into one of two categories: photoemissive
or photoconductive. Photoemissive detectors make use of the photoelectric effect; a
photon striking the surface of the detector liberates an electron. An electric field can
be used to accelerate the free electrons and ultimately convert them into a measurable
current, proportional to the incident photon flux. A photomultiplier tube is an example
of a photoemissive detector. The typical peak quantum efficiency for a photomultiplier
is about 10%.

Photoconductive detectors are solid state devices that accumulate local charges as
photons strike them. The most common photoconductive detector is the charge-coupled
device (CCD), used in commercial digital cameras as well as in astronomical imaging
cameras and spectrographs. A CCD is an integrated circuit that can be thought of as
a rectangular grid of tiny capacitors coupled together. A photon striking the detector
can free an electron, causing each capacitor to accumulate a charge proportional to the
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number of photons striking its immediate vicinity. The peak quantum efficiency of a
CCD is ∼ 80%; this high quantum efficiency makes CCDs the detector of choice in a
wide range of applications. A drawback to CCDs is that they are also sensitive to cosmic
rays (high-speed, charged particles), so strategies for minimizing their effects must be
employed.

CCDs come in various shapes, generally either a square or an elongated rectangle
(useful for spectroscopy). Each electron-accumulating capacitor in a CCD corresponds
to a picture element, or pixel. The size of pixels should be carefully matched to the desired
application. Using pixels larger than the point spread function (PSF) of your image causes
a loss of information. However, using a pixel size that is very much smaller than the PSF
is sheer waste. A useful approximation is that the pixel size should be 1/2 times the full-
width half-maximum (FWHM) of the PSF for the best seeing conditions expected at the
telescope. For a telescope with a plate scale s = 10 arcsec/mm and seeing with a FWHM
of 0.5 arcsec, this would require pixels of a width

w ≈ 0.25 arcsec

10 arcsec/ mm
≈ 0.025 mm. (6.9)

A CCD with a 4096 × 4096 (4k × 4k) array of pixels on this scale would then be about
10 centimeters on a side.

6.5 OBSERVATIONS AND PHOTON COUNTING

One practical problem that an observer faces is determining how long to observe a
particular source in the sky. How long does it take to obtain data of acceptable quality?
In this section, we address this problem at a fundamental statistical level.

In an astronomical observation, we detect an integral number of photons from a partic-
ular source. Given a source of known brightness, we might expect to observe μ photons
in some given amount of time. However, because of random statistical fluctuations, each
time we observe the object, we will count a slightly different number of photons. The
number of photons observed will follow a Poisson probability distribution:

P(x, μ) = μx

x!
e−μ, (6.10)

where μ is the expected number of photons (which isn’t necessarily an integer) and x is
the actual number of photons observed (which is necessarily an integer). Since P(x, μ)

is a probability distribution, it is normalized so that

∞∑
x=0

P(x, μ) = 1, (6.11)

which is simple to see, given the mathematical relation

∞∑
x=0

μx

x!
= eμ. (6.12)
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If we perform the experiment of observing the astronomical object numerous times, the
mean number of photons we observe will be

〈x〉 =
∞∑

x=0

xP (x, μ) =
∞∑

x=1

xμxe−μ

x!
, (6.13)

where we have eliminated the x = 0 term, since it equals zero. Using the relation
x! = x(x − 1)!, we may write

〈x〉 =
∞∑

x=1

μxe−μ

(x − 1)!
. (6.14)

Making the substitution z = x − 1, so the sum goes from z = 0 to infinity, we see that

〈x〉 =
∞∑

z=0

μ
μze−μ

z!
= μ, (6.15)

as expected.
We would also like to know the width of the distribution P(x, μ); in other words, if

we perform the experiment only once, how far from μ is x likely to be? A useful measure
of the width of the distribution is the variance,

σ 2 ≡ 〈(x − μ)2〉 =
∞∑

x=0

(x − μ)2P(x, μ). (6.16)

We may write the variance as

σ 2 =
∞∑

x=0

x2P(x, μ) − 2μ

∞∑
x=0

xP (x, μ) + μ2
∞∑

x=0

P(x, μ)

=
∞∑

x=0

x2P(x, μ) − μ2, (6.17)

making use of equations (6.11) and (6.15). By a process similar to that used to compute
〈x〉, it can be shown that

〈x2〉 =
∞∑

x=0

x2P(x, μ) = μ2 + μ, (6.18)

and hence, substituting into equation (6.17),

σ 2 = μ. (6.19)

The standard deviation of the Poisson distribution is σ = √
σ 2 = μ1/2. When we make

a measurement x, there is a probability of ∼ 2/3 that it will be between μ − σ and μ + σ .
As the expected number of photons μ increases (by increasing the exposure time,

for instance), the uncertainty increases more slowly, like μ1/2. The uncertainty in the
measurement is often referred to as the “noise” in the measurement; it represents random
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fluctuations in the quantity we want to measure, the “signal.” This leads us to define a
figure of merit for the measurement, which we call the signal-to-noise ratio:

S/N = measurement

uncertainty
= μ

σ
= μ

μ1/2
= μ1/2. (6.20)

The signal-to-noise ratio is the reciprocal of the fractional uncertainty in the measure-
ment. For example, if we want to measure an intensity to within 1% accuracy, we require
that S/N = 1/0.01 = 100, which requires μ = 104.

The signal-to-noise ratio is S/N = μ1/2 if fluctuations in the photon count are the
only source of uncertainty. In most applications, there are additional sources of noise. For
example, measurements of faint objects will include a significant number of background
photons as well.13 A separate measurement is usually required to estimate the background
contribution. You observe the astronomical source in question, you observe an apparently
blank patch of sky next to it (the “background measurement”), and then you subtract
the background measurement from your observation of source + background. Since
the background photons are also Poisson distributed, uncertainty in the background
measurement also adds to the noise. The uncertainties of two Poisson distributions add
in quadrature; that is,

σ 2
total = σ 2

s + σ 2
b , (6.21)

where the contributing factors are the source counts (μs, with associated uncertainty
σs = μ1/2

s ) and the background counts (μb, with associated uncertainty σb = μ
1/2
b ). Thus,

the signal-to-noise ratio for an astronomical source contaminated with a background is

S/N = μs

(σ 2
s + σ 2

b )1/2
= μs

(μs + μb)
1/2

. (6.22)

Astronomers frequently find themselves doing faint-object astronomy; this is the case
where the source counts are outnumbered by the background counts (μb > μs). In this
case, the signal-to-noise ratio is

S/N ≈ μs

μ
1/2
b

, (6.23)

and the observation is referred to as background limited. Let’s consider the case of
background limited observations in more detail. First, let’s assume that we are observing
a star of luminosity L (in watts) and specific luminosity Lλ (in watts per angstrom). The
star is at a distance r from the Earth. The specific flux received at the top of the Earth’s
atmosphere will be14

Fλ = Lλ

4πr2
. (6.24)

13 The term “background” is a bit misleading, since the background photons can come from in front of the
object observed as well as behind it. Contributions to the background can come from the Earth’s atmosphere
and from sunlight scattered by interplanetary dust, as well as from distant, unresolved stars and galaxies.
14 As we see later in the book, stars radiate nearly isotropically, and interstellar space is usually optically thin.
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We can convert from energy flux to photon flux by dividing by the energy per photon:
Fλ/hν = λFλ/hc. The rate ṅs at which photons are measured by our detector will be

ṅs = λFλ

hc
. �λ . πD2

4
. φa

. φt
. q, (6.25)

where �λ is the bandwidth of the observation (that is, the range of wavelengths ob-
served), D is the aperture of the telescope, φa is the fraction of the light that makes it
through the Earth’s atmosphere,15 φt is the fraction of the light that makes it through
the telescope to the detector, and q is the quantum efficiency of the detector. The total
number of photons measured during an exposure time t will then be μs = ṅst .

In addition to photons from the star itself, we also detect background photons. The
night sky background will be described in terms of a surface brightness Sλ, which is
the specific flux Fλ produced per unit solid angle on the sky; thus, the units of Sλ will be
watts per square meter per angstrom per square arcsecond of sky. The rate ṅb at which
background photons are measured by our detector will be

ṅb = λSλ

hc
. πθ2

4
. �λ . πD2

4
. φa

. φt
. q, (6.26)

where πθ2/4 is the area of sky that we are observing. If we are looking at a point source,
the relevant value of θ for computing the amount of contaminating background light is
the width of the point spread function. A broader point spread function leads to larger
images of point sources and thus more background light underlying the image.

In the background limited case, the signal-to-noise ratio is thus (combining equa-
tions 6.23, 6.25, and 6.26)

S/N ≈ μs

μ
1/2
b

≈ ṅst

(ṅbt)
1/2

∝ FλDφa

θ

(
�λφtq

Sλ

t

)1/2

. (6.27)

Frequently, an astronomer observing a star, or other astronomical source, will want to
reach a particular signal-to-noise ratio. The integration time t required to reach a given
value of S/N is

t ∝
(

θ

FλDφa

)2
Sλ

�λφtq
. (6.28)

This equation tells us, first of all, that the aperture size of the telescope is crucial; the
observing time is inversely proportional to the collecting area of the telescope. However,
it is a bit more surprising to realize that the size of the image θ is as important as the size
of the telescope D. Data of the same quality can be achieved in equal time with a 1 m
telescope that has 0.5′′ seeing as with a 4 m telescope that has 2′′ seeing.

If you observe a region of the sky containing many stars, then the limiting flux is the
flux of the faintest star that you can detect at a specified signal-to-noise ratio S/N during

15 Typically, φa ≈ 0.8 in the visible portion of the spectrum.
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FIGURE 6.17 Atmospheric opacity as a function of the wavelength of light. The “optical
window” (λ ∼ 0.5 μm) and the “radio window” (λ ∼ 3 cm → 10 m) occur where the atmosphere
is most nearly transparent.

an integration time t . In the background limited case, the limiting flux will be

Fλ(t) ∝ θ

Dφa

(
Sλ

�λφtq

1

t

)1/2

. (6.29)

As you integrate for a longer and longer period of time, you will detect fainter and fainter
stars, but the limiting flux is inversely proportional to the square root of time.

6.6 OBSERVATIONS AT OTHER WAVELENGTHS

In the previous sections, we implicitly assumed that we were observing at visible
wavelengths. Initially, of course, astronomers were compelled to observe at visible
wavelengths because the only detectors available were their eyes. Even now, however,
observations at visible wavelengths are of primary importance to astronomers for several
reasons. First, most atomic transitions have �E on the order of a few eV; this means
that the emitted and absorbed photons are in the visible or ultraviolet (UV) region of
the spectrum. Further, the surface temperatures of stars are in the range T ≈ 2000 K →
100,000 K; at these temperatures, they emit most of their radiation in the UV, visible,
and infrared (IR) regions of the spectrum. Finally, the Earth’s atmosphere is nearly
transparent from wavelengths of λ ≈ 3100 Å, in the near UV, to λ ≈ 1.1 μm, in the
near IR; this range of wavelengths is known as the “optical window” (Figure 6.17).
At wavelengths between ∼ 1.1 μm and ∼ 3 cm, the Earth’s atmosphere is only partially
transparent, mostly because of absorption by water vapor. Observations in the infrared
can be made only in a few “windows” where the opacity is relatively low. At wavelengths
shorter than ∼ 3100 Å, the Earth’s atmosphere is almost completely opaque. This means
that observations in most of the ultraviolet, and in all of the X-ray and gamma-ray regions
of the electromagnetic spectrum, cannot be made from the ground.

The other transparent “window” through the Earth’s atmosphere is in the radio portion
of the spectrum. Radio astronomy began in earnest shortly after World War II, driven in
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part by technical advances made during the development of radar.16 Within two decades,
radio astronomy had led to the discovery of exotic sources such as pulsars (to be discussed
in Section 18.2) and quasars (Section 21.1.2). Interstellar dust, which absorbs and scatters
light, leaves much of our own galaxy unobservable to us at visible wavelengths. However,
the transparency of dust at radio wavelengths allows us to map the structure of our galaxy.
In addition, complex molecules have low-energy transitions seen at radio wavelengths;
we see these molecules in dark, dusty, cold, interstellar clouds.17

Radio telescopes are generally much larger than optical telescopes, primarily to obtain
adequate angular resolution. The Earth’s atmosphere does not significantly distort radio
waves; thus, the quality of images produced by a radio telescope is determined by
the diffraction limit rather than by atmospheric seeing. Equation (6.7) tells us that the
angular resolution for a diffraction-limited telescope is proportional to the wavelength
of observation divided by the aperture of the telescope. If we observe at a wavelength
of λ ∼ 5 cm (roughly 100,000 times longer than visible wavelengths), then to obtain an
angular resolution of ∼ 1′′ (routinely obtained at visible wavelengths), we must have an
aperture of D ∼ 13 km. Thus, very-large-aperture radio telescopes enable us to obtain
reasonable angular resolution as well as enabling us to detect intrinsically faint radio
sources. Fortunately, it is feasible to build radio telescopes that are much larger than
optical telescopes. The accuracy with which a primary mirror must be manufactured is
∼ λ/4, where λ is the wavelength being observed. Thus, a radio telescope operating
at λ ∼ 5 cm can have irregularities as much as a centimeter in height and still produce
high-quality images.

The largest single-dish radio telescope in operation is the Arecibo Telescope, in
Puerto Rico. Its aperture is D = 305 m, which yields an angular resolution of ∼ 40′′
when observing at a wavelength of λ ∼ 5 cm, and proportionally poorer resolution when
observing at longer wavelengths. It is impractical to make a single-dish telescope large
enough to produce images with subarcsecond resolution. However, it is possible to use
multiple radio telescopes for interferometry; the signals from the radio telescopes can
be combined, if sufficient care is taken, to give diffraction-limited performance with
resolution equivalent to that of a single dish as large as the maximum separation between
the linked radio telescopes. The Very Large Array (VLA) in New Mexico consists of 27
radio telescopes mounted on rails so that the distance between them can be varied. The
maximum possible separation between telescopes is D = 36 km, giving a resolution of
∼ 0.05′′ at λ ∼ 0.7 cm, the shortest wavelength at which the VLA can observe. When 10
additional radio telescopes, spread from Hawaii to the Virgin Islands, are electronically
tied to the 27 telescopes of the VLA, the resulting Very Long Baseline Array (VLBA) has
a maximum separation between telescopes of D = 8600 km, giving angular resolution
of less than a milliarcsecond.

16 “Radar” is an acronym for radio detection and ranging. Tracking ships and aircraft by bouncing radio signals
off them required the ability to detect faint reflected radio waves.
17 These “molecular clouds,” as they are called, are particularly interesting to astronomers because they are
where stars form.
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At wavelengths that do not correspond to an atmospheric “window,” observations
must be made from above the Earth’s atmosphere. Indeed, the principal reason for putting
astronomical telescopes in space is to observe at wavelengths where the atmosphere
is opaque. Each wavelength regime of the electromagnetic spectrum requires different
technologies for photon detection, and each has its own challenges. One challenge in
building X-ray telescopes, for instance, is the difficulty in building lenses or mirrors that
are effective at focusing X-rays. Most materials have a refractive index n that is very
close to one at X-ray energies; this means that X-ray lenses tend to have inconveniently
long focal lengths. Making X-ray mirrors is not easy either, since X-ray photons are
energetic enough to penetrate metal surfaces rather than reflect from them.

The current generation of X-ray telescopes uses “grazing incidence” mirrors; if X-
ray photons strike a metal surface at an angle less than a small critical angle (typically
2◦ or less), it will reflect off rather than be absorbed. Gamma-ray photons are even
more energetic (hν > 104 eV) than X-ray photons. In practice, they are detected with the
same types of detectors that are used in particle accelerators here on Earth. Scintillation
detectors, for instance, convert the energy of a high-energy particle, such as a gamma
ray, into a burst of lower-energy photons. One major challenge in gamma-ray astronomy
is distinguishing the actual gamma rays (high-energy photons) from cosmic rays (high-
energy charged particles such as protons and helium nuclei).

The biggest challenge for space telescopes operating at infrared wavelengths is sep-
arating the signal from distant sources from the thermal background emitted by the
telescope and its detectors. Thermal emission can be reduced by cooling with liquid
nitrogen (T ∼ 77 K) or by liquid helium (T ∼ 4 K). For CCDs and similar detectors,
cooling also reduces the “dark current”; that is, the self-generated electronic signal
that is produced even when the detector is not exposed to photons.18 At wavelengths
longer than ∼ 5 μm, liquid helium temperatures are required to suppress the thermal
background.

Even at visible wavelengths, there is a major advantage to going above the Earth’s
atmosphere; telescopes in orbit are diffraction-limited instead of seeing-limited. The
higher angular resolution this permits largely accounts for the success of the Hubble
Space Telescope. Although the Hubble is a modest-size telescope by research standards,
with D = 2.4 m, it produces images of width θ = 0.05′′ at λ = 5000 Å. Equation (6.29)
then tells us that the Hubble Space Telescope can go deeper (that is, see objects of lower
flux) than any ground-based telescope currently in existence, as well as producing sharper
images.

There are distinct disadvantages, as well as the obvious advantages, to placing astro-
nomical telescopes in space. The most important disadvantage is cost. Space telescopes
are extremely expensive to build, launch, and operate. A telescope in space costs roughly
100 to 1000 times as much as a comparably sized telescope on the ground. Moreover,
neither the telescope nor its instruments can be easily serviced; indeed, the Hubble Space

18 Indeed, most electronic detectors, even at visible and ultraviolet wavelengths, are cooled at least to liquid
nitrogen temperature to suppress dark current.
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Telescope is the only space-based observatory that can have its instruments changed and
telescope refurbished by regular manned missions.

There are a number of misconceptions about the supposed advantages of space
astronomy:

. Misconception: In space, you can observe a celestial object continuously, not just
at night. For a telescope in low Earth orbit, nearly half the celestial sphere is
blocked by the Earth at any given time. Thus, most celestial objects can be viewed
for only half an orbit at a time (45 minutes on, 45 minutes off ).

. Misconception: The sky seen from orbit is dramatically darker than the night sky
on Earth. Although the night sky is darker as seen from orbit, the improvement
is not as great as you might expect. At blue wavelengths, the sky is about half as
bright as from the ground. Much of the sky background is due to sunlight scattered
from interplanetary dust and distant unresolved stars and galaxies.

. Misconception: Observations from space are not affected by weather. In fact,
space observations have their own environmental difficulties; instruments and
detectors deteriorate rapidly due to the harsh radiation environment and the broad
temperature range through which they are cycled. In addition, there is “weather”
of a sort in space, largely due to solar magnetic activity (described in Section 7.2).

6.7 MODERN TELESCOPES

During the 1960s, 70s, and 80s, the major advances in observational astronomy were
due to improvements in detector technology and the opening of new spectral windows
through space observations. It became apparent, however, that certain limitations had
been reached; in particular, any further advance in detector technology would be only
incremental, since the quantum efficiencies of detectors were approaching the theoretical
limit. Equation (6.29) tells us that the key elements in detecting fainter objects, once the
quantum efficiency has reached its limit, is minimizing the image size θ and maximizing
the telescope aperture D.

To minimize the image size, we must first select sites that are capable of delivering
good seeing; these are generally at high altitudes (so there is less air above the telescope)
in regions where the air flow is smooth and laminar. We then need to control seeing quality
to the fullest extent possible; this really means making sure that the telescope and its
immediate vicinity are not contributing to turbulence in the atmosphere. Finally, after
we have exhausted such “passive control” measures, we need to pursue active control
of the image quality. This can be done through adaptive optics; in this technique, we
sense wavefront distortions (by observing a bright star, for instance) and compensate for
these measured distortions with a deformable mirror. Such systems, although technically
difficult, are beginning to come into regular use.

Maximizing the collecting area of telescopes means making larger mirrors. Unfortu-
nately, conventional telescope mirrors are limited to D <∼ 5 m. The problem with larger
mirrors is thermal inertia. To perform well, the mirror must be at the same temperature
as the air surrounding it. If it is warmer than its surroundings, the mirror will radiate
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FIGURE 6.18 The Large Binocular Telescope on Mount Graham in Arizona.

infrared light, heating the air above the mirror and causing turbulence;19 this makes the
seeing very poor. The thermal inertia is the measure of an object’s ability to store heat
during the day and radiate it away at night. Thermal inertia scales with mass, and the
mass of a conventional mirror scales as D3, since the thickness must increase propor-
tionately with its diameter in order to keep the mirror stiff. There are a number of ways
around the thermal inertia problem, and all of them have met with success:

. Multiple mirrors. A large effective collecting area can be achieved by combining
the light collected by smaller individual mirrors. This is one reason why the
Large Binocular Telescope (LBT), which has two 8.4 m mirrors on a single mount
(Figure 6.18), was not designed as a “Very Large Monocular Telescope,” with a
solitary 11.9 m mirror.

. Segmented mirrors. Instead of a monolithic mirror made from a single slab of
glass, a mirror can be made of individual segments kept aligned through computer-
controlled active supports. This has been done successfully on the two 10 m Keck
telescopes, each of which consists of thirty-six 1 m segments.

. Honeycombed mirrors. Instead of starting with a solid disk of glass, we can melt
the glass for our mirror over heat-resistant ceramic forms that leave the back of
the mirror with a honeycomb structure that is stiff but lightweight.20 It is also
possible to control the temperature of the mirror by circulating coolant through
the structure behind the reflecting surface. The two mirrors of the LBT are made
with this honeycombed structure.

. Active mirror support. A large telescope mirror can be made very thin, and
consequently flexible, if it is actively supported along its back to retain the correct

19 This is the same effect that causes shimmering mirages above an asphalt highway on a hot day.
20 Much the same honeycomb structure is seen inside bird bones, which also must be stiff but lightweight.
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shape as the telescope swings back and forth. The mirrors of the four Very Large
Telescope units at the European Southern Observatory use this technology, as do
the mirrors of the two Gemini telescopes, one on Mauna Kea (Hawaii) and one on
Cerro Pachon (Chile).

PROBLEMS

6.1 Assume that your vision is diffraction limited at λ = 5000 Å and that the diameter
of the pupil of your eye is D = 8 mm. What angular resolution can you achieve with
your unaided eye? How does this compare with the maximum angular size of Venus
and Jupiter as seen from the Earth?

6.2 (a) The Hiltner Telescope at the MDM Observatory (on Kitt Peak, Arizona) has an
aperture D = 2.4 m. Its Cassegrain focus has an f-number f/7. What is the focal
length F and plate scale s?

(b) The Mayall Telescope at the Kitt Peak National Observatory (also on Kitt Peak)
has an aperture D = 4.0 m. Its prime focus has an f-number f/2.7, its Cassegrain
focus has f/8, and its Coudé focus has f/160. What is the focal length and plate
scale for each of these three foci?

(c) The Keck Telescope (on Mauna Kea, Hawaii) has an aperture D = 10.0 m. Its
Cassegrain focus has f/15. What is the focal length and plate scale?

6.3 With the D = 2.4 m telescope at the MDM Observatory, I can obtain a spectrum of
a particular star with signal-to-noise ratio S/N = 100 in t = 20 minutes when the
atmospheric seeing is average (θ = 1′′). How long would it take me to obtain the same
data with the Keck Telescope (D = 10.0 m) with excellent seeing (θ = 0.4′′)?

6.4 A charge-coupled device (CCD) detector is mounted at the focus of an f/7 reflecting
telescope with a D = 50 cm mirror. The CCD chip contains 1024 × 1024 pixels, with
each square pixel being 10 μm on a side.

(a) What is the area (in square arcseconds) of the sky that is imaged on a single pixel?
(b) What is the area (in square arcminutes) of the sky that is imaged on the entire

chip? Would the image of the full Moon fit into the chip?
(c) How many separate exposures would be required to cover the entire celestial

sphere (4π steradians)?

6.5 Suppose that you want to see stars that are as faint as possible in the background-
limited case. The Astronomy Fairy gives you a choice: either she can increase the
quantum efficiency of your retina from q = 0.1 to q = 1, or she can double the
maximum pupil size of your eye while guaranteeing diffraction-limited angular
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resolution. Which of these choices would produce a lower limiting flux Fλ? Explain
your choice.

6.6 The Atacama Large Millimeter/Submillimeter Array (ALMA) is designed to operate
over the wavelength range λ = 0.3 → 9.6 mm. It will consist of 80 independent 12 m
telescopes with a maximum baseline of 18 km.

(a) What is the highest angular resolution achievable with ALMA?
(b) How large would a single-dish antenna have to be to have the same collecting

area as ALMA?

6.7 Prove that equation (6.18) is correct for a Poisson probability distribution.



7 The Sun

Although the Sun is more massive and more luminous than most of the stars in its
neighborhood, it is by no means freakishly bright. Thus, by studying the Sun in particular,
we can learn a great deal about stars in general. A study of stellar interiors (including
the solar interior) will be deferred until Chapter 15, when we will have covered the
observable properties of stars in more detail. At this point, however, some discussion of
the Sun’s outer layers is merited. This is partly because there are aspects of solar physics
we need to understand in order to understand the evolution of the solar system as a whole.
However, it is also true that the Sun is the only star whose surface has been studied in
detail, and thus it deserves some extra attention.

7.1 OBSERVABLE LAYERS OF THE SUN

An image of the Sun at visible wavelengths (Figure 7.1) has a sharp, well-defined
boundary, implying that the Sun has a well-defined surface. The observed surface of the
Sun at visible wavelengths is the photosphere. More exactly, the photosphere is defined
as the layer of the Sun’s atmosphere from which nearly all of the observed photons
escape. The optical depth τ increases rapidly with depth in the photosphere; as a result,
the photosphere is not very thick when compared to the size of the Sun as a whole.
The vast majority of the light we observe from the Sun comes from a photosphere only
∼ 400 km thick. The base of the photosphere is at a distance R = 696,000 km from
the Sun’s center. It’s the thinness of the photosphere that gives the Sun its sharp-edged
appearance. The temperature T beneath the photosphere increases with depth, as does
the degree of ionization; the interior of the Sun is a hot plasma of free electrons and
positively charged ions.

Because the top of the photosphere is cooler than the layers beneath, the photosphere
produces absorption lines in the spectrum of the Sun. Detailed analysis of high res-
olution spectra allows us to deduce the physical properties of the solar photosphere.
Elemental abundances, for instance, are very different from those found on Earth. By
mass, hydrogen constitutes 73.4% of the photosphere, helium constitutes 25.0%, and

172
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FIGURE 7.1 The photosphere is the region of the solar atmosphere from which
most of the visible light is emitted. Note the effect of “limb darkening”; the solar
disk has a higher surface brightness at the center than at the edges.

all the remaining elements of the periodic table contribute only 1.6% of the mass of the
photosphere.1

In the photosphere, the principal source of opacity is the H− ion, that is, a hydrogen
atom with an additional electron. In a gas containing both neutral hydrogen atoms and
free electrons, H− ions can form by the reaction

H + e− → H− + γ. (7.1)

Many metals have low ionization potentials and thus are partially ionized at the tem-
perature of the Sun’s photosphere; this provides the primary source of free electrons for
the creation of H− ions. However, the second electron in the H− ion is quite loosely
bound, with an ionization energy χ = 0.75 eV. The fragility of the H− ion implies that it
is abundant enough to affect the opacity only under special conditions; the density of gas
must be fairly high, and the temperature must be in the range 2500 K <∼ T <∼ 10,000 K.
At lower temperatures, there are essentially no free electrons available, and at higher
temperatures, the H− ions are blasted apart by photons as soon as they form. The en-
ergy χ = 0.75 eV required to remove the second electron corresponds to a wavelength
λ = 1.7 μm. This means that when H− is present, it can absorb ultraviolet photons, vis-
ible photons, and infrared photons out to a wavelength of 1.7 μm. Since the density of
particles in the photosphere decreases with height, eventually the density drops to the

1 Astronomers sometimes lump together all elements heavier than helium as “metals.” This puts them, we
realize, on the same level as primitive tribes who count “one, two, many,” but sometimes the ability to count
beyond two is overrated.
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1 optical depth

To the observer

FIGURE 7.2 An observer far to the left observes limb darkening of the Sun.
Photons from the center of the Sun’s disk come, on average, from deeper, hotter
layers of the photosphere.

point where the collisions between free electrons and hydrogen atoms that lead to for-
mation of H− occur too slowly to keep up with the photodissociation rate. Thus, at the
top of the photosphere, the H− has disappeared, the opacity due to H− has disappeared,
and photons can escape.

The photons that we observe from the photosphere come from a variety of depths,
and thus, given the temperature gradient across the photosphere, represent blackbody
emission at a range of temperatures. The average depth from which the observed photons
originate is determined by the column density of H− along our line of sight. At the center
of the solar disk, the physical depth corresponding to an optical depth τ = 1is larger than
the physical depth at the limb, or edge, of the Sun. This effect is illustrated in Figure 7.2.

As a consequence of this effect, the Sun displays limb darkening; the surface
brightness is greater at the center of the Sun’s disk because the photons we see come
from deeper, hotter layers of the photosphere, on average. By comparison, the limb of the
Sun’s disk is lower in surface brightness because the photons come from higher, cooler
layers of the photosphere, on average. The average temperature (that is, the one that
gives the best-fitting Planck spectrum) at the center of the disk is T ≈ 6100 K. However,
when photons from the entire disk are pooled together, the best-fitting temperature is
T ≈ 5700 K, thanks to the contribution from the cooler photons from the limb.

When the Sun’s disk is viewed at high angular resolution, the photosphere is seen
to be broken up into granules (Figure 7.3). The granules are convection cells in the
photosphere. Hot gas rises at the center of the granule; after the hot gas cools by
radiation, the cooler gas sinks back down at the edges of the granules. The typical size
of granules is d ∼ 1000 km, and the typical lifetime of a granule before it breaks up is
only t ∼ 10 minutes. A time-lapse movie of the photosphere looks like a seething vat of
soup.
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FIGURE 7.3 Detail of the photosphere showing granules; typically, they are the
size of Texas (d ∼ 1000 km).

The chromosphere is the layer of the Sun’s atmosphere immediately above the
photosphere. The chromosphere, as illustrated in Color Figure 4, is most easily seen
during a total solar eclipse, when the Moon blocks the light from the much-brighter (by
definition) photosphere. The chromosphere produces an emission spectrum, as expected
from Kirchhoff’s laws; it consists of hot, tenuous gas seen, during an eclipse, against
a dark background. The characteristic red color that gives the chromosphere its name2

is due to strong emission from the Hα λ6563 line. When the emission spectrum of the
chromosphere was measured during an eclipse on 1868 August 18, astronomers were
surprised to detect a yellow emission line (λ = 5875 Å) that didn’t correspond to any
known element. The English scientist Norman Lockyer decided that the line was due
to a previously unknown element that he called “helium,” after the Sun god Helios.
Chemists did not isolate the element helium in their laboratories until 1895, when its
emission spectrum was verified.

The temperature of the chromosphere increases with distance from the Sun’s center
(unlike the temperature structure of the photosphere, where the temperature drops with
increasing distance). At the top of the photosphere, which constitutes the base of the
chromosphere, the temperature is T ≈ 4400 K; at the top of the chromosphere, at a height
of ∼ 2500 km above its base, the temperature has risen sharply to T ≈ 9000 K.3

2 Chromo- is a Greek root meaning “color.”
3 The reason why helium absorption lines are not seen in the Sun’s photospheric spectrum is that the cooler
temperatures there result in photons that are insufficiently energetic to raise electrons above the ground state
of helium.
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FIGURE 7.4 A spectroheliogram, showing features of the chromosphere.

If you are insufficiently patient to wait for a total solar eclipse, you can also observe
the chromosphere by using a spectroheliogram. These are simply images taken through
filters with a narrow bandwidth, centered on the wavelengths of strong photospheric
absorption lines. At the wavelengths of the strongest absorption lines, such as the Hα

λ6563 line, the photosphere is essentially black, and we can detect the chromospheric
emission lines against the black background. Figure 7.4 is a spectroheliogram of the
Sun, showing extensive chromospheric structure. The structure of the chromosphere
is irregular and variable with time. Bright extended regions in the chromosphere are
called plages.4 Plages are regions where the magnetic field is particularly strong. The
chromosphere also shows dark, linear features called filaments; these are long clouds
of relatively cool gas that are lifted above the chromosphere by the Sun’s magnetic
field. Although filaments are cooler than the chromosphere below them, they are still
hot enough to be seen as bright prominences when they extend beyond the Sun’s limb
and are seen against the relative darkness of the sky.

On finer scales, the chromosphere shows features called spicules, which are relatively
narrow columns of gas moving vertically at speeds of ∼ 10 km s−1. For comparison,
these speeds are higher than the speed of ∼ 1 km s−1 with which gas circulates in
granules. Like plages, and like the filaments and prominences, the spicules are related to
the Sun’s magnetic field. The spicules consist of charged particles moving along magnetic
field lines. In Figure 7.5, a spectroheliogram taken during the transit of Venus on 2004
June 8 (which explains the black dot), the spicules are seen as short, dark lines against the

4 The word “plage” is the French term for a beach or, more generally, an open area. Because of its French
origin, “plage” rhymes with “mirage” and not with “rage.”
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FIGURE 7.5 A spectroheliogram, showing dark spicules (as well as Venus in the
process of transiting).

hotter body of the chromosphere. However, like the larger filaments, the short spicules
are bright when they extend beyond the limb of the Sun and are seen in projection against
the sky.

The corona is the outer layer of the Sun’s atmosphere. The corona emits about 1
million times less light than the photosphere, which makes it roughly as bright as the
full Moon. Ordinarily, the coronal light is lost in the glare of the garish photosphere; as a
consequence, the corona is most easily observed during a total solar eclipse. Viewing the
coronal spectrum during an eclipse permits us to identify two separate components of
the corona, each with a distinctive spectrum. The K corona, which dominates near the
Sun (within r ∼ 2.5R), has a continuum spectrum with emission lines superimposed
on it, but no detectable absorption lines.5 The F corona, which dominates farther from
the Sun, has a continuum spectrum with absorption lines, similar in appearance to the
photospheric spectrum.6

When the spectrum of the K corona was first studied in the nineteenth century, it
was found to have a green emission line (λ = 5303 Å) that didn’t correspond to any
known element. Astronomers, following the example of Norman Lockyer, the discoverer
of helium, declared that the emission line was due to a previously unknown element,
called “coronium.” It wasn’t until the year 1942 that the mystery emission line was
discovered to correspond to a forbidden transition of Fe xiv, that is, an iron atom with 13
of its 26 electrons stripped away. It takes a very high temperature to collisionally ionize
iron to such an extent; the highest temperatures in the corona are T ≈ 2 × 106 K. The

5 The “K” stands for Kontinuum; the name was devised by a German scientist.
6 The “F” stands for Fraunhofer, the spectroscopist who first studied the Sun’s absorption lines.
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continuum light emitted by the K corona consists of light from the photosphere that has
scattered from the free electrons in the coronal plasma. The large thermal velocity of the
hot electrons causes enough Doppler broadening to smear out the strong photospheric
absorption lines, and leaves the continuum nearly featureless aside from the emission
lines that arise in the K corona itself.

The light emitted by the F corona, farther from the photosphere, consists of light from
the photosphere that has scattered from dust grains.7 Since the dust grains are moving
slowly compared to the free electrons, the absorption lines in the photospheric spectrum
are preserved when they scatter from dust in the F corona.

Detailed study of the structure of the solar atmosphere reveals that the temperature
jumps upward from T ∼ 104 K to T ∼ 106 K in a thin transition region between the
chromosphere and the corona (Figure 7.6). One question that has puzzled astronomers
is, What gives the corona its extremely high temperature? Since the density of the corona
is low, it doesn’t take an extraordinarily high amount of thermal energy to raise it to
T >∼ 106 K, but you still need a way of transporting that energy from lower levels of the
Sun out to the corona. Early hypotheses proposed that sound waves, generated by the
Sun’s convective cells, traveled outward from the photosphere until they steepened into
shock waves (“sonic booms”) in the corona. When a shock wave passes through a gas,
it causes a rise in temperature. More recent hypotheses have proposed that the changing
magnetic fields of the Sun cause electric currents to run through the corona; the electrical
resistance of the coronal gas would then cause it to heat up. The main source of coronal
heating is not yet clear.

The rms speed of the protons in the hot corona is (equation 5.48):

vrms =
(

3kT

mp

)1/2

≈ 160 km s−1
(

T

106 K

)1/2

. (7.2)

This can be compared to the escape speed at a distance r from the Sun’s center (equa-
tion 3.62):

vesc =
(

2GM
r

)1/2

≈ 620 km s−1

(
r

R

)−1/2

. (7.3)

As the escape speed decreases with distance from the Sun’s center and the coronal
temperature increases, an increasing fraction of the particles in the corona exceed the
escape speed. The outward flow of escaping particles is called the solar wind.

The solar wind has been measured by interplanetary spacecraft; at r = 1 AU from the
Sun, the speed of the wind is v ∼ 400 km s−1, on average, while the number density of
particles is n ∼ 107 m−3. For the mix of electrons, protons, and helium nuclei that make
up the solar wind, this provides a mass density ρ ∼ 10−21 kg m−3 at r = 1 AU. If we
make the assumption that the solar wind is in a steady state, we can compute the rate at

7 Dust grains are ubiquitous in the solar system, but tend to be concentrated in the ecliptic plane; it’s these dust
grains, as we see in Chapter 11, that give rise to the zodiacal light.
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FIGURE 7.6 The density and temperature of the solar atmosphere (photosphere,
chromosphere, and corona) as a function of height above the base of the photosphere.

which the Sun is losing mass. (The steady-state assumption isn’t strictly true—there are
“gusts” in the solar wind—but it’s sufficient for a rough approximation.) Consider a thin
spherical shell of radius r and thickness �r centered on the Sun, as shown in Figure 7.7.
The mass of the solar wind in the shell at any given instant is just the shell’s volume
times the density:

�M = (4πr2�r)ρ. (7.4)

The mass flux through the shell can be obtained by dividing by the time �t it takes a
solar wind particle to move outward a distance �r:

�M

�t
= 4πr2 �r

�t
ρ. (7.5)
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FIGURE 7.7 A thin spherical shell is centered on the Sun.

As we let �t → 0, we can write this as a mass continuity equation for a steady-state
spherical flow:

dM

dt
= 4πr2 dr

dt
ρ, (7.6)

where we can identify dM/dt as the mass loss rate of the Sun, Ṁ, since it is assumed to
be constant at all radii. We can also identify dr/dt with the wind speed v, which will be
constant as long as nothing is acting to accelerate or decelerate the wind particles after
they leave the corona. Thus, we may write

Ṁ = 4πr2vρ. (7.7)

Using v ∼ 400 km s−1, r = 1 AU, and ρ ∼ 10−21 kg m−3, we find

Ṁ = 4π(1.5 × 1011 m)2(4 × 105 m s−1)(10−21 kg m−3) ∼ 108 kg s−1. (7.8)

This mass loss rate of 100,000 tons per second sounds big until you realize that it is
equivalent to Ṁ ∼ 10−14M yr−1. The timescale for mass loss is then

tM = M/Ṁ ∼ 1014 yr, (7.9)

whereas the age of the Sun is only ∼ 5 × 109 yr. If the rate of mass loss has been
approximately constant over the age of the Sun, then the solar wind has not significantly
pared down the Sun’s mass.
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Magnetic
field lines

NS

FIGURE 7.8 Magnetic field lines of a common bar magnet.

7.2 SOLAR ACTIVITY

Violent and variable phenomena in the Sun’s atmosphere are collectively referred to as
solar activity. All forms of solar activity are tied to the complex magnetic field of the Sun.
To understand solar activity, we must begin with a discussion of the interaction between
charged particles, such as electrons and protons, and magnetic fields. A magnetic field is a
vector field �B; that is, it has a direction as well as a magnitude at every position in space. In
SI units, magnetic fields are measured in teslas (T), where 1 T = 1 kg s−1 C−1.8 Magnetic
fields are usefully visualized by drawing magnetic field lines; these are curves such that
�B at every point of the curve is exactly tangent to the curve. Figure 7.8, for example,
shows magnetic field lines of a bar magnet. Regions where the field lines converge and
come closer together are regions of stronger magnetic field.

A particle with electric charge q is moving with a velocity �v through a magnetic field.
The charged particle will be accelerated by the Lorentz force,

�F = q�v × �B, (7.10)

where �B is the magnetic field strength, in teslas. The sense of the acceleration is shown
in Figure 7.9. The particle velocity �v can be decomposed into a component v‖ that is

parallel to �B and a component v⊥ that is perpendicular to �B. The speed v‖ is unchanged
by the Lorentz force. However, if v⊥ is nonzero, the Lorentz force will cause the particle
to execute a circular motion, with constant speed v⊥, perpendicular to the magnetic field.

8 The Earth’s magnetic field has a strength of B ∼ 3 × 10−5 T at the Earth’s surface. An MRI (magnetic
resonance imaging) machine uses an electromagnet with B ∼ 1 T; this is a strong magnetic field by terrestrial
standards.
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FIGURE 7.9 The Lorentz force accelerates a charged particle in a direction
perpendicular to both the magnetic field lines and the instantaneous particle velocity.
(The symbol  represents a vector coming out of the page.)
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FIGURE 7.10 The Lorentz force causes charged particles to travel in a helix
around magnetic field lines.

The constant motion in the direction parallel to �B, combined with the circular motion
perpendicular to �B, causes charged particles to move in a helix, as shown in Figure 7.10.
Newton’s second law tells us that the acceleration, for a particle of charge q and mass
m, will be

a = q

m
v⊥B. (7.11)

On a circular orbit, a = v2
⊥/r , so the radius of the particle’s circular path will be given

by the relation

v2
⊥
r

= q

m
v⊥B. (7.12)
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The radius of the particle’s orbit will then be

rc = mv⊥
qB

, (7.13)

known as the Larmor radius of the charged particle.
Magnetic field lines thus tend to guide charged particles; the helix along which a

particle moves is wrapped around a magnetic field line like a vine wrapped around a
beanpole. As long as the gas pressure is low, the motion of charged particles will be
dictated by the magnetic field. At high gas pressure, however, any bulk motions of the
gas will tend to drag the magnetic field along with them. Whether the gas controls the
motion of magnetic field lines, or the magnetic field controls the motion of gas particles,
depends on the ratio of the energy density of the magnetic field to the pressure of the
gas.9 The magnetic energy density (or magnetic pressure) is

PB = B2

2μ0
, (7.14)

where μ0 is the permeability constant. In SI units, μ0 = 4π × 10−7 kg m C−2. The
magnetic pressure is then

PB = 4.0 × 105 N m−2
(

B

1 T

)2

. (7.15)

Within the Sun, the gas pressure is given by the ideal gas law, Pgas = nkT , where n

is the particle density, T is the temperature, and k is Boltzmann’s constant. In terms of
the mass density of the gas, ρ = μmpn, the gas pressure is

Pgas = ρkT

μmp

≈ 5000 N m−2

μ

(
ρ

10−4 kg m−3

) (
T

6000 K

)
, (7.16)

where we’ve scaled the equation to densities and temperatures appropriate for the solar
photosphere.10

Many observable properties vary along with the Sun’s time-variable magnetic field.
The most obvious solar phenomena linked to the magnetic field are sunspots. Fig-
ure 7.11 illustrates a pair of particularly large sunspot groups. Sunspots are regions in
the photosphere where the magnetic field is locally enhanced and the gas temperature
is relatively cool. At the center of the solar disk, as mentioned earlier, the photospheric
temperature is ∼ 6100 K; however, in a sunspot, the temperature is ∼ 4300 K. Thus,
sunspots are still hot—much hotter than the filament of an incandescent lightbulb—and

9 Note that energy density (J m−3) and pressure ( N m−2) have the same units ( kg m−1 s−2).
10 For purposes of comparison, the pressure of the Earth’s atmosphere at sea level is P ∼ 105 N m−2. The
Earth’s atmosphere is cooler than the Sun’s photosphere, and has a higher mean molecular mass μ, but at sea
level it is much denser, with ρ ∼ 1 kg m−3.
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FIGURE 7.11 Sunspot groups 10484 (near the center of the Sun’s disk) and
10486 (near the limb), seen in autumn 2003.

radiate like blackbodies. However, they look dark relative to the surrounding photo-
sphere because the surface flux F is strongly dependent on temperature: F ∝ T 4, and
(6100/4300)4 ≈ 4.

Sunspots were first seen by Chinese astronomers over 2000 years ago; at sunrise
and sunset, large sunspot groups (similar to those in Figure 7.11) can be seen with the
naked eye. With the advantage of a telescope, Galileo and other seventeenth-century
astronomers were able to track sunspots as they moved across the Sun’s disk. The
movement of sunspots demonstrated that the Sun rotates differentially; the rotation
period near the equator is P = 25.4 days, while near the poles it is around P = 35 days.
(This differential rotation is permissible because the Sun is a fluid body rather than
a rigid body.) Individual sunspots are transient features, and have lifetimes ranging
from a few hours to a few months. That sunspots are associated with strong magnetic
fields is revealed by the Zeeman effect. As discussed in Section 5.3, there exist atomic
energy levels that are degenerate with no magnetic field present, but which split into
an upper level and a lower level in the presence of a magnetic field, with the amount
of splitting proportional to the magnetic field strength B. As seen in Figure 7.12, there
exist absorption lines that display Zeeman splitting within a sunspot, but no perceptible
splitting outside the spot.

The strong magnetic fields within sunspots explain why they are cooler than their
surroundings. The total pressure in the sunspot (magnetic pressure plus gas pressure)
must equal the pressure outside the sunspot. If they were not equal, then the sunspot
would expand or contract until the pressures were equalized. If we assume that the
magnetic pressure outside the spot is negligibly small, we see that
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(a) (b)

FIGURE 7.12 (a) A sunspot, with the vertical line representing the slit of a
spectrograph. (b) The resulting spectrogram. For each point on the vertical slit, the
spectrum is dispersed in the horizontal direction. The prominent absorption line
shows Zeeman splitting where the slit crosses the sunspot.

ρkTs

mp

+ B2

2μ0
= ρkTp

mp

, (7.17)

where Ts is the sunspot temperature and Tp is the temperature of the surrounding
photosphere.11 Solving for the magnetic field strength, we find

B =
[

2μ0ρk(Tp − Ts)

mp

]1/2

. (7.18)

By referring to a detailed model of the solar atmosphere, we find that, at an optical depth
τ = 1 (in the middle of the photosphere), the mass density is ρ ≈ 3.5 × 10−4 kg m−3.
With this mass density, and with a temperature difference Tp − Ts = 6100 K − 4300 K =
1800 K, we find that

B ≈
[

2(4π × 10−7)(3.5 × 10−4)(1.38 × 10−23)(1800)

1.67 × 10−27

]1/2

≈ 0.1 T. (7.19)

11 We have assumed a mean molecular mass μ = 1 in both the sunspot and the surrounding photosphere; this
is approximately correct and has the benefit of eliminating confusion between μ and μ0 (the permeability
constant).
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FIGURE 7.13 Historical sunspot counts, from 1700 to 2007.

By contrast, the average magnetic field strength on the surface of the Sun is in the range
0.01→ 0.001 T. The magnetic field in a sunspot effectively acts to cool its surroundings
by decreasing the local gas pressure.

The number of sunspots visible at any given time varies over an 11-year cycle, as
shown in Figure 7.13. It is not a perfectly repeatable cycle, since the peak number of
sunspots can vary dramatically from one cycle to the next. In fact, during the Maunder
minimum, between the years 1645 and 1710, sunspots seemed to disappear almost
entirely. During the course of the solar cycle, the location of sunspots on the solar disk
also changes. Early in the solar cycle, sunspots first appear at relatively high latitudes
(typically at solar latitudes ±30◦), but later in the cycle, they migrate closer to the equator.
A plot of sunspot latitude as a function of the time of appearance of the sunspot is shown
as Figure 7.14. This plot is known as a butterfly diagram, from its fancied resemblance
to butterflies with their wings spread.

Sunspots tend to occur in pairs of opposite magnetic polarity; that is, the magnetic field
lines run upward out of one sunspot and downward into the other sunspot. However, the
sense of the polarity is reversed between the Sun’s northern and southern hemispheres;
if in the northern hemisphere the leading (eastern) sunspot has a positive polarity, then in
the southern hemisphere the leading sunspot will have a negative polarity. This switch in
polarity is illustrated in Figure 7.15, which is a magnetogram of the Sun. A magnetogram
is a plot of magnetic field strength (determined by Zeeman splitting) over the disk of the
Sun; white and black represent different magnetic polarities. In the figure, there is one
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FIGURE 7.14 Sunspot solar latitude as a function of time, as plotted by Edward
Maunder (after whom the Maunder minimum is named) for the two solar cycles
from 1879 to 1901.

FIGURE 7.15 A magnetogram of the Sun, in which white and black represent
strong magnetic fields of opposite polarity. Gray represents weak magnetic fields.

sunspot pair in each hemisphere; in one hemisphere, the “white” spot leads, and in the
other, the “black” spot leads. In addition to the reversed polarity of sunspot pairs in
opposite hemispheres, the polarities switch between one cycle and the next. That is, in
one 11-year cycle, the positive polarity sunspot will lead in the northern hemisphere; in
the next 11-year cycle, the negative polarity sunspot will lead in the same hemisphere.
Thus, the complete solar cycle actually has a period of 22 years rather than 11 years.
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FIGURE 7.16 This image taken by the SOHO satellite shows a particularly large
prominence.

In the photosphere, the gas pressure exceeds the magnetic pressure (although only
by a relatively small margin in sunspots). Thus, in the photosphere, bulk motions of
ionized gas carry the magnetic field lines with them. The turbulent convection in the
photosphere randomly pushes and bends the magnetic field lines, which produces kinks
in the field lines. A kinked magnetic field can develop loops that erupt outward through
the photosphere. These outward loops produce a bipolar magnetic region, which can be
a sunspot pair, as described above, or a larger complex of sunspots. The magnetic loop
can be removed by merger of the magnetic poles. Ionized gas trapped between merging
magnetic poles will be accelerated along the magnetic field lines, forming a prominence.
An example of a large prominence is shown in Figure 7.16. (When a prominence is seen
in absorption against the bright photosphere, it is called a filament.)

Large prominences can be highly energetic, with gas moving upward at speeds higher
than the Sun’s escape speed. An erupting prominence—that is, one that sends matter
upward at speeds greater than the escape speed—can cause a coronal mass ejection. A
coronal mass ejection can be simply defined as a big blob of ionized gas ejected from the
Sun. Coronal mass ejections occur a few times a day when the Sun is active, and once
every few days during the quiet part of the solar cycle. A large coronal mass ejection
typically contains ∼ 1013 kg of gas. The average speed of a coronal mass ejection is
∼ 500 km s−1 once it is far from the Sun, implying a kinetic energy ∼ 1024 J for a large
coronal mass ejection.

Solar flares are events that can be even more energetic than coronal mass ejections.
Solar flares are chromospheric eruptions, triggered by sudden releases of energy stored
in the Sun’s magnetic field. A solar flare produces a bright burst of electromagnetic
radiation, much of it in the form of high-energy ultraviolet, X-ray, and gamma-ray
photons. In addition, the flare accelerates charged particles such as electrons and protons
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to relativistic speeds. Solar flares occur several times a day when the Sun is active,
and once a week or so when the Sun is quiet. The energy of a solar flare can be as
much as ∼ 1025 J, and the temperatures within a flare can reach 107 K. Although the
exact mechanism of solar flares is not understood, they can apparently be explained as a
consequence of magnetic reconnection events in bipolar magnetic regions.

Both coronal mass ejections and solar flares produce charged particles that can interact
with the Earth’s magnetic field. The slower coronal mass ejections take a few days to
reach the Earth from the Sun, while the relativistic charged particles associated with a
solar flare can reach the Earth in two hours or less. In either case, the charged particles
are accelerated by the Earth’s magnetic field toward the magnetic poles. There, they
interact with atoms in the Earth’s upper atmosphere, producing the aurora borealis (in
the Earth’s northern hemisphere) and the aurora australis (in the southern hemisphere).
More colloquially, they are known as the northern lights and southern lights. A fine
specimen of an aurora is shown in Color Figure 6.

7.3 ANGULAR MOMENTUM OF THE SUN

Although the Sun contains 99.8% of the mass of the solar system, Jupiter contains most
of the angular momentum. From equation (3.49), we know that the angular momentum
of Jupiter’s orbital motion is

LJup = mJupa
2
JupωJup

√
1 − e2, (7.20)

where aJup = 5.2 AU is the semimajor axis of Jupiter’s orbit, e = 0.048 is its eccentricity,
and ωJup ≡ 2π/PJup = 1.5 × 10−3 day−1 is the average angular speed of Jupiter on its
orbit. By comparison, the Sun’s rotational angular momentum can be approximated as

L ≈ 2

5
MR2

ω, (7.21)

where ω is the average angular speed of the Sun (since the Sun is not a rigid body, ω

varies with position in the Sun). Since P ≈ 28 days, then ω = 2π/P ≈ 0.22 day−1.
The ratio of Jupiter’s orbital angular momentum to the Sun’s rotational angular

momentum is

LJup

L
≈ 5

2

(
mJup

M

) (
aJup

R

)2 (
ωJup

ω

) √
1 − e2. (7.22)

Although Jupiter is much less massive than the Sun (M ≈ 1040mJup), and its orbital
angular speed is less than the Sun’s rotational angular speed (ω ≈ 150ωJup), Jupiter’s
orbit is much larger than the Sun’s radius (aJup ≈ 1100R). This means that

LJup

L
≈ 5

2

(
1

1040

)
(1100)2

(
1

150

) √
0.998 ≈ 20. (7.23)
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The Sun’s small angular momentum is puzzling, particularly since young stars compa-
rable in mass to the Sun are seen to rotate at a much higher rate.12 The puzzle can be
solved if the Sun has lost a significant fraction of its angular momentum.

One way in which the Sun can lose angular momentum is to have it carried off by the
solar wind. Consider a particle of mass m leaving the Sun’s atmosphere at radius R; it
will have an angular momentum L = mR2

ω, where ω is the angular speed of rotation

at the point where the particle leaves. Taking ω ≈ ω ≈ 0.22 day−1, the rate at which
angular momentum leaves the Sun is

dL

dt
= dm

dt
r2ω = ṀR2

ω, (7.24)

where Ṁ, the Sun’s average rate of mass loss, is ∼ 10−14M yr. Given the Sun’s
rotational angular momentum,

L ≈ 2

5
MR2

ω, (7.25)

the timescale over which the Sun loses its angular momentum through the solar wind
should be

τ = L
dL/dt

≈ 2MR2
ω

5ṀR2ω

≈ 2

5

M
Ṁ

≈ 2

5

1M
10−14M yr−1

≈ 4 × 1013 yr. (7.26)

This is much longer than the age of the Sun, t ∼ 5 × 109 yr, and argues that the solar
wind is as inefficient at paring away the Sun’s angular momentum as it is paring away
the Sun’s mass.

However, the above calculation neglects the effect of the Sun’s magnetic field. At
sufficiently large radii, the Sun’s magnetic field lines can be approximated as stretching
radially outward (see Figure 7.17 for one simulation of the Sun’s magnetic field). Since
the magnetic field lines are rooted in the dense ionized gas of the Sun’s interior, they co-
rotate with the Sun. Close to the Sun, the magnetic energy density is greater than the
energy density of the solar wind. Thus, at small radii, the charged particles of the solar
wind are compelled to move along the (approximately) radial magnetic field lines, and
they too co-rotate with the Sun. Since their angular speed ω ≈ ω remains constant while
their radius r increases, their angular momentum, L ∝ r2ω, must increase. However, at
some point the magnetic energy density drops below the energy density of the solar wind.
The Alfvén point is the radius rA at which the magnetic energy density is equal to the
kinetic energy density of the solar wind:

12 Rotation speeds are estimated from the rotational Doppler broadening of the stars’ absorption lines; the stars
are known to be young because they are associated with types of stars that have short lifetimes.
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FIGURE 7.17 The Sun’s magnetic field lines at a time of low solar activity.

B2

2μ0
= 1

2
ρv2. (7.27)

Outside the Alfvén radius, the solar wind is no longer torqued by the magnetic field, and
the angular momentum of each solar wind particle is constant.

Since the magnetic flux is conserved, we can write for an arbitrary distance r from
the Sun’s center

4πr2B(r) = 4πR2
B, (7.28)

assuming that the magnetic field �B is purely radial. Thus, the magnetic field strength falls
as the inverse square of distance:

B(r) = B
(

R
r

)2

, (7.29)

and the magnetic energy density falls off even more rapidly:

B(r)2

2μ0
= B2


2μ0

(
R
r

)4

. (7.30)

However, for a steady-state wind, we have found that the density falls off as (equation 7.7)

ρ(r) = Ṁ
4πv

1

r2
, (7.31)

and thus the kinetic energy density of the solar wind is

1

2
ρ(r)v2 = Ṁv

8π

1

r2
. (7.32)
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By equating the magnetic energy density (equation 7.30) and the kinetic energy density
of the solar wind (equation 7.32), we find the Alfvén radius rA:

B2


2μ0

R4


r4
A

= Ṁv

8π

1

r2
A

, (7.33)

yielding

rA

R
=

(
4πB2

R2


μ0Ṁv

)1/2

. (7.34)

Using Ṁ ≈ 10−14 M yr−1, v ≈ 400 km s−1, and B ≈ 10−3 T, we can compute

rA

R
≈ 140. (7.35)

That is, the outward-streaming solar wind co-rotates with the Sun out to a distance of
rA ≈ 140R ≈ 0.6 AU. Thus, the angular momentum carried away by each particle is
larger, by a factor ∼ (140)2 ∼ 2 × 104, than it would be in the absence of a magnetic
field. This decreases the timescale for angular momentum loss from τ ≈ 4 × 1013 yr to
τ ≈ 2 × 109 yr, shorter than the age of the Sun. Thus, when the Sun’s magnetic field is
taken into account, there is no problem explaining the low angular momentum of the
Sun. Much of the Sun’s initially large angular momentum has been carried away by the
solar wind.

PROBLEMS

7.1 Using data in this chapter, compute the Larmor radius rc for a typical electron in the
K corona.

7.2 The thermal energy density of a gas is equal to its number density of particles times
the mean kinetic energy 〈E〉 of each particle due to random thermal motions.

(a) What is the thermal energy density at the base of the Sun’s photosphere?
(b) What is the thermal energy density of the Earth’s atmosphere at sea level

(n = 2.5 × 1025 m−3 and T = 290 K)?

7.3 At what rate does the solar wind carry kinetic energy away from the Sun? Give
your result first in watts, then as a fraction of the Sun’s luminosity in photons,
L = 3.8 × 1026 W.

7.4 How many rotations (and how much time) does it take for the equatorial regions of
the Sun to “lap” the polar regions by one full rotation?
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7.5 The normal Zeeman effect splits a spectral line at frequency ν0 into three components:
a central line at ν0 and two satellite lines at ν0 ± eB/(4πme). By what amount (in
angstroms) are the satellite lines of the hydrogen Balmer α line (λ0 = 6562.81 Å)
split from the central component in a typical sunspot?

7.6 A solar flare erupts in a region where the average magnetic field strength is B = 0.03 T;
the flare releases an energy E = 2 × 1024 J.

(a) What was the magnetic energy density in the region prior to the eruption?
(b) What was the minimum volume V required to supply enough magnetic energy

to fuel the flare?
(c) If the volume V is spherical, what is its radius? Is this greater than or less than

the typical radius r ≈ 104 km of a sunspot?

7.7 If the entire photosphere of the Sun had B = 0.1 T, what would the Alfvén radius
of the Sun be? (Hint: assume the properties of the solar wind would be unchanged.)
What would be the timescale τ for the loss of the Sun’s angular momentum?

7.8 Vertical motions of gas in photospheric granules typically have speeds v ∼ 2 km s−1.

(a) What angular resolution (in arcseconds) is required to see an individual granule
in the Sun’s photosphere?

(b) Neutral sodium has a pair of absorption lines at rest wavelength λ0 = 5889.973 Å
and 5895.940 Å. What is the ratio of the thermal Doppler broadening of these
lines to the Doppler shift expected from the vertical motion of the granules?

7.9 Imagine a sphere of gas with a uniform number density n of gas particles; each
particle has a cross-section σ . Consider the optical depth τ along a path parallel to
a line through the sphere’s center, displaced from the center by some distance z.
Compute τ(z) for such paths, then compute dτ/dz. Explain, given this calculation,
why a gaseous sphere can appear to have a very sharp limb.



8 Overview of the
Solar System

Our aim over the next four chapters is to understand the basic characteristics of the solar
system, and to integrate this information into a self-consistent picture of how the solar
system formed and how it has evolved with time. Some basic facts should be kept in
mind as we pursue our goal:

. The Sun contains 99.8% of the mass in the solar system.

. Most of the remaining 0.2% of the mass is confined to a flattened disk. Within this
disk, all the planets revolve in the same direction, most (but not all) of the planets
rotate in the same direction, and all objects have similar ages (t ∼ 4.6 billion years,
when measurable).

Figure 8.1 shows a plot of mass versus orbital semimajor axis for the largest objects
known to be orbiting the Sun (in the case of the smaller objects, the mass is a rough
estimate). The eight largest objects orbiting the Sun have been given the collective name
planets. The rocky and metallic objects in the asteroid belt, lying primarily between
the planets Mars and Jupiter, are called asteroids; the largest asteroid, Ceres, is also a
dwarf planet, according to the definition approved by the International Astronomical
Union.1 The icy objects beyond the orbit of Neptune are called trans-Neptunian objects
(TNOs); many of the known TNOs are in a region just beyond Neptune called the Kuiper
belt. The largest known TNOs—Eris, Pluto, Haumea, and Makemake—are also dwarf
planets.

8.1 TWO TYPES OF PLANETS

The planets can be divided into two major types, or families, each named after their
largest member. The smaller terrestrial planets, named after the Earth (alias Terra), are
closer to the Sun; the larger Jovian planets, named after Jupiter (alias Jove), are farther

1 A dwarf planet must be large enough to be squeezed by its own self-gravity into a spherical shape, but not
large enough to be gravitationally dominant in the region near its orbit. We discuss the definition of “planet”
and “dwarf planet” in more detail in Section 11.2.

194
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FIGURE 8.1 Estimated mass (in units of the Earth’s mass) as a function of
semimajor axis for bodies orbiting the Sun. Planets are labeled with their initials.
(The dwarf planets Ceres, Pluto, Makemake, Haumea, and Eris are labeled with
lowercase initials.)

from the Sun.2 The characteristics of the two families are compared and contrasted in
Table 8.1.

Any useful theory for the origin of the solar system must explain the observed
differences between terrestrial and Jovian planets. In addition, the following questions
should be addressed:

. Why are planetary orbits nearly circular?

. What is the nature and origin of the small “debris,” such as comets and asteroids?

. What is the origin of the planetary satellites?

. Why are there differences in chemical composition among bodies in the solar
system?

2 The dwarf planets Ceres, Pluto, Makemake, Haumea, and Eris don’t fit into this scheme. Ceres resembles
the rocky satellites of the solar system, while Pluto resembles the icy satellites. The properties of Makemake,
Haumea, and Eris are as yet poorly known, but their high albedo, or reflectivity, indicates that they have icy
surfaces.
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TABLE 8.1 Characteristics of Planetary Types

Characteristic Terrestrial Jovian

Mass Low (≤ 1 M⊕) High (> 10 M⊕)

Composition Rocky/metallic Gaseous/icy

(ρ >∼ 3000 kg m−3) (ρ <∼ 2000 kg m−3)

Rotation Slow (P ≥ 24 hr) Fast (P < 18 hr)

Satellites Few Many

Distance from Sun a < 2 AU a > 5 AU

. Why are there rings around the Jovian planets (and not around the terrestrial
planets)?

. Why are the terrestrial planets chemically differentiated, with a rocky outer layer
wrapped around a metallic core?

We will first describe the physical characteristics of the constituents of the solar system,
introducing new physical concepts as necessary. We will then try to put these elements
into a single coherent picture of the solar system.

8.2 PHYSICAL PROPERTIES OF PLANETS

The masses of astronomical objects are measured by looking at how they accelerate
neighboring objects. It is particularly easy to measure the mass of a planet when it has
a nearby small satellite; in that case, it is a simple matter of applying Kepler’s third law
(equation 3.54):

Mplanet ≈ 4π2a3

GP 2
, (8.1)

where a and P are the semimajor axis and period of the satellite’s orbit. Planets that do
not have satellites (that is, Mercury and Venus) pose a more difficult problem. Before the
advent of interplanetary space probes, the masses of Venus and Mercury were determined
from their (tiny) perturbations to the orbits of other planets. Much more accurate masses
are now available from space probes that have flown by them or orbited them.

The radius R of a planet is computed from its measured angular radius and its
distance.3 The mean density can then be computed from the known radius and mass:

ρ = 3M

4πR3
. (8.2)

Densities of ρ ∼ 700 → 2000 kg m−3 are typical of Jovian planets, indicating a com-
position that is mostly gas or ice, where “ice,” in the language of astronomers, can

3 Distances within the solar system can be measured accurately using radar, as described in Section 13.1.



8.2 Physical Properties of Planets 197

refer to frozen water, but also to frozen carbon dioxide (“dry ice”), frozen methane,
and frozen ammonia. The lowest-density Jovian planet, Saturn, has a mean density
ρ ≈ 710 kg m−3, which is less than that of water (ρ = 1000 kg m−3).4 Densities of
ρ ∼ 3000 → 5500 kg m−3 are typical of terrestrial planets, indicating a composition that
is mostly rock and metal.

The surface temperature T of objects in the solar system depends on a number of
factors. Since the Sun is an important source of energy, the temperature of an object
depends on its distance from the Sun and on its albedo, or reflectivity.5 However, the
surface temperature also depends on whether the object has any internal heat sources,
and whether it has an atmosphere that can act as an insulating blanket wrapped around
its surface.

The Sun, to a rough approximation, radiates like a blackbody. The Sun’s luminosity
is thus

L = 4πR2
σSBT 4

, (8.3)

where the Sun’s effective temperature is T ≈ 5800 K. It was left as an exercise in
Chapter 5 (Problem 5.6) to show that the peak of the Planck function Iλ occurs at a
wavelength

λp ≈ 0.20
hc

kT
≈ 2.9 × 107 Å K

T
≈ 2900 μm K

T
, (8.4)

a relation that is known as Wien’s law, after the physicist who discovered it empirically.
For T ≈ 5800 K, λp ≈ 5000 Å, so the solar spectrum, expressed in terms of wavelength,
peaks in the visible part of the spectrum.

The flux of energy received by a planet at a distance r from the Sun is

F(r) = L
4πr2

. (8.5)

The energy that the planet absorbs per second is the flux F times the cross-section of the
planet (πR2) times the fraction of the incident light that is absorbed rather than reflected.
Since the albedo A of the planet is the fraction of the light energy that is reflected, the
fraction that is absorbed is 1 − A. Thus, the rate at which the planet absorbs energy is

Wp =
(

L
4πr2

)
(πR2)(1 − A). (8.6)

The energy absorbed by the planet will raise its surface temperature to some value Tp. If
we approximate the planet as a blackbody, it will radiate energy at a rate

Lp = 4πR2σSBT 4
p , (8.7)

assuming a uniform surface temperature Tp for the planet.

4 The standard Bad Astronomical Joke is that Saturn would float in a large enough bathtub . . . but that it would
leave a ring behind.
5 The word “albedo” comes from the Latin word albus, meaning “white.” A white object has a high albedo
since it reflects most of the light that strikes it; a black object has a low albedo.
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When the planet is in equilibrium, the rate at which energy is emitted by the planet,
Lp, is equal to the rate at which energy is absorbed by the planet, Wp. In equilibrium,
then,

4πR2σSBT 4
p = L

4πr2
πR2(1 − A). (8.8)

Solving for the equilibrium surface temperature Tp, we find

Tp =
(

R
r

)1/2 (
1 − A

4

)1/4

T. (8.9)

Inserting numerical values for R and T, and expressing the distance from the Sun in
astronomical units, we find

Tp ≈ 279 K(1 − A)1/4
(

r

1 AU

)−1/2

. (8.10)

If the object being heated by the Sun is a blackbody, then A = 0 and

Tbb ≈ 279 K

(
r

1 AU

)−1/2

, (8.11)

which is the equilibrium blackbody temperature for a spherical blackbody of uniform
temperature at a distance r from the Sun.

The assumption of uniform surface temperature Tp is a good approximation for a
planet that is rotating rapidly, like a chicken on a spit, or has efficient atmospheric
circulation. However, we should also consider the case of a planet that is rotating slowly
and is not a good conductor of heat. In that case, the energy that is absorbed by a small
patch of area � must be re-radiated by the same patch. The equilibrium condition then
becomes

�σSBT 4
p = L

4πr2
�(1 − A), (8.12)

where Tp is now the temperature of a small patch on the planet’s surface for which the
Sun is at the zenith. Solving for Tp, the equilibrium temperature of this patch, we find

Tp =
(

R
r

)1/2

(1 − A)1/4T, (8.13)

or

Tp ≈ 395 K(1 − A)1/4
(

r

1 AU

)−1/2

. (8.14)

If the slowly rotating body is a blackbody, with A = 0, then the resulting temperature is
the subsolar blackbody temperature

Tss ≈ 395 K

(
r

1 AU

)−1/2

, (8.15)



8.2 Physical Properties of Planets 199

TABLE 8.2 Planetary Albedos

Rocky Surfaces Mercury 0.06

Moon 0.07

Mars 0.16

Complex Mix Earth 0.40

Gases and Ices Saturn 0.50

Jupiter 0.51

Neptune 0.62

Uranus 0.66

Venus 0.76

TABLE 8.3 Computed vs. Observed Temperatures

r Uniform Tp Slow Rotator

Planet Albedo (AU) Tbb(1 − A)1/4 Tss(1 − A)1/4 Tobs

Venus 0.76 0.72 230 K 325 K 740 K

Earth ∼ 0.4 1 246 K 347 K 290 K

Neptune 0.62 30.1 40 K 57 K 59 K

which represents the highest temperature a body can reach at a distance r from the Sun,
if sunlight is the only source of heat.

Real objects within the solar system are neither perfectly white (A = 1) nor perfectly
black (A = 0). Strictly speaking, the albedo is a function of wavelength; however, within
the solar system, it’s a reasonable approximation to use the albedo at visible wavelengths,
since that’s where most of the Sun’s radiated energy is located. Table 8.2 summarizes
the approximate albedos of several solar system objects, listed from darkest to brightest.
The Earth, thanks to its changing cloud cover, has a highly variable albedo, ranging from
a low of A ≈ 0.3 to a high of A ≈ 0.5.

In Table 8.3, we give the computed surface temperatures, Tp, for a sample of three
planets; we give both the case of uniform temperature and that of slow rotation. For
purposes of comparison, we also give the average observed temperature, Tobs, for each
of these planets. Naı̈vely, we would expect all these planets to approximate the “uniform
temperature” case: the Earth and Neptune are rapid rotators, and although Venus is a
slow rotator, it has a dense atmosphere with global mixing. We see, however, that all the
planets are warmer than expected. Neptune is warmer than expected because, like all the
Jovian planets, it started its existence much hotter than it is today and has not had time
to radiate away all its internal heat. Both the Earth and Venus are warmer than expected
because of the greenhouse effect.
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The greenhouse effect occurs when a planet’s atmosphere is transparent at visible
wavelengths but opaque at infrared wavelengths. To see why that influences temperature
at the planet’s surface, consider the energy radiated by the warm surface. For the Earth,
with Tp ≈ 290 K, the Planck spectrum peaks at λp ≈ 10 μm. For Venus, with Tp ≈ 740 K,
the peak is at λp ≈ 4 μm. These wavelengths are in the infrared range of the spectrum. If
the atmosphere is opaque at infrared wavelengths, the radiated light will not freely escape
from the atmosphere. Instead, it will be absorbed and re-radiated, until the light energy
makes its way to the upper atmosphere, where the optical depth at infrared wavelengths
drops to τ ∼ 1. Then, at last, the light can escape. Thus, the photosphere of the Earth and
Venus—the layer from which their radiated infrared light escapes—is higher than, and
cooler than, the solid surface of the planet. Naturally occurring greenhouse gases include
water vapor (H2O), carbon dioxide (CO2), and methane (CH4). The greenhouse effect
is particularly strong on Venus because its dense atmosphere is roughly 95% carbon
dioxide.

The flux of light we observe from a planet depends on wavelength. Consider, as
an example, the planet Neptune, with a measured temperature of T = 59 K. Using
Wien’s law (equation 8.4), its spectrum should peak at a wavelength λp = 50 μm, in
the far infrared. The light we see from Neptune at visible wavelengths is reflected
sunlight, modified by absorption in the atmosphere of Neptune. (Uranus and Neptune
both appear bluer than the Sun at visible wavelengths, as shown in Color Figure 5,
because their atmospheres contain methane, which strongly absorbs red wavelengths
of light.) The spectrum of a planet can thus be roughly approximated as the sum of
two blackbody spectra. One spectrum is that of reflected sunlight, containing both the
Fraunhofer absorption lines of sunlight and any absorption lines contributed by the
planet itself. The other spectrum is that of the planet’s thermal emission. The reflected
sunlight has an integrated energy proportional to the albedo A; the thermal emission
has an energy proportional to 1 − A (plus any internal source of energy). For instance,
Figure 8.2 shows the spectrum of Mars at UV, visible, and IR wavelengths. Iron oxide
in the soil of Mars strongly absorbs blue light and thus makes Mars appear reddish at
visible wavelengths (in other words, Mars looks red because it’s rusty). The thermal
emission peaks at λp ∼ 13 μm, corresponding to a temperature T ∼ 225 K ∼ −48◦C,
about average for Mars.

An underlying reason for many of the observed differences between terrestrial and
Jovian planets is that the Jovian planets have a chemical composition that closely
resembles that of the Sun; that is, they are mostly hydrogen and helium. The terrestrial
planets are deficient in hydrogen and helium because they are too hot to retain such light
elements.

Let’s consider the conditions under which planets can retain different atmospheric
gases. The hotter a planet’s atmosphere, the higher the random thermal speeds of the
individual gas particles. In a dense atmosphere, though, any individual particle will travel
only a short distance before colliding with another particle and changing its velocity. In
the Earth’s atmosphere at sea level, for instance, we computed the mean free path of a
typical molecule to be only ∼ 400 Å (see equation 5.67). However, at higher levels in
the atmosphere, the density of molecules decreases, and the mean free path therefore
increases. At some height in the atmosphere, the mean free path increases to the point
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FIGURE 8.2 The spectrum of Mars at ultraviolet, visible, and infrared wave-
lengths. The peak on the left is reflected sunlight; the peak on the right is thermal
emission at T ∼ 225 K, the temperature of the surface of Mars.

where a gas particle moving upward faster than the escape speed is able to escape from
the atmosphere before colliding with another particle. This height is called the exobase,
and the layer of the atmosphere above the exobase is called the exosphere.

To compute where the exobase lies, let’s assume that gas particles in the atmosphere
have an average cross-section σ for collisions. (For small molecules, like N2, O2, and
CO2, we expect σ ∼ 10−18 m2.) The number density of gas particles in the atmosphere is
n(z), where z is the height above the planet’s surface, or above some convenient reference
level, if the planet has no solid or liquid surface. The height zex of the exobase is given
by the relation ∫ ∞

zex

σn(z)dz = σN(zex) = 1. (8.16)

Here N(zex) is the column density of gas particles above the exobase. Thus, for typical
molecule sizes, the exobase is located where the column density falls to N ∼ 1/σ ∼
1018 m−2. In the Earth’s atmosphere, the exobase is at a height zex ∼ 500 km above sea
level.

At the exobase, the rms speed of gas particles with mass m will be

vrms =
(

3kTex

m

)1/2

, (8.17)

where Tex is the temperature at the exobase. We can compare this to the escape speed at
the distance Rex of the exobase from the planet’s center:

vesc =
(

2GM

Rex

)1/2

, (8.18)

where M is the planet’s mass. If the typical particle speed vrms is comparable to the escape
speed, the atmosphere quickly escapes. Even if vrms < vesc, there will be some fraction
of particles in the high-speed exponential tail of the Maxwell–Boltzmann distribution
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(equation 5.40) that will exceed the escape speed. A useful rule of thumb6 is that for a
planet to retain a particular gas in its atmosphere for the age of the solar system, the
particles of the gas must have vrms

<∼ vesc/6. Squaring both sides, we can write this
condition as

v2
rms

<∼ 1

36
v2

esc

3kTex

m
<∼ GM

18Rex
. (8.19)

In other words, retaining gas particles of mass m requires a temperature

Tex
<∼ GMm

54kRex
. (8.20)

It is useful to scale this result to the Earth’s mass, M� = 5.97 × 1024 kg, and the Earth’s
radius, R� = 6.37 × 106 m, while expressing the particle mass in terms of the molecular
mass μ = m/mp. With this scaling,

Tex
<∼

mp

54k
μgRex (8.21)

<∼ 140 K

(
M

M⊕

) (
Rex

R⊕

)−1

μ. (8.22)

For a planet with exobase temperature Tex, we can write the condition for retaining a gas
in the form

μ >∼ 54kTex

gRexmp

. (8.23)

The Earth’s exobase has a higher temperature than the atmosphere at sea level, because
the upper atmosphere is heated by interactions with high-energy solar wind particles;
during daytime, the exobase temperature is Tex,⊕ ≈ 1000 K. Scaling to the temperature
of the Earth’s exobase, we find that the condition for retaining a gas is

μ >∼ 7.1

(
Tex

1000 K

) (
M

M⊕

)−1 (
Rex

R⊕

)
. (8.24)

Thus, the Earth, where Rex = 1.08R⊕, can retain gases with μ >∼ 8; H2 (μ = 2) and
He (μ = 4) can escape, but N2 (μ = 28), O2 (μ = 32), and CO2 (μ = 44) are retained.
However, let’s now look at the planet Mercury, which has so few molecules in its
atmosphere that its exobase is located at its solid surface. The mass and radius of Mercury
are M = 0.055M⊕ and radius R = 0.38R⊕, and the daytime temperature is T = 700 K.

6 The phrase “rule of thumb” apparently derives from brewers who estimated the temperature of their mash by
sticking in their thumb. Hence, it means an approximate (as opposed to precise) guideline.
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Thus, during daytime on Mercury, the retention condition for gas particles is

μMerc
>∼ 7.1 . 0.7 . 0.38

0.055
≈ 34. (8.25)

Thus, Mercury would be able to retain only highly massive molecules in its atmosphere.

8.3 FORMATION OF THE SOLAR SYSTEM

In this section, we give a broad overview of current ideas about how the solar system
formed. We return to this topic in Chapter 12 and fill in some of the details.

The modern view of planetary formation is that it is a natural consequence of star
formation. Put simply, formation of planets is a way for a collapsing gas cloud to rid itself
of angular momentum so that it can shrink to the size of a star. Star formation occurs
when a large gas cloud collapses under its own gravity; since this can happen only if the
self-gravity exceeds the support provided by gas pressure, star formation occurs only in
dense, cold (T <∼ 10 K) regions of interstellar gas. If the collapsing gas cloud has a net
angular momentum, it will collapse until it forms a rotationally supported disk. The dense
central region of the disk ultimately becomes a star, while smaller condensations that
occur within the disk ultimately grow into planets. Such rotationally supported, dusty,
gaseous disks, called protoplanetary disks, are seen around young stars in our galaxy.
For instance, Figure 8.3 shows a protoplanetary disk in the Orion Nebula. The edge-on
protoplanetary disk resembles an edge-on hamburger: the dark “patty” represents a thin,
dust-rich disk, and the bright “buns” consist of light from the central protostar scattered
by a more diffuse distribution of dust.

The first step in planet formation is condensation, the formation of solid particles
within the gaseous disk as it cools. Different materials condense into solids at different
temperatures; metals condense at high temperatures, rocky materials at intermediate
temperatures, and ices at low temperatures. Materials that condense into a solid (or liquid)

FIGURE 8.3 An image, taken at λ ≈ 2 μm, of the edge-on protoplanetary disk
Orion 114-426. The size of the region shown is 1300 AU by 800 AU.
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TABLE 8.4 Simplified Condensation Sequence

T (K) Condensate Planet

1500 Metal oxides Mercury

1300 Fe, Ni

1200 Silicates

700 FeS (iron sulfide) Venus

200 H2O Earth, Mars

150 NH3 Jovian planets

120 CH4 Pluto, Eris

65 Ar, Ne

only at very low temperatures are called volatile materials.7 The gaseous disk from which
the planets ultimately form is hottest at the center, where the protosun is located, and
becomes cooler with increasing distance. In the central parts of the protoplanetary disk,
only the most refractory materials can condense to form solid particles; a refractory
material is one that condenses into a solid (or liquid) at relatively high temperatures.
In the outer parts of the disk, by contrast, the temperature is sufficiently low that even
volatile materials can condense. Table 8.4 gives approximate condensation temperatures
for different substances; the right-hand column lists the planets that will ultimately form
at the given temperature.

Condensation, more specifically, is the process by which solids grow molecule by
molecule, as individual molecules (or atoms) adhere to the solid body. As an example,
snowflakes grow by condensation. Eventually, however, the major mode of growth
switches over from condensation to accretion, in which solid condensates come together
and are held together by weak electrical forces. For instance, individual snowflakes can
accrete together to form a snowball.8 In the early solar system, the collisions between
individual condensates, or “snowflakes,” are gentle, since they are on similar orbits.
Objects grow by accretion until they are roughly 1 km across; these intermediate-sized
bodies are known as planetesimals.9 Near the Sun, planetesimals are made of the least
volatile materials: metal oxides and metals. Farther from the Sun, where the temperatures
are cooler, the planetesimals are made of a mix of materials with different degrees of
volatility.

Eventually, planetesimals are drawn toward each other by gravity and merge to form
larger bodies; this process is known as coalescence. Since only the least volatile materials
can condense close to the Sun, the planets built up by coalescence within 1.5 AU of the
Sun are rich in low-volatility elements, even though such elements are relatively rare

7 The adjective “volatile” comes from the Latin word volare, meaning “to fly.” A volatile solid is one in whose
atoms fly apart to form a gas at a low temperature.
8 In other subfields of astronomy, “accretion” can refer to a flow of gas onto a compact object such as a black
hole. Such dual definitions are annoying, but it’s hard to change entrenched usage.
9 “Planetesimal” = “planet” + “infinitesimal.” It’s a portmanteau word, as Lewis Carroll would say.
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TABLE 8.5 Uncompressed Densities of Terrestrial Planets

Planet Density ( kg m−3)

Mercury 5400

Venus 4200

Earth 4200

Mars 3300

in the universe at large. These metal-rich and silicate-rich bodies close to the Sun are
the terrestrial planets. Since materials with low volatility tend to be dense, the terrestrial
planets all have high densities. Table 8.5 lists the uncompressed densities of the terrestrial
planets; in other words, this is the density the planet would have if it were not squeezed
to a smaller volume and higher density by its own gravity.10 Note that the uncompressed
density of the terrestrial planets decreases with increasing distance from the Sun. (It is
interesting, however, that the uncompressed density of the Moon is only 3350 kg m−3,
much less than the Earth’s uncompressed density, despite the fact that they are at the same
distance from the Sun. The unexpectedly low density of the Moon is a consequence of
its unique formation history, discussed in Section 9.5.)

In the outer part of the protoplanetary disk, containing planetesimals of both high-
volatility and low-volatility materials, larger bodies are able to form. Once these “proto-
planets” reach a mass of M ∼ 15M⊕, they are massive enough, given the lower temper-
atures in the outer disk, to retain hydrogen and helium. Since hydrogen and helium are
the most abundant elements, being able to hang onto them permits the Jovian planets to
grow to much larger masses than the terrestrial planets.

Protoplanets grow gradually by the coalescence of planetesimals until they reach the
masses of the planets as we know them today. During and immediately following this
early phase of coalescence, the interior and surface structure of terrestrial planets are
changed by several processes, among them chemical differentiation, cratering, volcanic
flooding, and slower processes of surface evolution.

Chemical differentiation is the process by which dense elements sink to the cen-
ter of terrestrial planets while the lower-density elements float up to the surface. Since
planets form by a jumbled coalescence of planetesimals of differing chemical compo-
sition, we might expect that planets would show the same jumble at their center as at
their surface. However, study of the interiors of terrestrial planets shows that they are
chemically differentiated; that is, their chemical composition varies with distance from
the center. The cores of terrestrial planets are rich in dense elements like iron and nickel,
with uncompressed densities of 8000 → 9000 kg m−3. However, their outer layers are
primarily made of silicate rocks, with typical uncompressed densities of ∼ 3000 kg m−3.

10 The Earth is the most massive terrestrial planet and has the greatest gravitational compression. The mea-
sured mean density of the Earth is ρ⊕ = 5500 kg m−3, significantly higher than its uncompressed density of
4200 kg m−3.
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FIGURE 8.4 Mercury as imaged by the MESSENGER spacecraft.

Differentiation occurs naturally in a fluid body; the denser material sinks while the lower-
density material rises to the top. The fact that terrestrial planets are differentiated is an
indication that they were once hot enough to be fully molten. In the Earth, the radioactive
decay of elements such as uranium, thorium, and potassium-40 releases enough heat to
melt iron. The iron, as it sinks toward the Earth’s center, converts gravitational potential
energy into heat, leading to an “iron catastrophe,” that is, a runaway heating process that
doesn’t cease until the interior is highly differentiated.

Cratering begins as the newly formed planets sweep up the remaining planetesimals.
The process of cratering modifies the outer crust of the terrestrial planets. For instance,
cratering has given Mercury (Figure 8.4) its characteristically pock-marked appearance.
Cratering was an important process until about 3.3 billion years ago; at that time, the
early “period of heavy bombardment” ended because the planetestimals and other small
objects had been largely cleared out of the inner solar system.

Volcanic flooding of planetary surfaces occurred at the same time as cratering.
Fracturing a planet’s crust by large impacts leads to flooding of the surface by lava welling
up from below. This obliterates the older surface features; craters are paved over by lava,
just as old potholes in a road are paved over by a new layer of asphalt. Surface features on
a terrestrial planet can also be worn away by slower processes, such as erosion by wind
and water. At the same time, surface features can be built up by other slow processes,
such as plate tectonics and volcanism. On a geologically active body such as the Earth,
surface features are in a constant state of flux.

The surface of a terrestrial planet can change with time; so can its atmosphere. The
primeval atmosphere of a planet is whatever is left behind by the formation process. The
atmospheres of terrestrial planets evolve for several reasons:

1. Gases can escape from planets if the individual gas particles are moving sufficiently
rapidly, as discussed in Section 8.2. Planets with cooler temperatures and higher
surface gravity will retain more of their primeval atmosphere.
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2. Outgassing from the planet’s interior releases gases that were trapped in the
interior during the formation process. These planetary belches occur as part of
the differentiation process and continue through ongoing volcanic activity.

3. Chemical interactions between the atmosphere and the surface can alter the at-
mosphere’s composition. For instance, the interaction of gaseous CO2 with liquid
water removed most of the CO2 from the Earth’s atmosphere and dissolved it in
the Earth’s oceans.

The mechanism by which planetary magnetic fields are generated is poorly under-
stood. In general terms, it is thought to result from dynamo action in the planetary core;
hot, partially ionized matter wells up by convection in planetary interiors and is deflected
by the Coriolis effect. Our expectation, then, is that larger magnetic fields will be found to
be associated with larger bodies (which will have larger liquid cores) and faster rotators
(which will have a larger Coriolis effect). In fact, as we will see, the planet Jupiter, which
is both the largest and the fastest rotating planet in the solar system, has the strongest
magnetic field.

PROBLEMS

8.1 What is the mean mass density ρ of Saturn’s largest satellite, Titan? What does this
suggest about the composition of Titan?

8.2 Radioactive decay of elements in the Earth’s interior results in a mean heat flux
through the Earth’s surface of 5 × 10−2 W m−2. What is this flux expressed as a
fraction of the energy flux due to thermal re-radiation of absorbed solar energy? If
radioactive decay were the only heat source for the Earth, what would the Earth’s
surface temperature be?

8.3 Mercury has an orbit with semimajor axis a = 0.387 AU and eccentricity e = 0.206.
Mercury is a slowly rotating planet with no atmosphere. What is the temperature of
the subsolar point on Mercury at aphelion? What is the temperature of the subsolar
point on Mercury at perihelion? (The “subsolar point” is the location on the planet’s
surface where the Sun is at the zenith.)

8.4 Pure, solid water ice has an albedo A ≈ 0.35. What is the minimum distance from the
Sun at which a rapidly rotating ice cube would remain frozen? Between which two
planets does this distance lie?

8.5 Suppose that Uranus were moved to the location of Jupiter; would Uranus then retain
its hydrogen-rich atmosphere?
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8.6 Because Venus has a very feeble magnetic field, the solar wind collides with its
atmosphere, instead of being deflected by magnetic forces. Suppose that if a solar
wind particle strikes the atmosphere of Venus, all its kinetic energy will be absorbed.

(a) What is the rate, in watts, at which Venus absorbs energy from the solar wind?
Assume that the energy density of the solar wind is

ρv2/2 = 2 × 10−9 J m−3,

and that the solar wind speed is v = 400 km s−1.
(b) What is the rate, in watts, at which Venus absorbs energy from sunlight? Is the

solar wind a significant heat source for Venus?

8.7 Jupiter’s moon Callisto is slowly rotating and has a low albedo (A ≈ 0.2). What is
the temperature of Callisto’s subsolar point? Would you expect Callisto to retain an
atmosphere of N2? What about an atmosphere of He? (Hint: you may assume that the
exobase lies at the surface of Callisto.)



9 Earth and Moon

In this chapter, we will concentrate on the large-scale characteristics of the Earth (the
planet about which we have the most information) and the Moon (the satellite about
which we have the most information). We will later use our knowledge of the Earth and
Moon for purposes of comparison to other terrestrial planets and rocky satellites.

9.1 THE EARTH’S INTERIOR

The interior of the Earth is highly differentiated, with the densest material in the center.
The layers into which the Earth is divided are shown in Figure 9.1. The Earth has a central
core, made primarily of iron and nickel, with a radius of ∼ 3500 km. The core is further
divided into a solid inner core, of radius ∼ 1300 km, and a liquid outer core, of thickness
∼ 2200 km. The core, which contributes only 16% of the Earth’s volume, provides 31%
of its mass. The core is surrounded by a rocky mantle of thickness ∼ 2900 km. Atop
the mantle is a thin crust, which is on average ∼ 30 km thick. The crust differs from the
mantle in its chemical composition; the rocks making up the crust are poorer in heavy
elements like iron, and richer in light elements like silicon and aluminum. Above the
crust is the gaseous atmosphere.

The deepest holes drilled by humans have reached only 12 km into the crust. Thus,
we are forced to infer the properties of the mantle and core from indirect means. The
most fruitful method for studying the Earth’s interior is the analysis of seismic waves. A
seismic wave is a disturbance, usually generated by an earthquake, that travels through
the Earth’s interior. There are two main types of seismic wave, as illustrated in Figure 9.2.
P-waves, or pressure waves, are compressional waves; they are regions of alternating
high and low pressure traveling through the Earth. Individual particles move back and
forth in a direction parallel to the direction of wave propagation. In short, a P-wave is
a sound wave.1 By contrast, S-waves, or shear waves, are transverse waves; that is, the
individual particles move back and forth in a direction perpendicular to the direction of
wave propagation. S-waves are thus analogous to the waves that travel along a rope when
you wiggle one end back and forth.

1 Most P-waves, however, have a frequency <∼ 20 Hz, in the “infrasound” range that human ears cannot detect.

209
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Inner core (1300 km)

Outer core (2250 km)

Mantle (2900 km)

Crust (8–40 km)

FIGURE 9.1 The differentiated structure of the Earth: inner core, outer core,
mantle, and crust.

When an earthquake occurs, most of the energy is released within a small region
known as the hypocenter of the earthquake.2 Both P-waves and S-waves radiate away
from the hypocenter; however, the speed of P-waves is greater. As a consequence, by
measuring the time elapsed between the arrival of P-waves and S-waves at a given seis-
mometer, geologists can compute the distance from the seismometer to the hypocenter.3

With data from multiple observers, the position of the hypocenter can be uniquely trian-
gulated.

Computing the position of the hypocenter is complicated by the fact that seismic
waves, as illustrated in Figure 9.3, do not generally travel along straight lines. As you
go deeper into the Earth’s interior, the pressure increases, and the rock and metal is
squeezed until it is very stiff.4 Seismic waves travel more rapidly through a stiffer
medium; the increasing wave speed with increasing depth causes seismic waves to be
refracted upward.

Observations of seismic waves indicate that S-waves are detected only within 103◦
of the epicenter. At a greater distance from the epicenter, S-waves are not seen, because
they cannot travel through the Earth’s liquid outer core. In addition, no direct P-waves
are detected between 103◦ and 142◦ of the epicenter, as shown in Figure 9.3. This is

2 The epicenter is the point on the Earth’s surface directly above the hypocenter. Since most people live on the
Earth’s surface, rather than burrowed underground, they are more concerned with where the epicenter is than
where the hypocenter is.
3 In fact, the terms “P-wave” and “S-wave” are short for primary wave and secondary wave (not pressure wave
and shear wave), acknowledging the order in which they reach seismometers.
4 In the jargon of materials scientists, the “bulk modulus” and “shear modulus” increase with increasing depth
in the Earth.
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FIGURE 9.2 Seismic waves can be either compressional P-waves (a) or transverse
S-waves (b).
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FIGURE 9.3 The propagation of seismic waves through the Earth’s interior. Note
that S-waves cannot travel through the liquid outer core. All seismic waves are
refracted as they move to stiffer material at greater depth.

the result of the increase in refraction as the P-waves travel from the mantle to the outer
core. Finally, P-waves arriving at the antipodal point to the epicenter arrive slightly earlier
than they would if the core were entirely liquid; this indicates that P-waves that travel
through the center of the Earth are speeded up as they pass through a solid inner core.
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These observations lead us to conclude that the Earth has a liquid outer core and solid
inner core.

The solid surface of the Earth, known as the lithosphere, consists of the solid crust
plus the upper solid part of the mantle, down to a depth of ∼ 100 km. The lithosphere is
fragmented into roughly a dozen plates that move quasi-rigidly, floating on the partially
molten upper mantle, a region known as the asthenosphere.5 Plate tectonics, the relative
motion and interaction of these plates, accounts for many earthquakes and drives the
formation of many geological features. For instance, rift zones are regions where plates
are moving away from each other. This allows molten rock to rise upward from the
mantle and cool to form a new solid surface. The Mid-Atlantic Ridge, where the North
American and Eurasian plates are moving apart from each other, is an example of a rift
zone. Iceland, which straddles the Mid-Atlantic Ridge, is noted for its extreme volcanic
activity.6 By contrast, subduction zones are regions where plates are moving toward
each other, with one plate being driven underneath the other. The friction between the
plates results in partial melting of the lithosphere, and an abundance of volcanic activity.
Plate tectonics and volcanism are constantly renewing the surface of the Earth, which
has the youngest surface of any of the terrestrial planets.

The Earth’s core is at a temperature of T ∼ 5000 K; because metals are good con-
ductors of heat, the temperature within the core is nearly constant with radius. This
high temperature is maintained by the radioactive decay of unstable elements such as
uranium-238, thorium-232, and potassium-40, which have half-lives of approximately
109 yr. Within the outer core, the temperature of T ∼ 5000 K is sufficient to keep the
iron and nickel liquid; however, the higher pressures in the inner core force the iron and
nickel into a solid form.

The measured geothermal heat flux through the surface of the Earth is Fgeo ≈ 5 ×
10−2 W m−2, on average (although it’s much higher in Iceland). Thus, the rate at which
the Earth is radiating away its internal energy is

dE

dt
= 4πR2

⊕Fgeo ≈ 2.6 × 1013 W. (9.1)

For purposes of comparison, the average power consumption by the world’s human
population is ∼ 1.4 × 1013 W. The stored thermal energy of the Earth can be estimated
from the energy per atom (E = 3kT for solids), divided by the mass per atom (about
m ≈ 40mp for the mix of elements in the Earth), multiplied by the mass of the Earth:

Etherm ≈ 3kT

40mp

M⊕ ≈ 1.1 × 1031 J, (9.2)

5 The term “asthenosphere” is derived from the Greek word asthenes, meaning “not strong.” The asthenosphere
is softened by heat to the point where it flows like a thick liquid when subjected to a gradual shear but still
behaves like a solid when subjected to a sharp blow. (Silly Putty® behaves in much the same way; if you hit a
lump of Silly Putty with a hammer, it will fracture instead of flowing.)
6 As a consolation for the possibility of being inundated with lava, the inhabitants of Iceland get more than
half of their energy needs from geothermal sources.
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where we have estimated the current average temperature of the Earth’s interior to be
T ≈ 3000 K. Thus, even if radioactive decay stopped altogether, it would take a long
time for the Earth to cool down; the cooling time would be

τ = Etherm

dE/dt
≈ 1.1 × 1031 J

2.6 × 1013 J s−1

≈ 4.2 × 1017 s ≈ 1.4 × 1010 yr. (9.3)

This is larger than the age of the Earth, t⊕ ≈ 4.6 × 109 yr. Thus, the Earth is geologically
active, and it will remain so for billions of years.

9.2 THE EARTH’S ATMOSPHERE

The Earth’s atmosphere has evolved through a number of stages. The primeval atmo-
sphere of the Earth was comprised mostly of hydrogen, helium, methane, and ammonia
accumulated during formation. The hydrogen and helium were rapidly lost (as described
in Section 8.2). Other compounds left over from the primeval atmosphere, such as
methane and ammonia, were dissociated by solar ultraviolet radiation, since there was
not yet an ozone layer to absorb the UV light. A secondary atmosphere was formed by
outgassing; gas that had been trapped in the Earth’s interior was released when the liquid
Earth differentiated. The secondary atmosphere consisted largely of CO2 and H2O. The
CO2 dissolved in the early oceans, then reacted with other dissolved substances to form
solid carbonates such as CaCO3 (calcium carbonate), which then precipitated out. The
loss of carbon dioxide meant that the atmosphere then consisted mostly of less reactive
molecules such as N2.

Something interesting happened on Earth some 3 billion years ago; the first life-forms
appeared. Cyanobacteria (blue-green algae) began producing energy by photosynthesis,
which creates molecular oxygen (O2) as a byproduct. Oxygen is highly reactive; it
combines with carbon and hydrogen in the process we know as “burning,” and with iron
in the process we know as “rusting.” The only reason the Earth’s atmosphere contains
a large fraction of oxygen today is that the oxygen is being constantly replenished by
green plants and other photosynthetic organisms. The current composition of the Earth’s
atmosphere is given in Table 9.1. The contribution of water vapor is omitted in the table,
since it is highly variable. The fraction of atmospheric mass contributed by H2O varies
from less than 0.01% at the south pole during winter to more than 3% in the tropics
during the rainy season.

The dense body of the Earth exerts a gravitational force on the Earth’s atmosphere; the
atmosphere is stabilized against gravitational collapse, however, by a pressure gradient.
Consider, as shown in Figure 9.4, a small cylindrical portion of the Earth’s atmosphere,
oriented so that the faces of the cylinder are perpendicular to the gravitational force 	Fgrav.
Now let’s examine the vector sum of the forces applied to the cylindrical volume element
of area A and thickness �r . Gas pressure pushes on both the top and bottom faces of
the cylinder; the pressure pushing the bottom face upward is P and the pressure pushing
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TABLE 9.1 Composition of the Earth’s Present Atmosphere (Dry Air)

Fraction Fraction
(by mass) (by no. of molecules) Species

75.5% 78.1% N2 (molecular nitrogen)

23.1% 20.9% O2 (molecular oxygen)

1.3% 0.93% Ar (argon)

0.05% 0.04% CO2 (carbon dioxide)

trace trace Ne, He, CH4, Kr (neon, helium, methane, krypton)

Fgrav

A

P

P + ΔP

Δr

FIGURE 9.4 A small volume of gas is in hydrostatic equilibrium if the differential
gas pressure balances the gravitational force.

the top face downward is P + �P . The net force on the volume element in the vertical
direction is then

Fpres = A[P − (P + �P)]. (9.4)

Note that we have chosen our sign convention so that a positive force is acting in the
upward direction. The mass of the volume element is its mass density ρ times its volume
A�r; thus, the gravitational force acting on the volume element is

Fgrav = −GMrρA�r

r2
, (9.5)

where Mr is the mass enclosed within a sphere of radius r centered on the Earth’s center.
Since the mass of the atmosphere is negligible compared to the mass of the solid Earth,
Mr = M⊕. In equilibrium, the atmosphere is neither expanding upward nor contracting
downward. This requires that the sum of the differential pressure force (equation 9.4)
and the gravitational force (equation 9.5) be zero:

A[P − (P + �P)] − GMrρA�r

r2
= 0, (9.6)
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or

�P = −GMrρ

r2
�r. (9.7)

In the limit that the cylinder becomes infinitesimally thin (�r → 0), this becomes the
differential equation

dP

dr
= −GMrρ

r2
. (9.8)

Equation (9.8) is the equation of hydrostatic equilibrium for a spherically symmetric
body. This equation holds true for any spherical object supported by its internal pressure.
It is, for instance, one of the key equations that describe the structure of stars (as discussed
in Sections 14.1 and 15.1).

The equation of hydrostatic equilibrium is particularly simple when the pressure is
described by the ideal gas law, as it is in the atmospheres of planets and all throughout
the Sun. The ideal gas law (equation 7.16) states that

P = ρkT

μmp

, (9.9)

where μ is the mean molecular mass of the gas particles. Inserting this into equation (9.8),
we find that

dP

dr
= −GMr

r2
ρ = −GMr

r2

μmp

kT
P, (9.10)

or

dP

P
= −GMrμmp

kT

dr

r2
. (9.11)

Since the gravitational acceleration at a radius r is g = GMr/r2, we can write the
equation of hydrostatic equilibrium for an ideal gas as

dP

P
= −gμmp

kT
dr. (9.12)

In general, the acceleration g, the mean molecular mass μ, and the temperature T

are all functions of r . However, the atmosphere of the Earth (and the other terrestrial
planets) is thin compared to the radius of the planet. Thus, as a first approximation, we
may assume that g, μ, and T are constant throughout the relatively thin atmosphere.
With this approximation, equation (9.12) can be integrated to yield

ln P = −gμmp

kT
r + C, (9.13)

where C is a constant of integration. Using the average atmospheric pressure at sea level
as a boundary condition, P(R⊕) = P⊕, we find the barometric equation,

P(r) = P⊕ exp

(
− r − R⊕

H

)
, (9.14)
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where the scale height H of the atmosphere is

H = kT

gμmp

. (9.15)

For the Earth’s atmosphere, we can take T⊕ = 290 K for the average temperature, and
g⊕ = 9.8 m s−2 for the gravitational acceleration. To evaluate the mean molecular mass,
let’s assume that the atmosphere is 78% N2, 21% O2, and 1% Ar. This yields

μ ≈ 0.78(2 × 14) + 0.21(2 × 16) + 0.01(40) ≈ 29. (9.16)

The scale height of the Earth’s atmosphere is then

H = kT

gμmp

= (1.38 × 10−23 kg m2 s−2 K−1)(290 K)

(9.8 m s−2)(29)(1.67 × 10−27 kg)

≈ 8 × 103 m ≈ 8 km. (9.17)

The atmospheric pressure falls exponentially with elevation, decreasing by a factor
of 1/e ≈ 0.37 for every 8 km.7 Although the air pressure P⊕ at sea level varies with
location and time, the standard atmospheric pressure is conventionally taken to be
P⊕ = 1.01325 × 105 N m−2 ≡ 1 atmosphere ≡ 1 atm.8

Our calculation of the scale height H of the Earth’s atmosphere assumed that the
atmosphere was isothermal, that is, the same temperature throughout. This is not strictly
true. The measured temperature profile of the real atmosphere is shown in Figure 9.5.
Note that the temperature doesn’t vary monotonically with elevation h above the Earth’s
surface. The points where the temperature gradient changes sign mark the boundaries
between the different layers of the atmosphere.

The troposphere is the lowest layer of the atmosphere, in direct contact with the
Earth’s surface. It is heated primarily by absorption of the thermal infrared emission
from the surface. Thus, the troposphere is warmest at the lowest elevations. Since warm
air rises, this configuration is unstable, and results in circular convective motions of the
air.9 The convective motions are responsible for weather on the Earth’s surface. About
80% of the mass of the atmosphere is contained in the troposphere.

The stratosphere starts ∼ 11 km above the surface, where the convective motion of
the troposphere ends.10 The stratosphere is heated primarily by the absorption of direct
solar ultraviolet light by ozone (O3). Photons with λ <∼ 3000 Å are capable of dissociating

7 The elevation at the peak of Mount Everest is h = 8.85 km > H . Thus, the air pressure at the summit is less
than 37% of the pressure at sea level. This is why supplemental oxygen is a good idea when you are climbing
Everest.
8 At a latitude � ≈ 45◦, the average sea level air pressure is 1 atm. The lowest sea level air pressure ever recorded
on Earth was 0.86 atm, in the eye of a typhoon.
9 The name “troposphere” literally means “sphere of turning,” in reference to the turning convective motions.
10 The name “stratosphere” means “sphere of strata (or layers),” in reference to the smooth, stratified, laminar
flow of the air in this layer. Large jet aircraft generally have cruising altitudes in the stratosphere, to avoid the
turbulent motions in the troposphere.



9.2 The Earth’s Atmosphere 217

200 250 300 350
0

20

40

60

80

100

120

Temperature (K)

A
lti

tu
de

 (
km

)
Thermosphere

Mesosphere

Stratosphere

Troposphere

FIGURE 9.5 The lower layers of the Earth’s atmosphere, defined by reversals in
the temperature gradient.

ozone, so the “ozone layer” of the Earth’s atmosphere, at h ∼ 25 km, is effective at
absorbing UV light.

In the mesosphere, which extends from ∼ 50 km to ∼ 90 km above the surface, there
is little O3 or CO2 to absorb UV or IR radiation. The mesosphere is the layer of the
atmosphere in which most meteors burn up.

The thermosphere extends from h ∼ 90 km to ∼ 500 km. The thermosphere is suf-
ficiently hot to be partially ionized. The regions within the atmosphere that have high
concentrations of charged particles are known collectively as the ionosphere. The iono-
sphere is essentially a conducting sheet, reflecting long-wavelength λ >∼ 20 m radio
waves. This was convenient for Guglielmo Marconi, the inventor of wireless communi-
cation, since it enabled him to send radio signals for long distances over the curved Earth
by bouncing them off the ionosphere. It is inconvenient for radio astronomers, however,
since it prevents them from doing long-wavelength radio astronomy from the Earth’s
surface.

Beyond the thermosphere is the exosphere, which begins at h ∼ 500 km and gradually
merges with the interplanetary medium. Within the exosphere, collisions between gas
particles are sufficiently rare that they are on essentially ballistic trajectories, determined
solely by gravitational forces. Since particles in the exosphere are noninteracting, the
scale height for each component of the atmosphere is different, depending inversely on
its molecular mass μ.
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(b)(a)

FIGURE 9.6 (a) Single cell Hadley circulation, as seen on a nonrotating planet.
(b) The Coriolis effect modifies Hadley circulation by breaking the single cell pattern
into several cells.

The air within the troposphere circulates in the north–south direction because it
is heated differentially. The heating at the base of the troposphere is greatest at the
subsolar point (the point on the Earth where the Sun is at the zenith), and lesser near
the poles. The simplest type of atmospheric circulation is Hadley circulation, which is
illustrated in Figure 9.6.11 The warmest air at the subsolar point rises, and air from high
latitudes flows toward the subsolar point to replace it, thus setting up the “single cell”
pattern in Figure 9.6a. This simple model of circulation is actually a good description of
atmospheric circulation for a slowly rotating planet, like Venus.

However, on the rapidly rotating Earth, the circulation is modified by the Coriolis
effect, which breaks up the circulating Hadley cells into a more complex pattern, as
shown in Figure 9.6b. In both hemispheres, the winds at midlatitudes (� ≈ 30◦ → 60◦
are prevailing westerlies; that is, the winds blow primarily from west to east. By contrast,
nearer the equator (� ≈ 0◦ → 30◦), the trade winds blow primarily from east to west.12

Astronomers have a particular interest in how the changeable atmosphere of the
Earth affects observations of celestial objects. The atmosphere absorbs, scatters, and
refracts light from stars, and does so in a wavelength-dependent manner. As mentioned
in Section 6.6, the Earth’s atmosphere absorbs many wavelengths of radiation, with some
transparent or semitransparent “windows” in the near UV, visible, near IR, and radio
portions of the spectrum (see Figure 6.17). Even at wavelengths where the atmosphere

11 George Hadley, an eighteenth-century English lawyer (and amateur meteorologist) first thought up the idea
of Hadley circulation. He is not to be confused with his older brother John Hadley, who invented the sextant.
12 The regions near � ∼ 30◦ are known as the “horse latitudes,” supposedly because ships becalmed in this area
of light, changeable winds had to toss horses and other livestock overboard when they ran short of fodder and
fresh water.
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is transparent, scattering of light can redirect photons, without necessarily changing their
energy. The cross-section for scattering depends on the ratio L/λ, where L is the size of
the scattering particle, and λ is the wavelength of light.

. L � λ. This case is known as Rayleigh scattering. When the scattering particles
are much smaller than the wavelength of the light interacting with them, the
effective scattering cross-section is σ ∝ λ−4. That is, shorter wavelengths are
much more likely to be scattered than are longer wavelengths. Visible light, with
λ ∼ 5000 Å, undergoes Rayleigh scattering from individual oxygen and nitrogen
molecules (L ∼ 3 Å). It also is scattered by aerosols, the collective name for the
tiny smoke and dust particles that are small enough to remain suspended in the
Earth’s atmosphere, rather than settling rapidly to the ground. The tiniest aerosol
particles have L ∼ 100 Å and thus can produce Rayleigh scattering of visible
light.

It’s Rayleigh scattering by molecules and aerosols that makes the sky appear
blue. When we look away from the Sun at the daytime sky, we are looking at
scattered sunlight. Because of the strong wavelength dependence of Rayleigh
scattering, we see much more scattered blue light than red light.13 Conversely,
when we look directly at the Sun through a large column of atmosphere, most
of the blue light has been scattered away; thus, sunsets and sunrises appear red
(particularly after large volcanic eruptions and forest fires, which inject lots of
aerosols into the atmosphere).

. L ∼ λ. This case occurs when dust particles of size L ∼ 1 μm scatter red and near
infrared light. In this regime, the wavelength dependence of the scattering cross-
section is σ ∝ λ−1.

. L  λ. This case occurs when water droplets with L ∼ 10 μm, of the sort found
within clouds, scatter visible light. In this regime, the scattering is independent
of wavelength. Thus, clouds seen by reflected sunlight appear white because they
scatter all visible wavelengths of light equally.

The atmosphere also refracts light; for a celestial object observed close to the horizon
(that is, at low altitude), the refraction can be significant and must be corrected for when
determining the object’s true position on the celestial sphere. Since the refraction is
wavelength dependent, the atmosphere will also disperse the light from objects at low
altitude.14

13 Why isn’t the sky violet, since that’s the shortest wavelength of visible light? Two reasons: our eyes are not
very sensitive to violet, and the Sun doesn’t produce much violet light.
14 The dispersion of light by atmospheric refraction explains the “green flash” that can sometimes be seen at
sunset. As the Sun dips below the horizon, a brief flash of green light is seen. Why green? The short wavelengths
of light are refracted through the greatest angle and thus can be seen for the longest time after the Sun dips below
the horizon; however, the short wavelengths of light are also dimmed most by atmospheric Rayleigh scattering.
Green wavelengths strike the optimum balance between maximum refraction and minimum dimming.
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9.3 THE EARTH’S MAGNETOSPHERE

The Earth has a magnetic dipole field that is generated by convective motions within its
molten outer core. Geological evidence tells us that the field reverses polarity at irregular
intervals, with the average time between reversals being ∼ 105 yr.15 The magnetic axis
of the Earth does not coincide with the rotation axis; the magnetic axis is tilted by ∼ 12◦
and tends to wobble erratically about. The magnetic north and south poles of the Earth
are currently moving at speeds >∼ 10 km yr−1.

The Earth’s magnetic field is strong enough to deflect the charged particles of the
solar wind. The condition for successfully deflecting the solar wind is that the energy
density of the Earth’s magnetic field B must be equal to the kinetic energy density of the
solar wind. That is,

B2

2μ0
= ρv2

2
, (9.18)

where ρ and v are the mass density and speed of the solar wind at the Earth’s location.
Along the magnetic axis, the field strength of a magnetic dipole can be written in the
form

B(r) = μ0

2π

μ

r3
, (9.19)

where μ is the magnetic dipole moment of the field. We can thus write the radial
dependence of the Earth’s magnetic field in terms of its surface strength:

B(r) = B⊕R3
⊕

r3
, (9.20)

where B⊕ = 3.1 × 10−5 T at r = R⊕.16 The average kinetic energy density of the solar
wind at 1 AU from the Sun is

ρK = ρv2

2
≈ 10−9 J m−3. (9.21)

Thus, equation (9.18) can be rewritten to find the distance r from the center of the Earth
at which the solar wind is deflected:

r

R⊕
=

(
B2

⊕
2μ0ρK

)1/6

≈ 8.5. (9.22)

This is the distance to the terrestrial magnetopause in the direction of the Sun (Fig-
ure 9.7). Some of the charged particles in the solar wind can partially penetrate the Earth’s

15 The most recent magnetic field reversal for the Earth was the Brunhes-Matuyama reversal, which occurred
∼ 780,000 years ago.
16 This B ∝ r−3 radial dependence differs from the B ∝ r−2 dependence that we deduced for the Sun’s magnetic
field (equation 7.29); this is because the Sun’s complex magnetic field is not well described by a magnetic
dipole.
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FIGURE 9.7 Interaction between the solar wind and the Earth’s magnetic field.

magnetic field and be trapped in the van Allen belts. The inner belt, at r ∼ 1.1→ 2.0R⊕,
contains high-energy particles, with proton kinetic energies K >∼ 50 MeV and electron
kinetic energies K >∼ 30 MeV  mec

2. The outer belt, at r ∼ 3 → 4R⊕, contains less
energetic particles. Charged particles become trapped in these belts and bounce back
and forth between the magnetic poles.

The Earth’s magnetic field can also channel charged particles into the Earth’s atmo-
sphere at high latitudes, where the magnetic field lines converge near the magnetic poles
(see Figure 9.7). These particles collisionally excite and ionize atoms in the upper atmo-
sphere (typically at h ∼ 80 → 160 km, in the boundary region between the mesosphere
and thermosphere). Here on the Earth’s surface, we see the emission lines produced by
the subsequent radiative de-excitation. The light is seen as the aurorae mentioned in
Section 7.2. The colors of an aurora are usually due to a pair of forbidden transitions in
atomic oxygen: one at λ = 5577 Å (green) and one at λ = 6300 Å (red). Color Figure 6
shows an aurora seen from the nonstandard viewpoint of an observer in orbit.

9.4 THE MOON’S INTERIOR AND SURFACE

The Earth’s Moon has an average density of ρ = 3370 kg m−3, about the same as the
density of the Earth’s crust. Because of the Moon’s small size, it has cooled more
rapidly than the Earth, leaving it nearly dead, geologically speaking. Moonquakes are
rare and weak. However, seismic instruments left at the Apollo landing sites were able to
record artificial moonquakes, generated by discarded Apollo ascent stages and Saturn V
third-stages crashing onto the surface, and by explosive charges set by astronauts. From
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FIGURE 9.8 The lunar maria are seen as darker, smoother regions on the Moon’s
surface.

the analysis of the seismological data, it is known that the Moon has a solid core of
density ρ ≈ 3500 kg m−3, a mantle of density ρ ≈ 3200 kg m−3, and a crust of density
ρ ≈ 2900 kg m−3. Unlike the terrestrial planets, the Moon does not have an iron core
(which would have a density ρ ∼ 8000 kg m−3), but it’s at least somewhat differentiated.
Because of the lack of a liquid iron core, the lunar magnetic field is weak (B ∼ 10−9 T).
However, magnetization of surface rocks indicates that the magnetic field was stronger
in the past (B ∼ 2 × 10−6 T about 3.3 billion years ago).

Even to the naked eye, the Moon obviously has both darker and lighter regions, as
shown in Figure 9.8. The lighter-colored regions are seen to be mountainous and heavily
cratered when seen through a telescope; these regions are known as the lunar highlands.
The darker-colored regions are smoother and lower-lying. Some early telescopic ob-
servers thought that the smooth dark regions were oceans, and thus called them maria,
the Latin word for “seas.”17 Although the maria have long been shown to be solid rock,
the inaccurate name has stuck. In fact, the maria aren’t perfectly smooth—they do have
a few scattered craters on their surface. (They aren’t nearly as cratered as the heavily
pocked highlands, however.) The maria are concentrated on the side of the Moon facing
the Earth.

The lunar highlands are an old surface, largely unchanged since the time of heavy
bombardment with planetesimals. The highland surface is saturated with craters; that is,
there is no part of the surface that doesn’t lie within a crater. The ages of igneous rocks

17 The singular form of “maria” is “mare” (pronounced with two syllables: “mah′-ray”).
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(either of lunar or terrestrial origin) can be determined by the process of radioactive
dating, described in the appendix to this chapter. Radioactive dating of rock samples
brought back by the Apollo astronauts reveals that the typical age of a highland rock
(that is, the time since it solidified from lava) is ∼ 4 billion years. The typical age of a
maria rock is only ∼ 3.5 billion years. The ages of Moon rocks are in marked contrast
to the measured ages of surface rocks on Earth, which show a wide range of ages, from
∼ 0 yr for rocks solidifying now at volcanically active sites, to ∼ 4 Gyr for the oldest
rocks in geologically stable locations.18

The most obvious features on the surface of the Moon are impact craters: roughly
circular depressions, shaped like shallow bowls with a distinct rim, that are the result of
planetesimals and smaller debris hitting the Moon’s surface. Crater formation occurs in
four steps that occur in rapid succession over a matter of seconds:

1. Impact. An object collides with the lunar surface. This can occur at speeds as high
as 73 km s−1. The local speed limit for any object orbiting the Sun in the vicinity
of the Earth–Moon system is the escape speed from the Sun at a distance r = 1 AU
from the Sun’s center. This is simply (from equation 3.62)

vesc =
(

2GM�
r

)1/2

= 42 km s−1. (9.23)

If the Earth, orbiting the Sun at v⊕ ≈ 30 km s−1, has a head-on collision with such
an object, the relative speed will be v = vesc + v⊕ = 42 + 30 km s−1 = 72 km s−1.
The Moon is orbiting the Earth at a speed of 1 km s−1, so a similar head-on collision
with the Moon can have a relative speed as high as 73 km s−1.

2. Deep penetration and vaporization. The colliding object will penetrate the sur-
face like a bullet; it is moving faster than the sound speed in rock (∼ 8 km s−1),
which determines how fast rock can break up into fragments. As the colliding ob-
ject buries itself in the lunar crust, it is rapidly decelerated, and its kinetic energy
is converted into thermal energy. The released heat vaporizes the object and the
surrounding lunar rock. As a specific example, consider a rocky object of radius
R = 1 km striking the Moon at v = 73 km s−1. If the mass density of the rock is
ρ = 3000 kg m−3, the kinetic energy of the object before it hits the Moon is

K = 1

2
mv2 = 2πR3ρv2

3
≈ 3 × 1022 J, (9.24)

equivalent to the energy released by 10 million megatons of TNT.19

3. Formation of crater and ejecta. The hot gas formed by vaporizing the colliding
object and surrounding rock will expand explosively, forming a large circular crater
where the explosion bursts through the Moon’s surface. Impact craters are almost

18 The time unit of 109 yr (one gigayear) is useful in geological, astronomical, and cosmological contexts.
Thus, its abbreviation (Gyr) will show up repeatedly in this text.
19 One megaton (Mt) is equal to 4.2 × 1015 J. The largest fusion bomb ever exploded released ∼ 50 Mt of
energy.
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FIGURE 9.9 The crater Copernicus, imaged from the Apollo 17 spacecraft in
low lunar orbit.

always circular, regardless of the angle of impact, because the crater is formed by
the isotropic release of energy beneath the surface. Ejecta thrown outward from
the explosion will cover the surrounding area, forming what is called an “ejecta
blanket.” The ejecta blanket may contain glass droplets formed when silicates are
fused under intense heat; thus, young craters may be surrounded by bright rays
containing these reflective bits of glass. The impact described above will produce
a crater with diameter ∼ 100 km, and depth ∼ 5 km.20

4. Formation of crater walls and central peak. Rebound of the lunar crust produces
high crater walls and a central peak in the crater itself. The lunar crater Copernicus
(Figure 9.9) is a young crater with a diameter D ≈ 93 km, a central peak, and
terraced crater walls.

It is estimated that Copernicus was formed by the impact of an object with
diameter ∼ 1 km approximately 0.8 Gyr ago.

Very large impacts can fracture the lunar crust to a great depth and allow subsequent
flooding by molten rock from the mantle; this is how the maria were formed. Figure 9.10
shows Mare Orientale, a circular mare that is close to the Moon’s limb as seen from Earth.
The difference in cratering between the relatively smooth maria, with ages averaging
3.5 Gyr, and the crater-saturated highlands, with ages averaging 4.0 Gyr, shows that an
era of heavy cratering took place more than 3.5 Gyr ago (Figure 9.11). This is about the
time the solar system was being cleared of remaining planetesimals and debris after the
formation of the planets. In addition to the Moon, all the terrestrial planets underwent

20 As a rule of thumb, high-speed impacting bodies will blast out a crater ∼ 50 times their own diameter.
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FIGURE 9.10 Mare Orientale, as imaged by the Lunar Orbiter 4 spacecraft. Like
smaller impact craters, maria are nearly circular.
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FIGURE 9.11 Cratering rate as a function of time. The period of heavy
bombardment ended more than 3.5 Gyr ago.



226 Chapter 9 Earth and Moon

this heavy bombardment, and all bear the scars to a greater or lesser degree. The Earth
seems less affected than the other terrestrial bodies, but this is simply because erosion
by wind and water is more efficient on the Earth and has obliterated craters that formed
long ago, during the epoch of heavy bombardment.

The six Apollo missions that successfully landed on the surface of the Moon returned
a total of ∼ 400 kg of surface rocks from both maria and highlands. After study, lunar
rocks were discovered to differ from terrestrial rocks in several fundamental respects:

. All lunar rocks are igneous (solidified lava). There are no sedimentary rocks (made
of weathered bits of rock cemented together) or metamorphic rocks (made from
igneous or sedimentary rocks subjected to high temperature and pressure).

. Lunar rocks do not contain detectable amounts of water. By contrast, Earth rocks
can contain as much as 3% water, and nearly always contain detectable amounts
of water.

. The iron in lunar rocks is not oxidized. Iron reacts quickly with free oxygen to
form ferric oxide (Fe2O3), otherwise known as rust. This indicates that the lunar
rocks have never been exposed to an oxygen atmosphere.

. Lunar rocks are depleted in volatile elements. This suggests that the rocks of the
lunar crust were exposed at some point to higher temperatures than were the rocks
of the Earth’s crust. The higher temperatures would also explain the lack of water
in the lunar crust; it was boiled away.

The Moon shows no evidence of large volcanos similar to those seen on the Earth,
Venus, and Mars. However, features called rilles (Figure 9.12) provide evidence of past
lava flows on the Moon. Rilles are sinuous valleys that are the remnants of lava rivers.
Similar, although shorter, lava channels are seen on Hawaii, where hot lava flows between
“levees” of igneous rock. If the lava drains from the channel before solidifying, an empty
rille is left behind.

The entire lunar surface is covered with a layer of dust and rubble, most of it simply
lunar crust that has been pulverized by impacts. This layer, the regolith, is 2 → 10 m
thick.21 The top of this layer is only loosely packed, and the Apollo astronauts left
footprints a few centimeters deep in it.

We have said nothing about the Moon’s atmosphere so far; this is because the Moon
has virtually no atmosphere. Its slow rotation makes the daylight side much hotter than
that of the Earth. Because of the Moon’s low albedo (A ≈ 0.07 for the dark maria), the
daytime temperature of the lunar crust is close to the subsolar blackbody temperature
T ≈ 395 K. The combination of high temperature and low surface gravity doesn’t permit
the Moon to retain common atmospheric molecules.

21 The word “regolith” comes from the Greek rhegos, meaning “blanket,” and lithos, meaning “rock.” Think
of it as the sum of all the ejecta blankets of all the cratering events in the Moon’s history.
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FIGURE 9.12 Hadley rille, a sinuous rille with a total length of 120 km. (Hadley
rille is named after John Hadley, the inventor of the sextant, not after his younger
brother George, the describer of Hadley circulation.)

9.5 THE ORIGIN OF THE MOON

Astronomers have long wondered why the Earth has such an anomalously large satellite.
Of the other terrestrial planets, Mercury and Venus have no natural satellites, and Mars
has two tiny irregular satellites. The Moon, with a radius equal to 0.27R⊕, is remarkably
large in comparison with its parent planet. Over the course of time, many hypotheses for
the Moon’s formation have been proposed, then discarded.

. The “fission” hypothesis states that the Moon was flung away from the equator of
a very rapidly rotating proto-Earth. One problem with this hypothesis is that the
Moon is not in the Earth’s equatorial plane, as you would expect in such a scenario.
Another problem is the observed difference in chemical composition between the
Moon’s crust and the Earth’s crust; in this scenario, they came from the same
material.

. The “capture” hypothesis states that the Moon formed elsewhere in the solar
system, ventured close to the Earth, and was gravitationally captured. The main
problem with this hypothesis is that to go from a Sun-centered orbit to an Earth-
centered orbit, the Moon would have to lose a great deal of kinetic energy. All
the mechanisms proposed for braking the Moon (passage through a dust cloud?
interaction with a third body?) are highly improbable.

. The “co-creation” hypothesis states that the Earth and the Moon formed side-by-
side at their present distance from the Sun. The main problem with this hypothesis
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FIGURE 9.13 Four frames, at intervals of 4.2 min, of a computer simulation of
the impact that ejected the Moon. In the upper left panel, the arrow indicates the
initial velocity of the impacting protoplanet.

is the very different chemical compositions of the Earth and Moon. Why did the
high-density Earth get so much more iron than the low-density Moon if they formed
in the same place from the same population of planetesimals?

The currently favored explanation for the formation of the Moon is the giant impact
theory. This scenario states that just over 4.5 billion years ago, a protoplanet roughly the
size of Mars struck the proto-Earth. (Mars is nine times the mass of the present Moon
and 1/9 the mass of the present Earth.) Both the proto-Earth and the colliding protoplanet
were differentiated, containing rocky mantles over iron cores. The impact was not head-
on, but oblique. Computer simulations (as shown in Figure 9.13) reveal that, during the
impact, the rocky mantle of the colliding protoplanet was ejected into an Earth-centered
orbit, eventually cooling to form the Moon. The iron core of the colliding protoplanet
sank to the center of the Earth and merged with the Earth’s core. Thus, the Moon ended
up being made almost entirely of rock, while the iron content of the Earth was enhanced
by its cannibalism of the colliding protoplanet’s iron core.

APPENDIX: RADIOACTIVE DATING

Many atomic nuclei, especially highly massive nuclei, are unstable against spontaneous
disintegration. In this process of disintegration, known as radioactive decay, a “parent”
isotope is converted into one or more “daughter” isotopes plus additional particles such
as electrons, positrons, and neutrinos. A well-known example is the radioactive decay
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of the parent isotope uranium-235 into the daughter isotope thorium-231:

235
92 U → 231

90 Th + 4
2He. (9.25)

This is the first of a series of decays that ultimately produces lead-207.
Radioactive decay is a random process. For an individual atom of a parent isotope,

the moment of its decay can’t be predicted; the only thing known is its decay constant λ,
representing the probability per unit time that it will decay. Uranium-235, for instance,
has the decay constant λ = 9.85 × 10−10 yr−1. That is, each year it has roughly a one-in-
a-billion chance of decaying. If there are N atoms of a parent isotope initially present,
then after some time period dt , the cumulative number dN of decays is given by the
relation

dN = −λNdt, (9.26)

which can be rewritten as

dN

N
= −λdt. (9.27)

This can be integrated with the initial conditions N = N0 at t = 0 to yield

N(t) = N0e
−λt . (9.28)

It is common to express the decay constant λ in terms of the half-life of the parent
isotope. The half-life τ0 is the time it takes half the parent isotope to decay; that is,
N(τ0) = N0/2. It is left as an exercise for the reader to show that equation (9.28) can be
written in the form

N(t) = N0 exp

(
− ln 2

t

τ0

)
. (9.29)

Thus, the half-life and decay constant are related by the equation τ0 = ln 2/λ ≈ 0.693/λ,
and the half-life of uranium-235, to revert to our example, is τ0 ≈ 0.693/9.85 ×
10−10 yr−1 ≈ 700 million years.

One radioactive decay used to determine the age of igneous rocks is the decay
of uranium-238 to lead-206. The half-life for this decay is dominated by the slowest
reaction, the initial decay

238
92 U → 234

90 Th + 4
2He, (9.30)

which has a half-life τ0 = 4.6 × 109 yr. In principle, the age t of a sample of material
that contains uranium-238 is determined from equation (9.29). The current number of
uranium-238 atoms is N(t), and the current number of uranium-238 and lead-206 atoms
combined is N0, if there were no lead-206 atoms in the sample initially.

The tricky part, of course, is that we don’t know how much lead-206 was in the
sample initially. If there was already lead-206 in the sample when the uranium-238
started to decay, then assuming that all the lead-206 came from uranium-238 leads to
an overestimate of the age of the rock. We can compute the initial quantity of lead-206,
however, by determining the amount of the isotope lead-204 in the sample. Lead-204
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is special among all isotopes of lead, in that it’s nobody’s daughter; that is, it’s not the
endpoint of any radioactive decay process. Technically, lead-204 is itself radioactively
unstable; however, its half-life is more than 30 million times the age of the Earth and
Moon. Thus, the amount of lead-204 you find in a rock is the amount the rock started
with. After measuring the amount of lead-204 present, we assume that the initial ratio
of lead-206 to lead-204 in our radioactive sample is the same as the ratio measured in
nonradioactive rocks of similar history and composition.

An alternative method is to look at other radioactive decays, such as the decay of
potassium-40 to argon-40:

40
21K → 40

22Ar + e+, (9.31)

which has a half-life τ0 = 1.3 × 109 yr. The particular appeal of this decay is that argon-
40 is an inert gas that doesn’t react with other elements. The presence of a gas trapped in
a sample of solid rock means that the gas must have been produced in the rock after the
rock solidified. If the potassium-40 had decayed while the rock was molten, the resulting
argon-40 would have bubbled out of the rock. Thus, the relative amounts of potassium-
40 and argon-40 in a rock provide a fairly unambiguous measurement of the time since
the rock last solidified.

PROBLEMS

9.1 At what elevation does the Earth’s atmospheric pressure fall to 50% of its sea-level
value? At what elevation is it 10% of its sea-level value?

9.2 What is the Larmor radius rc for electrons in the inner van Allen belt?

9.3 At what rate, in watts, is the Earth losing rotational kinetic energy due to tidal braking?

9.4 The continent of Europe (on the Eurasian plate) and the continent of North America
(on the North American plate) are moving apart from each other at v ∼ 3 cm yr−1.
Estimate how long it has taken them to attain their current separation of d ∼ 4500 km.

9.5 Show explicitly that the half-life τ0 and the decay constant λ of a radioactively
unstable isotope are related by τ0 = ln 2/λ.

9.6 At some point along the line between the Earth’s center and the Moon’s center, the
gravitational force exerted by the Earth on a test mass exactly cancels the gravitational
force exerted by the Moon. How far is this point from the center of the Earth?

9.7 (a) Show that if a particle is moving upward with a speed v at the Earth’s
exobase, it will reach a maximum height h = v2/(2g) above the exobase, where
g = GM⊕/R2

ex is the gravitational acceleration at the exobase.
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(b) Show that the typical height reached by a molecule of mass m at a temperature
T will be h ∼ kT /(mg). In the Earth’s exosphere, what is the typical height for
N2, O2, and H2? (Assume Tex ≈ 1000 K.) Do you expect the oxygen-to-nitrogen
ratio to increase or decrease with height in the exosphere?

9.8 We can approximate the Earth as consisting of a dense core 3500 km in radius,
containing 31% of the Earth’s mass, and a lower-density mantle 2900 km thick,
containing 69% of the Earth’s mass. With this approximation, what is the moment of
inertia of the Earth?

9.9 If we make the approximation that the Earth’s atmosphere is isothermal, with
T = 290 K, what is the mass of the Earth’s atmosphere? What is the ratio of the
mass of the Earth’s atmosphere to the total mass of the Earth?

9.10 Imagine an impacting body, traveling at v = 72 km s−1, striking the Earth. How
large would such an impactor have to be to physically destroy the Earth, that is, to
gravitationally unbind it? Consider only the energy requirements.
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10.1 TERRESTRIAL PLANETS

The terrestrial planets, in order of increasing distance from the Sun, are Mercury (a =
0.39 AU), Venus (0.72 AU), Earth (1.00 AU), and Mars (1.52 AU). In order of decreasing
mass, they are Earth (M = 1.0M⊕), Venus (0.82M⊕), Mars (0.11M⊕), and Mercury
(0.056M⊕). The terrestrial planets are primarily rocky and metallic bodies; a group
portrait (Color Figure 7) shows their relative sizes. We’ll discuss each of the terrestrial
planets (aside from the Earth, which we’ve already covered in the previous chapter), in
order of increasing distance from the Sun.

10.1.1 Mercury

Mercury is difficult to observe from the Earth because it is never more than 30◦ away
from the Sun. This difficulty led to early mistakes about its rotation. Prior to the mid-
twentieth century, it was thought that Mercury was in synchronous rotation, with one
side always facing the Sun, just as one side of the Moon always faces the Earth. The true
rotation period was discovered using radar astronomy; the rotational Doppler broadening
gave the rotation speed, which when combined with the known radius of Mercury gave
the sidereal rotation period, Prot = 58.65 days. The sidereal orbital period of Mercury is
Porb = 87.97 days, which tells us that

Prot = 2

3
Porb. (10.1)

In other words, during the time it takes Mercury to go twice around the Sun, it completes
three full rotations about its axis. The length of the solar day on Mercury is thus (compare
to equation 1.3)

Psol =
(

1

Prot
− 1

Porb

)−1

=
(

3

2

1

Porb
− 1

Porb

)−1

= 2Porb = 175.9 days. (10.2)

Because of the large eccentricity (e = 0.206) of Mercury’s orbit, observers on Mercury
would see a great variation in the angular speed of the Sun relative to the horizon. The

232
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rotational angular speed of Mercury is constant, with

ωrot = 2π

Prot
= 3

2

2π

Porb
= 1.5ωorb, (10.3)

where ωorb ≡ 2π/Porb = 4.1◦/ day is the average orbital angular speed of Mercury.
However, the actual angular speed of Mercury varies with time. At aphelion, it is
(equation 3.71)

ωap = 2π

Porb

(1 − e)1/2

(1 + e)3/2
= ωorb

(0.794)1/2

(1.206)3/2
= 0.67ωorb. (10.4)

At perihelion, the orbital angular speed of Mercury is (equation 3.70)

ωpe = 2π

Porb

(1 + e)1/2

(1 − e)3/2
= ωorb

(1.206)1/2

(0.794)3/2
= 1.55ωorb. (10.5)

The angular speed with which an observer on Mercury sees the Sun move relative to
the horizon is the same as the angular speed of Mercury’s rotation as measured in a frame
of reference co-rotating with a line drawn from Mercury to the Sun. (See Section 1.5 for
a similar analysis in the case of the Earth and Sun.) When Mercury is at aphelion, an
observer on Mercury will see the Sun move relative to the horizon with angular speed
(compare to equation 1.2)

ωsol,ap = ωrot − ωap = (1.5 − 0.67)ωorb = 0.83ωorb, (10.6)

or about 3.4 degrees per day. When Mercury is at perihelion, an observer on Mercury
will see the Sun move relative to the horizon with angular speed

ωsol,pe = ωrot − ωpe = (1.5 − 1.55)ωorb = −0.05ωorb, (10.7)

or about 0.2 degrees per day in a retrograde direction. That is, at perihelion, an observer
will see the Sun cease its usual east-to-west motion relative to the horizon and move
slowly from west to east!

The rotation period Prot and orbital period Porb of Mercury are commensurate
periods; that is, their ratio is equal to the ratio of two small integers. The commensurate
periods of Mercury are a consequence of Mercury’s eccentric orbit, combined with the
fact that Mercury is slightly prolate, rather than perfectly spherical. The prolate shape of
Mercury means that we can think of Mercury as having two permanent, fixed bulges, in
addition to the changeable, moving tidal bulges raised by the Sun.

As shown in Figure 10.1, one or the other of the permanent bulges always points
toward the Sun when Mercury is at perihelion. In addition, because the rotational angular
speed and the orbital angular speed are nearly equal around the time of perihelion, the
bulges remain pointing close to the Sun for the entire time that Mercury is nearest to
the Sun. This makes the commensurate relationship between the orbital and rotational
periods very stable. If Mercury’s rotation rate were to slow down, then the bulges would
be misaligned at perihelion. The gravitational forces exerted by the Sun on the permanent
bulges would then torque up Mercury’s rotation until the bulges were again aligned at
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FIGURE 10.1 The orientation of the permanent bulges of Mercury during one
sidereal orbital period (equal to 1.5 sidereal rotation periods, or 0.5 solar day).

perihelion. The misalignment of the permanent bulges near aphelion is not as physically
significant, since the gravitational forces are smaller at aphelion than at perihelion.

The gravitational effects of the planet Mercury on the spacecraft Mariner 10 and
MESSENGER have allowed astronomers to compute the mass of Mercury accurately,
despite the fact that it has no natural satellite. The mean (uncompressed) density of
Mercury turns out to have the remarkably high value of ρ = 5400 kg m−3. This indicates
that Mercury has an unusually large iron core. To give Mercury an uncompressed density
of 5400 kg m−3, a skimpy 600-kilometer-thick mantle of rock must lie atop an iron core
with a radius of 1800 kilometers. The disproportionately large core may indicate that
Mercury was once more massive but then lost most of its mantle in a large protoplanetary
collision (similar to the collision in the giant impact theory for the formation of the
Moon).

At first glance (see Color Figure 7), the surface of Mercury is similar to that of the
Moon; the primary surface features are impact craters. The largest impact crater on
Mercury, the Caloris Basin, is approximately 1300 kilometers in diameter. However,
Mercury does have some unique features not found on the Moon:

. Mercury has linear features called scarps (Figure 10.2). These are cliffs that can be
hundreds of kilometers long and as high as two kilometers. The height of the scarps,
combined with the low surface gravity of Mercury (gMer = 0.38g⊕ = 3.7 m s−2),
means that if you slipped from the top of a scarp with height h = 2000 m, you’d
fall for a long time:

t =
(

2h

gMer

)1/2

=
(

4000 m

3.7 m s−2

)1/2

≈ 33 s. (10.8)

By the time you reached the base of the scarp, you’d be traveling at a speed
v = gMert ≈ 120 m s−1 ≈ 440 km hr−1, an unhealthy speed at which to slam into
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FIGURE 10.2 A scarp runs down the middle of this image of Mercury; since
scarps cross craters, they were evidently formed after the era of heavy bombardment.

solid rock. The long tall scarps on Mercury were due to shrinkage of the planet’s
core by a few kilometers as it cooled.

. Unlike the highlands of the Moon, the surface of Mercury is not totally saturated
with craters. This implies that the solid surface of Mercury formed near the tail
end of the era of heavy bombardment.

Because of its high subsolar temperature and its low escape speed, Mercury has no
permanent atmosphere. However, it does have a transient, tenuous atmosphere consisting
primarily of sodium and oxygen released when micrometeorites vaporize bits of Mer-
cury’s crust. In addition, there are traces of hydrogen and helium from the solar wind,
trapped temporarily by Mercury’s magnetic field. Mercury’s magnetic field strength,
measured at the surface of the planet, is Bmer ≈ 3 × 10−7 T ≈ 0.01B⊕. This is a surpris-
ingly strong magnetic field for a small, slowly rotating planet. Mercury’s magnetic field,
like that of the Earth, is strong enough to prevent solar wind particles from striking the
planet’s surface.

10.1.2 Venus

With the obvious exception of the Moon, Venus is the most brilliant object that can be
seen in the Earth’s night sky. Venus is easy to observe at its greatest elongation of θ = 47◦.
However, when we observe Venus at visible wavelengths, all we can see is a nearly
featureless white cloud deck (Figure 10.3). Ground-based spectra, later supplemented by
data from space probes to Venus, reveal that the clouds are made of sulfuric acid (H2SO4).
The sidereal rotation period of Venus, like that of Mercury, can be determined by radar
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FIGURE 10.3 In this image, taken through a violet/blue filter, faint markings can
be seen in the thick clouds of Venus.

astronomy. Venus turns out to be the slowest rotator of all the planets, with a sidereal
rotation period of Prot = 243 days. The rotation is not only slow, it is also retrograde;
that is, if we looked at the solar system from above the Earth’s north pole, we would
see Venus orbiting in a counterclockwise direction (the same as the other planets) but
rotating in a clockwise direction. Probably as a consequence of its slow rotation, Venus
does not have a detectable magnetic field.

Because the orbital angular momentum and the rotational angular momentum of
Venus are in opposite directions, the sidereal orbital period Prot and the solar day Psol
are related by the equation (compare to eq. 1.3)

1

Prot
= 1

Psol
− 1

Porb
, (10.9)

where Porb = 225 days is the orbital period of Venus. Thus,

Psol =
(

1

Prot
+ 1

Porb

)−1

=
(

1

243
+ 1

225

)−1

days = 117 days. (10.10)

The surface temperature of Venus is high: T ≈ 740 K, hot enough to melt tin, lead,
and zinc. Despite the long solar day on Venus, the surface temperature is nearly uniform
over the entire planet. This is because the circulation patterns in the thick atmosphere are
highly effective at carrying hot air from the daytime side of Venus to the nighttime side,
smoothing out the temperature differences. The high temperature at the surface of Venus
is a result of the greenhouse effect, as discussed on page 199. The sulfuric acid clouds
of Venus reflect about 75% of the light that strikes them; below the clouds, however, the
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atmosphere is nearly transparent at visible wavelengths.1 However, the energy absorbed
by the planet’s surface is re-radiated as infrared light, to which the atmosphere is opaque,
thanks to its high CO2 content. The surface air pressure on Venus is PVen ≈ 92 atm, where
1 atm ≈ 105 N m−2 is the average sea level air pressure on the Earth. The composition
of the atmosphere on Venus is ∼ 96.5% carbon dioxide and ∼ 3.5% molecular nitrogen
(by number of molecules present).

One intriguing question is why the atmospheres of Venus and the Earth are so different
from each other. Venus and the Earth are nearly twins in radius (RVen = 0.95R⊕) and mass
(MVen = 0.815M⊕). Why, then, does Venus have nearly 100 times as much atmospheric
pressure as the Earth? The key difference between the two planets, in this context, is
that the Earth has liquid water covering most of its surface. Carbon dioxide dissolves in
water, where it forms, among other compounds, negatively charged bicarbonate ions:

CO2 + H2O ⇀↽ H+ + HCO−
3 . (10.11)

The bicarbonate ions combine readily with any calcium ions dissolved in the water:

Ca2+ + 2 HCO−
3

⇀↽ CO2 + H2O + CaCO3. (10.12)

Calcium carbonate (CaCO3) is poorly soluble in water, so it precipitates out to the ocean
floor. Limestone, which occurs in abundance near the Earth’s surface, is a sedimentary
rock that consists largely of calcium carbonate. Since Venus is too hot for liquid water
to exist, it lacks this mechanism for removing carbon dioxide from the atmosphere and
locking it up inside rocks. If you could somehow remove the CO2 from the venusian
atmosphere, the remaining atmosphere, consisting mostly of nitrogen, would resemble
the atmosphere of Earth prior to the emergence of photosynthesis. Conversely, if you
could unlock all the carbon dioxide presently contained in the Earth’s limestone, the
Earth’s atmosphere would strongly resemble that of Venus.

The Earth is unique among the terrestrial planets in having large quantities of liquid
water. To understand why this is so, consider Figure 10.4, a phase diagram for water. It
shows which phase of water (solid ice, liquid water, or gaseous water vapor) is stable at a
given temperature and pressure. There exists a unique “triple point” at Ttp = 273.2 K =
0.0◦ C and Ptp = 611.7 N m−2 = 0.0060 atm at which all three phases can coexist. Note
that ice is stable only at T < Ttp, and liquid water is stable only at P > Ptp. At low
pressures (P < Ptp), water goes straight from the solid state to the gaseous state at the
temperature increases; in other words, it “sublimes.” Figure 10.4 also shows average
surface temperatures and pressures of the terrestrial planets with atmospheres. Venus is
too hot for liquid water to exist. Mars, on average, is too cool for liquid water to exist; it
was only in the warmest, highest pressure regions of Mars that liquid water flowed in the
past (as discussed next in Section 10.1.3). However, the average temperature and pressure
on Earth has been close to the triple point for much of the planet’s history, meaning that
gaseous, liquid, and solid water could all exist in significant quantities near the Earth’s

1 If you walked on the surface of Venus (in a highly heat-resistant spacesuit), the light level would be about
the same as during an overcast day on Earth.
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FIGURE 10.4 The phase diagram for water shows its phase (solid, liquid, or
gas) as a function of temperature and pressure. Also shown are average surface
temperatures and atmospheric pressures for Mars (M), Earth (E), and Venus (V).

surface. Astronomers, thinking back to the stories of their childhood, sometimes refer to
the Goldilocks effect: Venus is too hot for liquid water, Mars is too cold, but the Earth
is “just right.”

The clouds of Venus are transparent to radio waves; thus, the Magellan spacecraft
was able to map the surface of Venus using radar. The resulting radar image of Venus
is shown in Color Figure 7. Most of Venus consists of low, rolling plains, but there are
two prominent highland regions: Ishtar Terra (about the size of Australia) and Aphrodite
Terra (about the size of Africa).

Venus has many volcanos, and extensive lava flows on its surface. The average age of
the crust on Venus is roughly 0.5 Gyr, indicating that the surface has been extensively
repaved by lava during the last billion years. Venus has relatively few impact craters
(Magellan saw only a thousand of them more than 100 meters across). The scarcity of
craters is partially due to the thick atmosphere of Venus (small objects break up in the
atmosphere and are vaporized), and partly due to the relatively recent lava flows.

There is no evidence for plate tectonics on Venus; no rift zones or subduction zones,
for instance. The volcanos of Venus are spread evenly across the planet’s surface instead
of being concentrated at plate boundaries, as they are on Earth. Because of the lack
of plate tectonics, the lithosphere of Venus remains stationary relative to the planet’s
interior. This means that some of the volcanos on Venus are large shield volcanos; a
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single spot on the crust remains in place above a hot spot on the mantle and is supplied
with lava for billions of years. The lack of plate tectonics on Venus is thought to be due
to the high temperatures at the planet’s surface; although T = 740 K isn’t hot enough to
melt rock, it does soften the rock a bit. Instead of being brittle and breakable, like the
Earth’s lithosphere, the surface layers of Venus are more pliable.

10.1.3 Mars

To the naked eye, Mars (shown at higher resolution in Color Figure 7) has a perceptibly
reddish color. It was a natural series of associations that led ancient astronomers to
associate the red planet Mars with the god of war. (Red → blood → war → war god =
Mars.) The ancient fascination with Mars has lasted to the present day.

Mars has an orbit with a = 1.52 AU, and hence an orbital period P = 1.88 yr. Mars
is the terrestrial planet farthest from the Sun, and hence the terrestrial planet with the
coldest surface. Mars has a number of superficial similarities to Earth. Its equator is
tilted by 25.0◦ relative to its orbital plane; this is similar to the Earth’s 23.5◦ tilt. Thus,
the seasonal variations on Mars are similar to those on Earth (only with seasons 88%
longer, thanks to the longer martian orbital period). The length of the solar day on Mars
is 24 hours, 40 minutes; this is only 3% longer than the Earth’s solar day.

Although Mars has an escape speed comparable to that of Mercury, its daytime
temperatures are much lower; thus, Mars has been able to retain an atmosphere. However,
the air on Mars is thin; the average air pressure at the surface of Mars is PMars ≈
0.006 atm. The martian atmosphere is 95% CO2, similar to the atmosphere of Venus.
There is little water vapor in the atmosphere of Mars; this is because UV light dissociates
it. (Mars, with no oxygen in its atmosphere, doesn’t have an ozone layer to absorb UV
light.) A water molecule (H2O) is dissociated into a hydrogen molecule (H2) and an
oxygen atom; the low-mass hydrogen molecule escapes into space, and the oxygen
combines with iron in the martian soil, making the ferric oxide that gives Mars its
distinctive reddish color.2 Martian clouds are thin and wispy, like cirrus clouds on Earth;
they are made of solid ice crystals, not liquid droplets. The clouds of Mars are made of
both frozen water and frozen carbon dioxide.

Geologically speaking, the two hemispheres of Mars (as illustrated in Figure 10.5)
are very different from each other.

The northern hemisphere, which is relatively low in elevation, contains few craters
and shows signs of recent volcanic activity (like the larger terrestrial planets, Earth and
Venus). The southern hemisphere, which is relatively high in elevation, contains many
craters and is geologically dead (like the smaller terrestrial planet Mercury, and like the
Moon).

There are a pair of strikingly large geological features on Mars:

1. Olympus Mons (Figure 10.6) is an enormous shield volcano, about 600 km across
and 25 km high. By contrast, Mauna Loa, the largest shield volcano on Earth, is

2 The surface of Mars is about 44% silicon dioxide (sand) and 19% ferric oxide (rust). The remainder is a mix
of various minerals.
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FIGURE 10.5 Relief map of Mars, using data from the Mars Orbiter Laser
Altimeter (MOLA) on the Mars Global Surveyor spacecraft.

FIGURE 10.6 Olympus Mons is the largest shield volcano in the solar system.

about 200 km across and rises only 9 km above the ocean floor. The enormous size
of Olympus Mons shows that there is little plate motion on Mars, and one location
of the crust can stay above a “hot spot” on the mantle for a long time. There is
little cratering on the slopes of Olympus Mons, indicating that it is geologically
young.3 The steep cliffs at the base of Olympus Mons are due to wind erosion.

2. Valles Marineris (Figure 10.7) is a tremendously long rift valley, stretching nearly
5000 km, or about one-fourth of the circumference of Mars. Valles Marineris is
sometimes called the “Grand Canyon of Mars,” but this is misleading on two
counts. First, Valles Marineris is much larger than the Grand Canyon of the

3 Judging from the number of impact craters on its slopes, Olympus Mons last erupted some 300 million years
ago.
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FIGURE 10.7 Valles Marineris, as imaged by the Thermal Emission Imaging
System on NASA’s Mars Odyssey orbiter.

Colorado River; Valles Marineris could stretch from Boston to Los Angeles, with
length to spare. Second, Valles Marineris is not the result of erosion by water but is
instead a rift valley, caused by convection currents in the mantle pulling the crust
apart. The walls of Valles Marineris have subsequently been sculpted by erosion
(the atmosphere is denser in the deep valleys than on the highlands).

As noted previously, Mars has similar seasons to the Earth because of its similar
obliquity. However, the seasons on Mars are significantly affected by the relatively high
eccentricity of the martian orbit (e = 0.093 for Mars, compared to e = 0.017 for Earth).
When Mars is at perihelion, it is winter in the north and summer in the south; when it is at
aphelion, it is summer in the north and winter in the south, as shown in Figure 10.8. As a
result of the high orbital eccentricity, seasons are moderated in the northern hemisphere
of Mars; winter occurs in the north when Mars is nearest to the Sun, and summer
when Mars is farthest from the Sun. By contrast, seasons are enhanced in the southern
hemisphere of Mars, since winter occurs there when Mars is farthest from the Sun, and
summer when Mars is nearest to the Sun. The enhanced seasonal temperature swings in
the south lead to strong surface winds. These winds produce major dust storms that can
on occasion envelop the entire planet.

The polar caps of Mars also vary with the seasons, as shown in Figure 10.9. The area
covered by the polar caps can change very rapidly, so they must be thin, like a layer of
frost. During winter, the temperature is cold enough to freeze CO2 out of the atmosphere.
In the winter, the martian polar caps—particularly the southern cap—are large, since they
are primarily CO2, which freezes at T ≈ 150 K at martian air pressure. In the summer,
the CO2 sublimes (that is, it goes directly from the frozen to gaseous state), but there is
still a residual polar cap. The residual summer polar cap is probably frozen water, which
sublimes at T ≈ 190 K at martian air pressure.
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FIGURE 10.8 The orbit of Mars is seen edge-on at the times of the martian
solstices. Because of the eccentricity of its orbit, martian seasons are moderated in
the northern hemisphere and enhanced in the southern hemisphere.

(a) (b)

FIGURE 10.9 The martian south polar cap is large in the winter (left), but small
in the summer (right).

Although at present, the water on Mars is primarily in its frozen state (in polar
caps, clouds, or permafrost below the planet’s surface), there is evidence that liquid
water existed more abundantly on Mars in the past. The most obvious form of evidence
consists of features on the surface of Mars that have been cut by running water. Some
narrow dry riverbeds are found on Mars, meandering across the surface of the planet like
rivers on Earth. The dried-up martian riverbeds are approximately 3 billion years old,
judging from the density of impact craters atop them. In addition to the narrow, relatively
orderly riverbeds, there are also broad flash-flood channels found on Mars, the result of
catastrophic floods rushing across the surface. The outflow channels can be hundreds
of kilometers wide, and contain “teardrop” islands, as shown in Figure 10.10. Thus,
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FIGURE 10.10 In the region shown in this image, water flowed from left to right;
the crater that diverted the flow to form the teardrop island on the left is ∼ 8 km in
diameter.

liquid water existed abundantly on Mars in the past, although it does not at present. This
indicates that Mars may once have had a thicker atmosphere and a higher temperature
in the past than it does now.

Mars has two small, irregular satellites called Phobos and Deimos (“fear” and
“panic”). Phobos and Deimos are both heavily pitted with craters, showing a history
of collisions with other, smaller bodies. They are also undifferentiated, indicating they
have never been hot enough to melt. Phobos and Deimos both resemble asteroids. (Aster-
oids are examined in Section 11.1). As mentioned in Section 4.3.1, Phobos is on an orbit
with aPhobos = 9400 km = 2.76RMars. Not only does this put Phobos inside the Roche
limit, it also means that its orbital period is 7.7 hours, less than the rotation period of
Mars. Since Phobos orbits from west to east, the same direction as the rotation of Mars,
this means that future inhabitants of Mars will be able to see Phobos rise in the west and
set in the east, while Deimos rises in the east and sets in the west.

10.2 JOVIAN PLANETS

The Jovian (Jupiter-like) planets, in order of increasing distance from the Sun, are Jupiter
(a = 5.2 AU), Saturn (9.6 AU), Uranus (19.2 AU), and Neptune (30.0 AU). In order of
decreasing mass, they are Jupiter (M = 318M⊕), Saturn (95M⊕), Neptune (17.1M⊕),
and Uranus (14.5M⊕). There are many properties that the Jovian planets have in common.
They are all massive bodies that formed far from the young Sun, where the temperatures
were low enough to allow condensation of volatile ices as well as refractory rocks and
metals. The Jovian planets all have strong magnetic fields, since they are rapid rotators
and contain large amounts of electrically conducting fluids in their interiors. They all
have multiple satellites, the largest of which formed simultaneously with their parent
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planet, and they all have ring systems (discussed in Section 10.3), of which Saturn’s is
by far the most spectacular.

However, as a group portrait of the Jovian planet indicates (Color Figure 8), there are
some significant differences between the inner Jovian planets, Jupiter and Saturn, and the
outer Jovian planets, Uranus and Neptune. Jupiter and Saturn are large in both mass and
radius (M > 95M⊕, R ∼ 10R⊕) compared to the relatively petite Uranus and Neptune
(M < 18M⊕, R ∼ 4R⊕). Their colors at visible wavelengths are also quite different. As
we have seen (in Section 8.2), the blue-green color of Uranus and Neptune results from
methane. The brown and gold colors seen in Jupiter and Saturn are the result of trace
amounts of complex compounds in their clouds. The readily visible differences between
the Jupiter/Saturn pair and the Uranus/Neptune pair are accompanied by differences in
their internal structure. As a consequence, we will find it useful to first investigate Jupiter
and Saturn, in Section 10.2.1, and then Uranus and Neptune, in Section 10.2.3.

10.2.1 Jupiter and Saturn

The Jovian planets, like the terrestrial planets, have interiors that are in hydrostatic
equilibrium. Consequently, as described in Section 9.2, the pressure gradient in their
interiors must be given by the equation of hydrostatic equilibrium (eq. 9.8):

dP

dr
= −GMrρ

r2
, (10.13)

where Mr is the mass inside the radius r ,

Mr = 4π

∫ r

0
ρ(r)r2dr. (10.14)

(We have assumed, in the above equations, that planets are spherical. This is a good first
approximation, although it is not strictly true, especially for the rapidly rotating Jovian
planets.) In general, to solve equation (10.13) to yield P(r), we need to know the density
profile ρ(r) of the planet in question. However, if we want a rough estimate of the central
pressure of a planet, we can make the rough approximation that the planet’s density is
constant: ρ(r) = ρ. With this assumption, the enclosed mass is

Mr = 4π

3
ρr3, (10.15)

and the equation of hydrostatic equilibrium can be written

dP = −4π

3
ρ2Gr dr. (10.16)

Integrating this equation between r = 0, where P = Pc is the central pressure, and the
radius of the planet r = R, where P ≈ 0, we find
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∫ 0

Pc

dP = −4π

3
ρ2G

∫ R

0
rdr

Pc = 2π

3
ρ2GR2. (10.17)

By scaling this result to the properties of the Earth, ρ⊕ = 5500 kg m−3 and R⊕ =
6.4 × 106 m, we can write the approximate central pressure of any planet as

Pc ≈ 1.7 × 1011 N m−2

(
ρ

ρ⊕

)2 (
R

R⊕

)2

. (10.18)

For Jupiter, which has ρ = 0.24ρ⊕ and R = 11.2R⊕, the estimated central pressure is
Pc,Jup ≈ 1× 1012 N m−2 ≈ 107 atm. Compared with Jupiter, Saturn is lower in density,
with ρ = 0.125ρ⊕, and smaller in radius, with R = 9.45R⊕. Thus, Saturn’s central
pressure is smaller: Pc,Sat ≈ 2 × 1011 N m−2 ≈ 2 × 106 atm.

At a pressure of millions of atmospheres, hydrogen becomes a metal, as shown in the
phase diagram in Figure 10.11. A metallic substance is one in which a regular, latticelike
structure of positive ions is surrounded by a cloud of delocalized electrons, not bound to
any particular atomic nucleus. The delocalized electrons (called “conduction electrons”)
are what give metals their characteristic properties: metals typically are reflective, are
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FIGURE 10.11 The phase of hydrogen as a function of pressure and temperature.
The temperatures and pressures inside Jupiter and Saturn are shown. (Note that
1 bar = 1 atm.)
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(a) Jupiter (b) Saturn (c) Uranus (d) Neptune
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FIGURE 10.12 The radial structure of the Jovian planets: radii are indicated in
units of 1000 km.

good conductors of heat, and are good conductors of electricity. Both Jupiter and Saturn
have high enough interior pressures to have layers of liquid metallic hydrogen; however,
Jupiter, with its higher central pressure, has a much greater amount.

Figure 10.12 shows the radial structure of all four Jovian planets, based on detailed
solutions of the hydrostatic equilibrium equation, combined with a knowledge of their
chemical composition. The Jovian planets are differentiated, with a low-density layer of
hydrogen (and helium) on top of a medium-density layer of ices (water, ammonia, and
methane), which in turn lies on top of a dense rocky core.4 Uranus and Neptune each have
a mean density roughly twice that of Saturn, and a radius roughly half that of Saturn;
thus, we expect the central pressure of Uranus and Neptune, from equation (10.18), to
be comparable to that of Saturn. However, as shown in Figure 10.12, the hydrogen-rich
outer layers of Uranus and Neptune are relatively thin; even at their base, the pressure is
not high enough for the hydrogen to take its metallic form.

Jupiter and Saturn radiate more energy than they absorb in the form of sunlight. For
example, the rate at which Jupiter absorbs energy from sunlight is (equation 8.6)

WJup = L�
4πa2

Jup

(1 − AJup)πR2
Jup = 3.8 × 1017 W. (10.19)

4 Since each Jovian planet has a rocky core several thousand kilometers in radius, we might say that inside
every Jovian planet is a terrestrial planet screaming to be let out.
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r

dr

FIGURE 10.13 The gravitational potential energy of a shell of radius r and
thickness dr is given by equation (10.23).

However, observations at infrared wavelengths reveal that Jupiter radiates energy at twice
this rate. Obviously, Jupiter must have an additional source of energy. As we’ve seen in
the case of Earth (page 212), radioactive decay of unstable elements is one source of
internal heating. However, the rate at which the Earth is heated by radioactive decay is
only ∼ 2 × 1013 W, a factor of 5000 lower than the rate W⊕ ∼ 1017 W at which it absorbs
solar energy. Even scaling upward by Jupiter’s mass (MJup = 318M⊕), and ignoring the
fact that Jupiter is relatively low in heavy unstable nuclei, radioactivity falls short of
explaining the total energy radiated by Jupiter.

In Jupiter, and Saturn as well, heat is generated by the global contraction of the planet.
Again, let’s make the simplifying assumption that a planet has constant mass density ρ.
Consider a spherical shell centered on the planet’s center with radius r and thickness dr ,
as illustrated in Figure 10.13. The gravitational potential energy of the mass shell is

dU = −GMr

r
dm, (10.20)

where

Mr = 4π

3
r3ρ (10.21)

is the mass enclosed within the shell and

dm = 4πr2ρdr (10.22)

is the mass of the shell itself. Thus, the potential energy of the shell can be written in the
form

dU = −3G

(
4πρ

3

)2

r4dr. (10.23)
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The potential energy of a planet with radius R is obtained by integrating over all shells
from r = 0 to r = R:

U = −3G

(
4πρ

3

)2 ∫ R

0
r4dr = −3G

(
4πρ

3

)2
R5

5

= −3

5
G

(
4πR3ρ

3

)2
1

R
= −3

5

GM2

R
. (10.24)

By decreasing the radius R of the planet while keeping its mass M constant, we can
decrease the gravitational potential energy U :

dU

dt
= 3

5

GM2

R2

dR

dt
. (10.25)

Solving for the contraction rate of the planet, we find that

dR

dt
= 5

3

dU

dt

R2

GM2
. (10.26)

If Jupiter’s excess radiation of ∼ 4 × 1017 W comes from gravitational potential energy,
then Jupiter must be contracting at the rate

dR

dt
≈ 5

3
(−4 × 1017 J s−1)

(6.96 × 107 m)2

(6.67 × 10−11 J m kg−2)(1.9 × 1027 kg)2

≈ −1.6 × 10−11 m s−1 ≈ −500 km Gyr−1. (10.27)

Thus, during the lifetime of the solar system, t ∼ 4.6 Gyr, Jupiter need only have
contracted by �R ∼ 2300 km, about 3% of its current radius, in order to maintain
radiation at its current rate.

The appearance of Jupiter and Saturn depends on the temperature (and the resulting
chemistry) at the highest levels in their atmospheres. The rapid rotation of Jupiter and
Saturn stretches clouds into bands that run parallel to the equator. The banded structure
is most clearly seen in the case of Jupiter (Figure 10.14). However, Saturn shows bands
parallel to its equator as well; Figure 10.15 is an image of Saturn with its distracting
rings removed. In the case of Jupiter, the visible clouds are primarily in three layers that
are 75 km deep. The uppermost layer consists of ammonia (NH3) crystals. In the middle
layer, ammonia and hydrogen sulfide (H2S) combine to form crystals of ammonium
hydrosulfide (NH4SH). In the lower level, the clouds are made of water crystals. All
of these substances are white in their crystallized form; the varied colors visible in
Figure 10.14 are the result of the complex chemistry of trace constituents in the clouds. In
the case of Saturn, which is less than a third the mass of Jupiter, the lower gravity spreads
the three cloud layers over a greater range in radius, about 300 km. The increased optical
depth of the cloud layers makes the lower layers appear somewhat hazy, and accounts
for the more muted colors of Saturn, when compared to Jupiter.

The upper atmosphere of Jupiter is divided into zones and belts. The zones are the
lighter-colored bands in Figure 10.14; they are lower in temperature and higher in altitude
than the belts and represent the tops of high-pressure clouds that are rising upward. The
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FIGURE 10.14 Jupiter’s clouds are stretched into bands known as belts (the
darker bands) and zones (the lighter bands). Also visible in this image is the large
circular storm known as the Great Red Spot.

FIGURE 10.15 Saturn with its rings removed by computer image processing.

belts are the darker-colored bands; they represent lower-pressure clouds that are sinking
downward. Large cyclonic storms are sometimes seen in the atmospheres of the Jovian
planets. The best known of these storms is the Great Red Spot on Jupiter (easily visible
in Figure 10.14). The Great Red Spot varies in size and shape, but at its maximum size
it is 40,000 kilometers across (about equal to the circumference of the Earth). The Great
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Red Spot is a high-pressure system in Jupiter’s southern hemisphere. As air flows away
from the center of the Spot, it is deflected to the left by the Coriolis effect. As a result,
the Great Red Spot rotates counterclockwise. The Great Red Spot was first recorded by
astronomers on Earth in the mid-seventeenth century.

Careful observations of cloud motions reveal that the Jovian planets rotate differen-
tially. For instance, Jupiter has a rotation period that is shorter at the equator than at the
poles, by approximately 1%. The extremely rapid rotation of Jupiter (Prot ≈ 9.8 hr) and
Saturn (Prot ≈ 10.5 hr), combined with their relatively low density, means that they are
the most rotationally flattened of all the planets. The polar diameter of Jupiter is 6.5%
shorter than its equatorial diameter; for Saturn, the polar diameter is a whopping 10%
shorter than its equatorial diameter. 5 By comparison, the polar flattening of the stiffer,
more slowly spinning Earth, as mentioned in Section 4.1, is only 0.3%.

Both Jupiter and Saturn have strong magnetic fields; the field of Jupiter, thanks to its
rapid rotation and thick layer of liquid metallic hydrogen, is exceptionally strong. At the
top of Jupiter’s cloud deck, the magnetic field strength is BJup ∼ 5 × 10−4 T ∼ 10B⊕.
The magnetosphere of Jupiter has a radius of ∼ 200RJup; if it could be seen by human
eyes, it would loom in the Earth’s sky as large as the full Moon. Charged particles released
by eruptions on Jupiter’s volcanic satellite Io (discussed in Section 10.2.2) are trapped
by Jupiter’s magnetic field into a torus around Jupiter. This torus of charged particles is
a strong source of radio emission.

As was noted in Section 7.2, electrons in a magnetic field of strength B will spiral in
a helix with radius equal to the Larmor radius,

rc = mev⊥
eB

, (10.28)

where −e is the charge of the electron. The pitch angle αc of the helix will be given by
the relation

tan αc = v⊥/v‖, (10.29)

where v⊥ is the component of the electron’s velocity perpendicular to 	B, and v‖ is the

component parallel to 	B.6 The angular frequency with which the electron spirals is the
cyclotron frequency,7

ωc = v⊥
rc

= eB

me

= 1.76 × 1011 s−1
(

B

1 T

)
. (10.30)

Notice that the cyclotron frequency, in radians per second, depends only on the magnetic
field strength B and the charge-to-mass ratio of the electron, −e/me; it is independent

5 If Saturn appears distinctly noncircular in Color Figure 8, it’s not the result of a printer’s error; it’s because
Saturn really is flattened!
6 In other words, if v⊥ = 0, the electron moves parallel to 	B (αc = 0), and if v‖ = 0, the electron moves in a

circular orbit in a plane perpendicular to 	B (αc = π/2).
7 A cyclotron was an early type of particle accelerator, in which charged particles moved on circular orbits in
a nearly uniform magnetic field.



10.2 Jovian Planets 251

of v⊥ as well as v‖. Because the electron is continuously accelerated in a direction

perpendicular to the magnetic field �B, it radiates energy according to the Larmor formula
(equation 5.15):

P = 2

3

e2

4πε0

a2

c3
. (10.31)

The acceleration of the electron is a = v2
⊥/rc = v⊥ωc, and so the power radiated can be

written in the form

P = 2

3
�cα

v2
⊥ω2

c

c3
= 2

3
�α

(
v2
⊥

c2

)
ω2

c, (10.32)

where we have used the definition of the fine structure constant α (equation 5.11).
If the electrons are nonrelativistic (v � c), the radiation they produce is called cy-

clotron radiation. The spectrum of cyclotron radiation is narrow in frequency, and peaks
at a frequency

νmax ≈ ωc

2π
≈ 28.0 GHz

(
B

1 T

)
. (10.33)

As an example, the Earth’s magnetic field, with B⊕ ∼ 5 × 10−5 T, produces radio
cyclotron emission with νmax ∼ 1 MHz.8

If the electrons are relativistic, this will change the spectrum of radiation they produce.
A relativistic electron will spiral around the magnetic field lines at the electron gyro
frequency,

ωs = eB

γme

= ωc

γ
, (10.34)

where γ ≡ (1− v2/c2)−1/2 is the Lorentz factor. Note that ωs < ωc for a fixed magnetic
field strength B, and thus a relativistic particle will move on a helix with a radius larger
than the Larmor radius:

rs = v

ωs
≈ cγ

ωc
≈ γ rc > rc. (10.35)

The radiation produced by relativistic electrons in a magnetic field is called synchrotron
radiation.9 Synchrotron radiation is strongly beamed in the direction of motion of the
charged particle, emerging in a cone of angular width ∼ 1/γ radians. Thus, for a distant
observer, the radiation from the charged particle appears to be pulsed as the cone of

8 To avoid any confusion, note that the symbol ν represents a frequency in units of cycles per second (or Hertz);
the symbol ω represents an angular frequency, or angular speed, in units of radians per second. Since there are
2π radians per cycle, that accounts for the factor of 2π in going from angular frequency ω to frequency ν.
9 A synchrotron is a more sophisticated particle accelerator than an old-fashioned cyclotron and is able to
accelerate charged particles to relativistic speeds.
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radiation sweeps across the direction to the observer. The duration of each pulse in the
rest frame of the observer is

τ ≈ 1

ωcγ
2 sin αc

. (10.36)

The time between pulses in the rest frame of the observer is

T ≈ 2π

ωc
γ sin2 αc. (10.37)

The spectrum of synchrotron radiation is much broader than the spectrum of cyclotron
radiation, and peaks at a frequency

νmax ≈ 0.070 ωcγ
2 sin αc ∝ 1

τ

≈ 12 GHz γ 2
(

B

1 T

)
sin αc. (10.38)

(Aside: the factor of 0.070 in equation 10.38 comes from finding the zeros of a modified
Bessel function, so its origin is not intuitively obvious.) The magnetic field of Jupiter
has BJup ∼ 5 × 10−4 T; if the trapped electrons were nonrelativistic, they would there-
fore emit radiation primarily at νmax ≈ 0.01 GHz. Instead, they emit a broad spectrum
peaking at νmax ≈ 1 GHz. This tells us that the electrons are relativistic and are emitting
synchrotron radiation. If we assume typical pitch angles of αc ∼ π/4, then the Lorentz
factor of the electrons must be γ ∼ 15, corresponding to an energy E = γmec

2 ∼ 8 MeV.

10.2.2 Satellites of Jupiter and Saturn

Jupiter and Saturn have many natural satellites. At the time of writing, the number of
known moons stood at 63 satellites for Jupiter and 60 satellites for Saturn, although the
count may well be higher by the time you read this. Most of these satellites are small
and irregular in shape and are on highly eccentric and highly inclined (sometimes even
retrograde) orbits. The small irregular satellites are probably bodies that were captured
after formation of the planet. Some of the satellites, however, are large spherical bodies,
comparable in size to the Earth’s Moon, that have nearly circular orbits close to the
equatorial plane of their parent planet. These large satellites were probably formed at
the same time as their parent planet.

It is found, in general, that small satellites are nonspherical, whereas the larger
satellites are close to perfect spheres. Whether or not a satellite (or other celestial object)
is spherical depends on whether its compressional strength is great enough to resist
the force of gravity. The compressional strength of a material is the pressure required
to significantly deform its shape. Engineers determine the compressional strength of
different materials by putting a sample into a hydraulic press and increasing the pressure
until the sample is either squashed flat or shattered, depending on how brittle the material
is. For instance, iron has a compressional strength of S ∼ 4 × 108 N m−2, typical igneous
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TABLE 10.1 Minimum Radius for Spherical Satellites

Strength (S) Density (ρ) Rsph
Material (N m−2) (kg m−3) (km)

Iron 4 × 108 8000 210

Rock 2 × 108 3500 340

Ice 1 × 107 900 300

rocks have S ∼ 2 × 108 N m−2 (similar to high-strength concrete), and solid ice has
S ∼ 107 N m−2. For an approximately spherical body, we have found that the central
pressure will be (equation 10.17)

Pc ≈ 2π

3
ρ2GR2. (10.39)

The critical radius Rsph at which the pressure is just great enough to overcome the
compressional strength and squeeze the object into a sphere is determined by the relation
Pc ≈ S, or

2π

3
ρ2GR2

sph ≈ S

Rsph ≈
(

3S

2πG

)1/2 1

ρ
. (10.40)

The values of Rsph for iron, rocky, and icy bodies are given in Table 10.1. The stronger
of the materials of which natural satellites are made (iron, rock, and ice) are also the
more dense. Thus, the value of Rsph is always ∼ 300 km and doesn’t depend strongly on
whether the satellite is mostly metallic, mostly rocky, or mostly icy.10

Of the spherical satellites in the solar system, seven have radii R > 1300 km ∼ 0.2R⊕
and thus are larger than any known dwarf planets. These seven giant satellites are listed
in Table 10.2. The giant satellites Ganymede and Titan are actually larger in radius than
the planet Mercury (RMer = 0.38R⊕). The high mass density of the planet Mercury,
however, means that its mass is greater than that of Ganymede and Titan combined
(MMer = 0.0553M⊕).

The four giant satellites of Jupiter are known as the Galilean satellites, after their
discoverer Galileo Galilei. As we discussed in Section 2.4, the discovery of the Galilean
satellites was an important early support for the Copernican system. In order of increasing
distance from Jupiter, the Galilean satellites are Io, Europa, Ganymede, and Callisto

10 A few materials combine great compressive strength with relatively low density. For instance, a diamond has
ρ ≈ 3500 kg m−3, comparable to an ordinary igneous rock, but a compressive strength of S ≈ 1010 N m−2.
Thus, a “diamond in the sky” could be as large as Rsph ≈ 2400 km in radius before being squeezed into a
spherical shape.
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TABLE 10.2 Giant Satellites in the Solar System

Mass Radius
Planet Satellite (M⊕) (R⊕)

Earth Moon 0.0123 0.27

Jupiter Io 0.0150 0.29

Europa 0.0080 0.24

Ganymede 0.0248 0.41

Callisto 0.0180 0.38

Saturn Titan 0.0225 0.40

Neptune Triton 0.0036 0.21

(Color Figure 9).11 The Galilean satellites probably formed as would a miniature solar
system, with Jupiter at the center. That is, the gas close to Jupiter was hottest, allowing
condensation of only the least volatile substance (metal and rock), while the gas farther
away was cooler, allowing condensation of the more volatile ices. Within the Galilean
satellite system, we see the familiar pattern of decreasing density with increasing distance
from the parent body: Io has ρ ≈ 3600 kg m−3; Europa has ρ ≈ 3000 kg m−3; and the
two outermost Galilean satellites, Ganymede and Callisto, have ρ ≈ 1900 kg m−3. Such
a low density indicates that Ganymede and Callisto cannot consist entirely of rock and
metal but must contain substantial amounts of lower-density ice.

Io, the innermost Galilean satellite, is the most geologically active object in the solar
system. When Io is viewed at infrared wavelengths (Color Figure 10), the “hot spots”
associated with active volcanos are readily visible. The colors of Io in the visible range
of the spectrum are due to the presence of sulfur and sulfur compounds. Because of Io’s
low surface gravity (g = 0.18g⊕), the volcanic ejecta can rise high above the surface and
spread over a large area. Volcanism on Io results in a layer of ejecta more than 100 m thick
being laid down every million years. Thus, any impact craters that may be created on
Io are rapidly paved over by the volcanic ejecta. The hottest volcanos on Io are spewing
out lava that is ∼ 2000 K in temperature. This is too high an internal temperature to be
maintained solely by radioactive heating. Io’s dominant source of heating is tidal flexing
of its interior. Because Io is so close to the massive planet Jupiter, it experiences large tidal
distortions. The orbital period of Io, PIo = 1.77 days, is equal to half the orbital period of
Europa, PEur = 3.55 days. The orbital resonance between Io and Europa causes the orbit
of Io to change its shape continuously; thus, the tidal bulges of Io are always changing
in amplitude. The constant flexing of Io’s interior as it changes shape causes internal
heating. Io has a very tenuous (P ∼ 10−10 atm) atmosphere of sulfur and sodium, which

11 The Galilean satellites are named after four of the god Jupiter’s innumerable lovers. The name of Juno,
Jupiter’s wife, was given to an asteroid that never comes within 100 million kilometers of Jupiter. This is
probably appropriate, given that the Greek gods were not terribly keen on traditional family values.
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FIGURE 10.16 A portion of Europa’s surface measuring 34 km × 42 km (about
half the area of Rhode Island).

is continuously leaking away into the torus of charged particles around Jupiter and being
replenished by fresh volcanic eruptions.

Europa, the next of the Galilean satellites, has a smooth, high-albedo surface (A =
0.67). The reflection spectrum of Europa reveals that its surface is made of frozen water.
A high-resolution image of Europa (Figure 10.16) reveals that the icy surface is fractured
into numerous ice rafts and ice floes measuring several kilometers across, similar to ice
rafts seen on the Earth’s Arctic Ocean. This may indicate that the outer ice layer of Europa
lies atop an ocean of liquid water. The extreme scarcity of impact craters on Europa
would then be explained by liquid water flowing up through cracks, then spreading out
and freezing. The relatively high mean density of Europa (ρ ≈ 3000 kg m−3) means that
the icy surface and liquid ocean must be relatively thin layers atop a large central rocky
core.

Ganymede, the third Galilean satellite, is the largest satellite in the solar system. Part
of Ganymede’s surface is dark and covered with impact craters. However, part of its
surface is covered with enigmatic “grooved terrain,” illustrated in Figure 10.17b. The
grooves are about 10 km apart and 300 m deep; judging from the number of impact
craters lying on top of them, the grooves formed ∼ 1 Gyr ago. They may be stretch
marks in the crust due to tectonic motions that have since ceased.

Callisto, the outermost Galilean satellite, has a surface that consists of dirty ice, that
is, frozen water with dust and hydrocarbons embedded within it. The surface is heavily
cratered, as shown in Figure 10.17c. The largest craters on Callisto have a higher albedo
than the surrounding ice, since the impacting bodies that formed them broke through the
superficial layer of dirty ice to reveal the pristine ice underneath.

The Galilean satellites, like the terrestrial planets, show different amounts of volcanic
activity. Among the terrestrial planets, the amount of internal heat, and thus the amount
of volcanic activity, is determined by the size of the planet. However, among the Galilean
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(a) (b) (c)

FIGURE 10.17 Regions on Europa (a), Ganymede (b), and Callisto (c). Each
region is 220 km × 100 km (about the area of West Virginia).

satellites, the amount of internal heat is determined by the proximity to Jupiter. Io, the
closest to Jupiter, has the most tidal heating; Io is volcanically hyperactive. Callisto,
the farthest from Jupiter, has the least tidal heating; Callisto is volcanically dead and is
covered with impact craters.

Titan, the giant satellite of Saturn, is observed to have a thick atmosphere, with surface
pressure PT = 1.6 atm; it consists primarily of N2, with smaller amounts of argon and
hydrocarbons such as methane (CH4) and ethane (C2H6). The atmosphere of Titan is
readily apparent in a view of Titan backlit by the Sun (Figure 10.18), since the refraction
of sunlight by the atmosphere makes it look like a ring of light. Sunlight striking the
atmosphere triggers the polymerization of hydrocarbons. The resulting long hydrocarbon
chains constitute a “smog layer” in the upper atmosphere. The temperature and pressure
in Titan’s atmosphere is close to the triple point of methane. As a consequence, methane
can exist on Titan in its gaseous, liquid, and solid forms. Infrared images of the surface
of Titan, taken by the Cassini spacecraft, indicate that Titan may have lakes of liquid
methane and ethane on its surface.

10.2.3 Uranus and Neptune

Uranus and Neptune are twin planets, similar in their properties. Uranus is 3% larger in
radius than Neptune, but 15% smaller in mass. Their internal structure, as illustrated in
Figure 10.12, is quite similar, with a layer of ordinary molecular hydrogen lying atop
a layer of liquid water and ammonia (“ices,” in the jargon of planetary scientists), in
turn lying atop a solid rocky core. Although the pressure at the base of the hydrogen
layer is insufficient to compress hydrogen into its metallic form, the layer of liquid
water is electrically conducting; thus, the rapid rotation of Uranus and Neptune produces
significant magnetic fields.



10.2 Jovian Planets 257

FIGURE 10.18 A view of Saturn’s rings in front of Saturn’s giant satellite Titan.
The image was taken in visible light by the Cassini spacecraft; the Sun–Titan–
spacecraft angle was 158◦ degrees.

Uranus and Neptune are difficult to observe from the Earth. Although Uranus can
barely be detected by the unaided human eye under ideal conditions, it was not recognized
as a planet until William Herschel resolved it with his telescope in 1781 March. The
existence of the planet Neptune was first deduced from its gravitational influence on
Uranus. In the 1840s, two astronomers, John Couch Adams and Urbain Le Verrier,
computed where the unseen planet had to be located in order to produce the observed
perturbations to the orbit of Uranus. The planet Neptune was discovered by Johann
Gottfried Galle in 1846 September, only 1◦ away from the position where Le Verrier
told him to look.

Since the maximum angular diameter of Uranus as seen from Earth is 4.1′′ and that of
Neptune is 2.4′′, ground-based telescopes cannot obtain high-resolution images of these
two planets. Much of what we know about Uranus and Neptune comes from the Voyager
2 spacecraft, which made a flyby of Uranus in 1986 January, then a flyby of Neptune
in 1989 August. In the Voyager 2 images of Uranus, the planet looked very uniform,
without the colored bands that characterize Jupiter and Saturn (the image of Uranus in
Color Figure 5, for instance, was taken by Voyager 2 and looks extraordinarily bland and
boring). However, an image taken by the Hubble Space Telescope in 2006 August, more
than 20 years after the Voyager 2 flyby, shows a distinct banded pattern in the atmosphere
of Uranus (Figure 10.19).

The change in the appearance of Uranus is linked to the planet’s seasons. The axial
tilt of Uranus is 98◦, meaning that its rotation axis lies nearly in its orbital plane; this
causes extreme seasonal variations in solar heating. The most recent solstice on Uranus
occurred in 1985 October, just three months before the Voyager 2 flyby. At this time,
the northern hemisphere of Uranus experienced continuous sunlight and the southern
experienced continuous darkness.12 The resulting heat flow in the north–south direction
disrupted the easterly and westerly flows that produce bands. Since the orbital period
of Uranus is P ≈ 84 years, the succeeding equinox occurred ∼ 21 years later, in 2007

12 We are defining the north pole of Uranus as the pole about which Uranus’s rotation is counterclockwise as
viewed from above.
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FIGURE 10.19 Banded cloud patterns on Uranus near the time of an equinox.

December, just a year after the image in Figure 10.19 was taken. Around the time of
the equinox, the rotation axis of Uranus is nearly perpendicular to the Uranus–Sun line.
Near equinox, a highly tilted planet like Uranus temporarily resembles a low-tilt planet
like Jupiter (θ = 3◦) and has a Jupiter-like banded structure in its cloud layer.

Uranus and Neptune, as mentioned earlier, are similar in mass and radius; they are
also similar in surface temperature. They both have a temperature, estimated from their
infrared radiation, of T ≈ 59 K. This is odd, given that Neptune’s distance from the Sun is
1.56 times the distance of Uranus from the Sun; this implies that Neptune intercepts only
∼ 40% as much solar power per square meter as Uranus. When the energy accounting is
done in full, Uranus is found to radiate about as much energy as it absorbs in the form of
sunlight. However, Neptune radiates roughly 2.5 times as much energy as it absorbs. This
means that Neptune has an internal heat source, whereas Uranus does not. The reason
why two very similar planets should differ so radically in their internal heating is not
clear.

Neptune’s satellite Triton (Figure 10.20) is unusual in that it is the only giant satellite
that has a retrograde orbit. This suggests that Triton is a captured object, rather than
one that formed close to Neptune.13 The retrograde motion of Triton has important
implications for the evolution of its orbit. As we saw in Section 4.2, the Earth’s tidal
bulges act to increase the Moon’s orbital angular momentum; thus, the size of the Moon’s
orbit increases with time. However, for a satellite on a retrograde orbit, the pull of the
parent planet’s tidal bulges acts to decrease the satellite’s angular momentum; the size
of a retrograde satellite’s orbit decreases with time. The current size of Triton’s orbit,

13 Neptune’s second largest satellite, Nereid, is on a highly eccentric orbit, with e = 0.75, possibly a result of
being gravitationally perturbed during the capture of Triton.
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FIGURE 10.20 The Voyager 2 spacecraft looks back at a crescent Neptune
(above) and Triton (below).

in units of Neptune’s radius, is a ≈ 5.9RNep. However, as a result of the shrinking of its
orbit, Triton will move inside the Roche limit a few billion years from now. Depending
on its strength, Triton will either plunge intact into Neptune’s atmosphere or be broken
by the tidal forces into numerous fragments, forming a massive set of planetary rings.

10.3 PLANETARY RINGS

All of the Jovian planets have planetary rings in their equatorial planes. The ring system
of Saturn (shown in part in Figure 10.18) is the most massive, but the other three Jovian
planets also have rings. Planetary rings, for the most part, lie inside the Roche limit
(Figure 10.21). Saturn’s rings were first observed by Galileo in the year 1610. However,
his telescope was too low in resolution to reveal the shape of the rings; he saw merely
a small blob on either side of Saturn. By the end of the year 1612, the two blobs had
disappeared, to Galileo’s surprise. By the year 1616, to Galileo’s further surprise, the
extensions to Saturn had reappeared; with the superior telescope that Galileo was using,
he was able to tell that the extension looked like ansae, or “handles.”14 It was not until
the year 1655 that the Dutch astronomer Christiaan Huygens correctly deduced that
Saturn was surrounded by a thin, flat ring. Huygens also pointed out that the rings
were sufficiently thin as to be invisible when viewed edge-on; this accounted for the
disappearance of the rings reported by Galileo in 1612. In the year 1675, Giovanni Cassini

14 In the sketch made by Galileo, Saturn looked like this:
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FIGURE 10.21 Each quadrant shows the main rings of the Jovian planets, plotted
on a scale where the planet’s radius equals 1. The dotted line shows the Roche limit
for a satellite whose density equals that of the parent planet.

found a gap, now called the Cassini division, in the middle of the ring, showing that the
ring was not a monolithic, solid disk.

The great theoretical leap in understanding Saturn’s rings came in 1857, when the
physicist James Clerk Maxwell demonstrated mathematically that a solid disk would be
unstable; if the center of the ring were displaced infinitesimally from the center of Saturn,
the displacement would grow until the ring slammed into Saturn. Maxwell thus deduced
that the rings of Saturn were made of “an indefinite number of unconnected particles.”
In 1895, a classic observation by James Keeler of the Doppler shift of reflected sunlight
from the rings revealed that the ring particles are in Keplerian orbits. That is, vorb ∝ r−1/2,
where r is the distance from the center of Saturn.

The spectrum of reflected sunlight can also be used to determine the chemical compo-
sition of the ring particles. Spectra of Saturn’s rings reveal that its ring particles are made
of water ice, with an albedo A ≈ 0.6. (Or, at least, they are coated with frost.) The size
of ring particles can be determined from their interactions with light. Large particles—
those with diameters d > λ, where λ is the wavelength at which you are observing—are
best seen in reflected light. Small particles—those with d <∼ λ—are best seen in for-
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ward scattering, that is, with the ring particles between the observer and the light source.
Saturn’s ring particles vary in size, but most are between d ∼ 1 cm and d ∼ 3 m.15

The rings of Saturn are stunningly thin, especially when we consider that the diameter
of the entire ring system is ∼ 270,000 km, about 70% of the distance from the Earth to
the Moon. The rings have a typical thickness of only ∼ 30 m. A scale model of Saturn’s
rings, made out of a sheet of paper 0.1 mm thick, would have to be almost a kilometer in
diameter. It is no surprise, then, that the ultrathin rings disappear for observers on Earth
whenever the Earth passes through Saturn’s ring plane. All the ring particles orbiting
Saturn, if collected in one place, would make an icy satellite with d ∼ 400 km, and mass
M ∼ 10−7MSat.

The extreme brightness of Saturn’s rings relative to those of the other Jovian planets
can be deduced from a chronology of ring discoveries:

. Saturn: Rings discovered in the seventeenth century, using a small telescope.

. Uranus: Rings discovered in 1977, during a stellar occultation. (The light from a
distant star was dimmed momentarily as it passed behind each of Uranus’s narrow
rings.)

. Jupiter: Rings discovered in 1979, in a picture taken by the Voyager 2 spacecraft
as it passed Jupiter.

. Neptune: Rings discovered in 1985, during a stellar occultation.

Uranus and Neptune have narrow, dark rings, separated by broad gaps, as shown in
Figure 10.21. The rings of Neptune, in addition, are patchy, with clumps of dusty dark
material, rather than being one continuous ring around the planet. Jupiter, the largest
Jovian planet, has the least impressive ring. It has a single dark ring, made of fine
dust particles, plus a tenuous “gossamer ring,” which (as its name implies) is nearly
transparent. If all the material in the rings of Jupiter, Uranus, and Neptune combined
were swept into a single body, they would make a rocky satellite with d ∼ 10 km.

Planetary rings might represent either primordial chunks of condensed matter or
material from tidally disrupted satellites. Current evidence favors the latter explanation,
since rings are not expected to be long-lived phenomena. For instance, large ring particles
will undergo collisions that will gradually grind them into dust. The small dust particles
will then be swept away by the solar wind and by radiation pressure from sunlight.16

If planetary rings are made from tidally disrupted bodies, then the relatively bright,
massive rings of Saturn are the result of a relatively recent tidal breakup. (As mentioned
in Section 10.2.3, in a few billion years, the tidal disruption of Triton may give Neptune
a counterrotating ring system that will put Saturn’s current rings to shame.) The tidal-
disruption hypothesis also helps to explain why the Jovian planets have rings and the
less massive terrestrial planets, having smaller Roche limits, do not.

15 The planet Uranus has ring particles of comparable size, but they are much harder to see, since they have an
albedo A ≈ 0.05, which is about as dark as coal.
16 Radiation pressure is discussed in more detail in Section 11.3.
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FIGURE 10.22 A panoramic backlit image of Saturn and its rings; a mosaic of
images taken by the Cassini spacecraft.

The ring system of Saturn contains a great deal of complex structure, as seen in
Figure 10.22. Much of the structure is due to orbital resonances with satellites of Saturn.
As an example, consider the Cassini division within Saturn’s ring system. A particle in the
middle of the Cassini division has an orbital period P = 11.3 hr. When we compare this
with the P = 22.6 hr orbital period of the satellite Mimas (the most massive of Saturn’s
inner satellites), we see that such a particle would be in a 2:1 orbital resonance with
Mimas. As a consequence, Mimas would always be in opposition, and hence exerting its
largest gravitational effect, at the same point in the ring particle’s orbit. The repeated tugs
by Mimas at opposition gradually make the particle’s orbit more eccentric, stretching its
major axis in the direction of Mimas at opposition. Ring particles in noncircular orbits
will cross the orbits of other ring particles, increasing the likelihood of a collision that will
suddenly alter their orbits significantly. By this process, particles are gradually removed
from the Cassini division, and from the locations of other resonant orbits.

Gravitational interactions between ring particles and satellites also explain why nar-
row rings, such as the rings of Uranus, remain narrow. If a ring starts out narrow, it
has a natural tendency to spread, thanks to the collisions between ring particles. How-
ever, narrow rings can be kept from spreading by the gravitational influence of shepherd
satellites. Figure 10.23 shows a pair of shepherd satellites in action. The F ring of Saturn
is a narrow ring that lies outside the main, bright rings of that planet. Just inside the F
ring orbits a small irregular satellite called Prometheus; just outside the F ring orbits
another small irregular satellite, this one called Pandora. The gravitational interaction
among the inner shepherd, the outer shepherd, and the ring particle tends to add orbital
angular momentum to particles that stray inward, thus causing them to return to the ring.
Similarly, the gravitational interactions subtract angular momentum from particles that
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FIGURE 10.23 The shepherd satellites Pandora (left) outside the F ring of Saturn,
and Prometheus (right) inside the F ring.

stray outward, causing them to return to the fold. The most prominent ring of Uranus is
seen to have a pair of shepherd satellites, called Ophelia and Cordelia. Presumably other
fainter rings have shepherds as well, but tiny satellites are difficult to spot.

Persistent features called “spokes” are sometimes seen in Saturn’s rings. As their name
implies, they rotate like rigid spokes on a wheel, not in a Keplerian fashion. These spokes
are probably due to microscopic dust particles that are electrically charged and trapped by
Saturn’s magnetic field, with which they co-rotate. The origin of these tiny dust particles
is not clear; it seems most likely that the dust is from impacts with meteoroids. This
argues that Saturn’s rings must be young, since prolonged accumulation of dust would
make them dark. (Compare the old, dark surface of Callisto with the new, light surface
of Europa, for instance.)

PROBLEMS

10.1 The Hill radius (discussed in Section 4.3.2) is the maximum orbital size for a satellite
orbiting a planet.

(a) What is the Hill radius of the planet Mercury?
(b) What is the Hill radius of the planet Jupiter?

10.2 The mean mass density of Mercury is 3.9 times that of the Sun. What is the Roche
limit for the Mercury–Sun system, expressed as a multiple of the Sun’s photospheric
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radius? What is the Roche limit for the Mercury–Sun system, expressed as a fraction
of the semimajor axis of Mercury’s orbit?

10.3 At what frequency νmax would you expect to detect the strongest cyclotron radiation
from the Sun’s K corona?

10.4 Compute the ratio of the differential tidal force on Io due to Jupiter to the differential
tidal force on the Moon due to the Earth.

10.5 How often does an observer at the Sun’s location see the rings of Saturn exactly
edge-on?

10.6 Saturn’s moon Titan has a mass M = 1.3 × 1023 kg and a radius R = 2580 km. The
temperature at the surface of Titan is T = 94 K.

(a) What is the gravitational acceleration g at the surface of Titan?
(b) Would Titan be able to retain H2 in its atmosphere? Would Titan be able to retain

CO2 in its atmosphere?
(c) If you approximate the atmosphere of Titan as consisting entirely of molecular

nitrogen, what is the scale height of Titan’s atmosphere?

10.7 Mars has an orbit with aMars = 1.524 AU and eMars = 0.093.

(a) If we assume that the orbit of the Earth is circular, and is coplanar with the orbit
of Mars, what is the minimum possible distance between the Earth and Mars?

(b) The Moon orbits the Earth on an orbit with a = 384,000 km and e = 0.055. What
is the maximum possible angular separation between the Earth and the Moon as
seen from Mars?

(c) Suppose that the angular resolution of your eyes is θ = 1 arcmin. If you go
vacationing on Mars, will you be able to see the Earth and the Moon as separate
points with your unaided eyes?

10.8 Infrared observations of the planet Saturn indicate that it emits radiation at the rate
LSat = 1.98 × 1017 W. However, it absorbs sunlight at the rate WSat = 1.11× 1017 W.
If the excess radiated power comes from Saturn’s gravitational potential energy, at
what rate dR/dt is Saturn shrinking in radius? (Hint: you may make the approximation
that Saturn is of uniform density.) At this rate of shrinkage, how long would it take
for Saturn’s radius to decrease by 1%?

10.9 Using the equation of hydrostatic equilibrium, compute the approximate central
pressure of all four Jovian planets.

10.10 The rotation speed of Venus was first measured with ground-based radar.

(a) A radar signal with initial frequency ν0 is bounced off a target that is receding at
speed v. Show that the returned signal is shifted to a frequency

ν = ν0

(
1 − 2v

c

)

for v � c.
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(b) Suppose that you are in the equatorial plane of Venus and you bounce a ν0 = 1 GHz
radar signal off the entire planet. What is the spread in frequencies of the returned
signal? (Neglect any Doppler shift due to the motion of the planet as a whole.)

10.11 The orbital planes of Phobos and Deimos are very close to the equatorial plane of
Mars. Thus, when you are standing near the equator on Mars, you can see Phobos
and Deimos pass through the zenith.

(a) You see Phobos at the zenith. How long will it take Phobos to reach the horizon?
At what point on the horizon will Phobos set?

(b) You see Deimos at the zenith. How long will it take Deimos to reach the horizon?
At what point on the horizon will Deimos set?



11 Small Bodies in the
Solar System

Thus far, we have discussed the largest bodies in the solar system (those with M >

0.003M⊕). These comprise the Sun, the four Jovian planets, the four terrestrial planets,
and the seven giant satellites (the Moon, Io, Europa, Ganymede, Callisto, Titan, and
Triton). However, as shown in Figure 8.1, there are a great many midsize bodies (with
10−10M⊕ <∼ M <∼ 0.003M⊕) orbiting the Sun. There are two main classes of these
midsize objects, found in different regions of the solar system. Asteroids are rocky
and metallic bodies found primarily in the asteroid belt between Mars and Jupiter
(1.5 AU < a < 5.2 AU). Trans-Neptunian objects (TNOs) are icy and rocky bodies
found primarily in the Kuiper belt beyond the orbit of Neptune (a > 30 AU).

There doesn’t seem to be a low-mass cutoff in the distribution of icy or rocky objects
in the solar system; it’s just that the low mass objects are more difficult to detect. Low-
mass rocky or metallic objects are called meteoroids; they are easily detected only when
they enter the Earth’s atmosphere and form a bright meteor. Low-mass icy objects are
called comets; they are easily detected only when they come close to the Sun and develop
a bright coma and tail.

In this chapter, we first discuss the midsize objects in the solar system: the dense,
refractory asteroids and the low-density, volatile TNOs. Then we discuss the smaller
bodies that clutter up the solar system: comets, meteoroids, and tiny interplanetary dust
grains.

11.1 ASTEROIDS

Asteroids were originally discovered as a result of a search for a suspected “missing
planet.” The search was stimulated by what is known as the Titius–Bode rule. Ever
since the time of Kepler, astronomers have been searching for numerical relationships
among the orbital properties of planets. In the year 1766, an astronomer named Johann
Titius pointed out such a relation. In modern notation, his rule was that the semimajor
axis of each planet’s orbit was given by the formula

a[AU] = 0.4 + 0.3(2n), (11.1)

where n = −∞ for Mercury, and n = 0, 1, 2, . . . for the other planets. This rule was
quoted, without proper attribution, by the more prominent astronomer Johann Bode, and

266
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TABLE 11.1 Titius-Bode Rule

Titius-Bode Rule Actual
(AU) (AU) Planet

0.4 + 0.0 = 0.4 0.39 Mercury

0.4 + 0.3 = 0.7 0.72 Venus

0.4 + 0.6 = 1.0 1.00 Earth

0.4 + 1.2 = 1.6 1.52 Mars

0.4 + 2.4 = 2.8 ?? ??

0.4 + 4.8 = 5.2 5.20 Jupiter

0.4 + 9.6 = 10.0 9.58 Saturn

0.4 + 19.2 = 19.6 ?? ??

thus it is frequently referred to as “Bode’s law.” As shown in Table 11.1, the Titius–Bode
rule predicted the existence of planets at a = 2.8 AU, between Mars and Jupiter, and at
a = 19.6 AU, beyond Saturn.

The Titius–Bode rule was regarded as a mildly intriguing bit of numerology until the
year 1781, when the planet Uranus was discovered. The semimajor axis of Uranus’s orbit
turned out to be a = 19.18 AU; this is close enough to the predicted value, a = 19.6 AU,
that astronomers started to take the Titius–Bode rule more seriously. In particular, they
started an organized search for a planet with a = 2.8 AU, in the gap between Mars
and Jupiter. A group of two dozen astronomers, who called themselves the “Celestial
Police,” divided the ecliptic into sectors 15◦ across; each astronomer would search his
assigned region for the missing planet. They realized that the planet, since it had not
been previously seen, was likely to be very small. However, even if it were not resolved
by their telescopes, they could identify it by its motion relative to the background stars.

Despite their careful planning, the Celestial Police were “scooped” by an astronomer
making a serendipitous discovery. Giuseppe Piazzi, director of the Palermo Observatory,
was making a highly precise star chart. To reduce observational error, he observed each
star multiple times. In 1801 January, he found that one of his “stars” had moved from
one night to the next. The newly discovered object, which Piazzi named Ceres, after the
Roman goddess of agriculture,1 is on an orbit with a = 2.77 AU, reasonably close to the
Titius–Bode prediction. Piazzi had no doubt that he had discovered a planet, albeit a small
one. Ceres, it turns out, is an approximately spherical body with radius R = 480 km,
about 20% of the radius of Mercury.2

Things became more interesting, however, when the Celestial Police went into action
and discovered additional objects in the gap between Mars and Jupiter. During the course

1 “Ceres” is pronounced somewhat like “series,” with two syllables.
2 As a historical footnote, the Titius–Bode rule fell out of favor when Neptune was discovered at a = 30.1 AU,
whereas the value predicted by the Titius–Bode rule was a = 38.8 AU. By then, however, it had already played
its historical role of stimulating the search for planets.
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of seven years, astronomers discovered Pallas (a = 2.77 AU), Juno (a = 2.67 AU), and
Vesta (a = 2.36 AU). This new class of relatively small objects on closely spaced orbits
deserved, it was thought, a new name. William Herschel proposed the name asteroid,
meaning “starlike,” since he could barely resolve them even in his largest telescope; they
have also been called minor planets, as a reference to their small size compared to the
terrestrial and Jovian planets.

There are currently over 14,000 asteroids whose orbits have been accurately deter-
mined and which have therefore been assigned names. (The list of Roman deities has
been pretty much exhausted, so the discoverer of an asteroid is permitted to select any
name of 16 characters or fewer that has not yet been used—subject to the constraints
of good taste, as interpreted by the Committee for Small Body Nomenclature of the In-
ternational Astronomical Union.) The position of the larger asteroids at one arbitrary
moment in time is shown in Figure 11.1. The great majority of asteroids have orbits
with 1.8 AU < a < 3.3 AU. However, as seen in the figure, some asteroids have orbits
that take them inside the orbit of the Earth. Earth-crossing asteroids with a > 1 AU, but
with a perihelion inside the Earth’s orbit, are called Apollo asteroids; there are currently
over 2800 Apollo asteroids known. Earth-crossing asteroids with a < 1 AU, but with an
aphelion outside the Earth’s orbit, are called Aten asteroids; there are fewer than 500
Aten asteroids known. Most of the known Apollo and Aten asteroids are tiny; the largest,
named Sisyphus, is about 10 km across. However, even a small asteroid can gouge out a
big hole if it strikes the Earth, which accounts for the careful way in which astronomers
have been cataloging near-Earth asteroids. At present, no known asteroids are in an orbit
that poses any danger to life on Earth.

Typical orbital eccentricities for asteroids lie in the range 0.05 < e < 0.3, while typical
inclinations are 0◦ < i < 30◦. The relatively high inclinations of asteroidal orbits result
in an asteroid belt that is not a thin disk, like Saturn’s rings, but is toroidal.

A plot of the distribution of orbital semimajor axis length (Figure 11.2) reveals that
the distribution of a for asteroidal orbits is not a smooth function. Instead, there are
gaps in the distribution at certain values of the semimajor axis a; these gaps are known
as the Kirkwood gaps, after the astronomer who first noted their existence.3 The main
Kirkwood gaps are at values of a that correspond to orbital resonances with Jupiter. The
planet Jupiter has a = 5.20 AU, and thus, from Kepler’s third law, a sidereal orbital
period of P = 11.86 yr. If an asteroid had a = 3.28 AU, it would have P = 5.93 yr,
and thus would be in a 2:1 orbital resonance with Jupiter, just as a ring particle in the
Cassini division (see Section 10.3) would be in a 2:1 orbital resonance with the satellite
Mimas. Just as the resonance with Mimas clears particles out of the Cassini division,
the resonance with Jupiter clears asteroids out of orbits with a = 3.28 AU. Additional
Kirkwood gaps are seen at semimajor axes where the orbital period is commensurate
with the orbital period of Jupiter (see Figure 11.2).

Some asteroids are in orbits that are nearly identical to that of Jupiter, except that
they lead or follow Jupiter by 60◦ (see Figure 11.1). These asteroids are known as

3 The Kirkwood gaps are not apparent in a plot of asteroid positions in space (see Figure 11.1), because the
relatively large eccentricity of asteroidal orbits smears out the gaps.
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Trojans

Trojans

FIGURE 11.1 Location of asteroids with well-determined orbits, at a particular
instant in time (which happens to be the summer solstice of the year 2003). The
orbits and positions of Earth, Mars, and Jupiter are also shown. Note that the Trojan
asteroids are in approximately the same orbit as Jupiter, but leading or following
Jupiter by ∼ 60◦.

the Trojan asteroids.4 The Trojan asteroids reside near two of the five Lagrangian
points in the Sun–Jupiter system. In the eighteenth century, the mathematician Joseph
Lagrange demonstrated that if two bodies of dissimilar mass (the Sun and Jupiter, for
instance) are on circular orbits about their center of mass, there exist five points where the
combined gravitational acceleration of the Sun and Jupiter is exactly that required to keep
a small test body on a circular orbit co-rotating with the Sun–Jupiter line. As shown in
Figure 11.3, three of these Lagrangian points, called L1, L2, and L3, are colinear with the
Sun and Jupiter. The L1, L2, and L3 points are unstable equilibrium points. For instance,
if we take a particle at the L1 point (between the Sun and Jupiter) and move it slightly, it

4 The first Trojan asteroid to be discovered was named Achilles; when further asteroids on similar orbits were
discovered, they were given names taken from the Iliad. This explains the otherwise puzzling name “Trojan”
asteroid.
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FIGURE 11.2 The number of detected asteroids as a function of semimajor axis.
The vertical dashed lines are labeled with the orbital period, expressed as a fraction
of Jupiter’s orbital period.

will continue to drift steadily away from the L1 point. The L4 point, leading Jupiter on its
orbit, and the L5 point, trailing Jupiter on its orbit, can be shown to be stable equilibrium
points. That is, if a particle is slightly displaced from the L4 point or the L5 point, it will
oscillate around that point and not drift away.

Asteroids come in a variety of sizes. Ceres, with a diameter d = 960 km, is by far
the largest asteroid. There are about 200 more asteroids that have d > 100 km, and an
additional 500 that have 50 km < d < 100 km. Most asteroids are much smaller than
50 km across, so they are faint and difficult to detect from Earth. It is estimated that
there exist roughly 100,000 asteroids with d > 1 km. Given the large volume of the
asteroid belt, this implies that the mean distance between asteroids is much larger than
the size of an asteroid.5 If you parked your spaceship next to an asteroid, the nearest
neighboring asteroid more than 1 km across would be at a distance of a few million
kilometers (roughly 10 times the Earth–Moon distance).

The brightness of asteroids commonly varies in a complex, periodic fashion, indicat-
ing that they have irregular shapes and are rotating (usually with periods of several hours).
A few asteroids have been observed by spacecraft passing through the asteroid belt. For

5 This is quite different from the situation within Saturn’s rings, where the distance between ring particles is
not vastly larger than the size of a ring particle.
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FIGURE 11.3 The Lagrangian points of the Sun–Jupiter system.

instance, the asteroid Gaspra (Color Figure 11) was studied by the Galileo spacecraft on
its way to Jupiter. Given the sparse distribution of asteroids within the belt, they do not
pose a major navigational hazard to spacecraft bound to the outer solar system. In fact, it
was quite a feat to plot a trajectory that took Galileo within 5000 km of Gaspra and still
got it to its rendezvous with Jupiter. The irregular, crater-pocked appearance of Gaspra
is typical of those asteroids that have been imaged at high resolution.

In addition, the Near Earth Asteroid Rendezvous (NEAR) spacecraft was specifically
designed, as its name implies, to study asteroids. First, NEAR made a flyby of the asteroid
Mathilde; the surprisingly small gravitational force exerted by Mathilde led astronomers
to deduce that its density was only ρ ≈ 1400 km m−3. Given the relatively dense material
from which Mathilde is made, this means that the asteroid is a porous, loosely packed
rubble pile. The NEAR spacecraft then flew on to Eros, going into orbit around that
asteroid. The mean density of Eros is ρ ≈ 2400 kg m−3, indicating that it is much less
porous than Mathilde. After a year in orbit, the NEAR spacecraft actually landed (more
or less softly) on the surface of Eros. The closeup images sent back by the spacecraft
revealed that the surface was covered with small rocks and loose regolith, much like the
surface of the Moon.

The optical and infrared spectra of asteroids reveal that some are rocky (like Eros),
while others have a metallic surface. None have icy coatings (if they did, they would
have a much higher albedo than they do). The total mass of all the asteroids combined
is estimated to be ∼ 0.001M⊕.

11.2 TRANS-NEPTUNIAN OBJECTS

A trans-Neptunian object, or TNO, can be broadly defined as any object orbiting the
Sun on an orbit larger than that of Neptune (a > 30.1 AU). Ever since the discovery of
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Neptune in 1846, astronomers have looked for TNOs. In the early twentieth century,
the astronomer Percival Lowell instituted a search for “planet X,” using the facilities of
his private observatory in Flagstaff, Arizona. It was realized that a planet farther away
than Neptune would be faint, and would not necessarily be resolved in angular size. The
basic methodology used was to take photographs of areas near the ecliptic that were close
to opposition. By comparing photographs of the same area taken several nights apart,
objects in motion relative to the background stars can easily be detected. The Earth’s
average orbital speed is v⊕ ≈ 2π AU yr−1. Since v ∝ r−1/2 for Keplerian motion, an
object on a nearly circular orbit with semimajor axis a will have an orbital speed

v ≈ 2π AU yr−1 (1 AU/a)1/2 . (11.2)

This means that when a superior object is seen at opposition from the Earth, its motion
relative to the Earth will be retrograde, with a speed

�v ≈ 2π AU yr−1
[
1 − (1 AU/a)1/2

]
. (11.3)

Since the superior object will be at a distance a − 1 AU from the Earth when it is at
opposition, its retrograde motion will then translate into an angular speed on the celestial
sphere of

ω ≈ �v

a − 1 AU
≈ 2π rad yr−1

(
1 AU

a

)
1 − (1 AU/a)1/2

1 − (1 AU/a)
. (11.4)

This reduces to

ω ≈ 2π rad yr−1 1 AU/a

1 + (1 AU/a)1/2

≈ 59 arcsec day−1 1 AU/a

1 + (1 AU/a)1/2
. (11.5)

Thus, objects beyond Neptune, with a > 30.1 AU, have an apparent angular speed
ω < 1.6 arcmin day−1 at opposition, and can easily be distinguished from asteroids at
a ≈ 3 AU, which have the much faster retrograde motion ω ≈ 12 arcmin day−1.

In the year 1930, a young astronomer named Clyde Tombaugh compared photographs
of a small region of Taurus that had been taken on January 23 and January 29 of that
year. He found one faint unresolved point of light that had moved by ∼ 9 arcmin between
one photograph and the next. Further observations revealed that the newly discovered
object was on an orbit with a = 39.5 AU, eccentricity e = 0.249, and inclination i = 17◦.
The object was given the name Pluto, after the Roman god of the underworld, and
was declared to be the “ninth planet.” It was an unusual planet, given its high orbital
eccentricity and inclination, but it really didn’t fit into any other category in use at
the time. It lay far outside the asteroid belt, and it was significantly larger than Ceres,
the biggest of the asteroids. (Modern measurements of the radius of Pluto yield RPlu =
1160 km, more than twice the radius of Ceres.)

For nearly half a century, Pluto was the only trans-Neptunian object known. Then,
in 1979, Pluto was discovered to have a satellite; it was given the name Charon, after
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FIGURE 11.4 Pluto (left) and its satellite Charon (right), as imaged by Hubble
Space Telescope.

the ferryman who transported dead souls into the realm of Pluto. Figure 11.4 is the best
available image of the Pluto–Charon system, taken by the Hubble Space Telescope. The
mass of Charon is 1/8 the mass of Pluto, making it the most massive satellite, relative to
its parent body, in the Solar System. (For comparison, the Moon is 1/81 the mass of the
Earth.) Pluto and Charon are separated by a distance of only 20,000 km, and orbit their
center of mass with a period of P = 6.4 days. Pluto and Charon both show brightness
variations with a period of P = 6.4 days, indicating that their rotation periods, as well
as their orbital periods, are equal to 6.4 days. That is, both Pluto and Charon have been
tidally braked until they are in synchronous rotation.

The discovery of two additional small satellites of Pluto in the year 2005 (named
Nix and Hydra) enabled more accurate estimates of the mass, and thus the density, of
Pluto and Charon. The mean density of Pluto is 2000 kg m−3, consistent with its being
70% rock and 30% ice. The lower density of Charon, 1700 kg m−3, indicates that it is
probably half rock and half ice. Although the surfaces of Pluto and Charon have been
observed with the Hubble, the limits on angular resolution mean that features smaller
than a few hundred kilometers across cannot be seen.

Even at low resolution, however, it is apparent that Pluto has variations in its albedo.
The darkest regions have A < 0.5, while the brightest regions have A ≈ 0.66. This is
surprisingly bright compared to other icy bodies in the outer solar system. Icy bodies
darken over time because (among other causes) long exposure to solar UV radiation tends
to darken methane ice. The explanation for the anomalous brightness of Pluto lies in its
eccentric orbit. The surface temperature of Pluto at perihelion (q = 29.6 AU, T = 51 K)
is considerably warmer than at aphelion (Q = 49.2 AU, T = 40 K). At perihelion, some
of the atmosphere sublimes, giving Pluto a temporary methane atmosphere. As Pluto
moves farther away from the Sun, however, the atmosphere freezes out again. This puts
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a fresh, highly reflective layer of methane snow on Pluto’s surface once per orbit (every
248 years).

Pluto passed through perihelion in the year 1989. Because of the high eccentricity of
Pluto’s orbit, Pluto was actually closer to the Sun than Neptune was during the period
1979–1999. However, because of the high inclination of Pluto’s orbit, the paths of Pluto
and Neptune never intersect. When Pluto is at the same distance from the Sun as Neptune,
it is several AU away from the plane of Neptune’s orbit. In addition, Neptune, with orbital
period PNep = 163.7 yr, and Pluto, with orbital period PPlu = 248.0 yr, are nearly in a
3:2 orbital resonance. The synodic period of Pluto as seen from Neptune is (compare
equation 2.10)

PS =
(

1

163.7 yr
− 1

248.0 yr

)−1

= 481.7 yr, (11.6)

which is close to three orbits of Neptune (3 × 163.7 = 491 yr) and two orbits of Pluto
(2 × 248.0 = 496 yr). This means that as seen from Neptune, Pluto will be at opposition
at approximately the same place in its orbit each time. At present, this happens to occur
when Pluto is near aphelion; at aphelion, Pluto’s distance from the Sun is Q = 49.2 AU,
which means it is nearly 20 AU from Neptune.

As early as the mid-twentieth century, it was predicted that the region beyond Neptune
should contain not just one or two ice-covered bodies, but a very large number. In 1951,
Gerard Kuiper pointed out that large numbers of icy bodies condensed in the cold outer
parts of the pre-solar nebula. Although many of those bodies were scattered by the
gravitational influence of Neptune and the other Jovian planets, Kuiper predicted that
some of the icy bodies should still remain in a circular ring beyond the orbits of Neptune
and Pluto. As a consequence, the region close to the ecliptic plane at distances from
∼ 30 AU to ∼ 50 AU from the Sun is called the Kuiper belt.6

Small bodies beyond the orbit of Neptune are faint, and thus difficult to detect. The first
trans-Neptunian object other than Pluto and Charon was detected in 1992. The object,
named 1992 QB1, is on an orbit with a = 43.7 AU, e = 0.065, and i = 2.2◦.7 Thereafter,
TNOs were discovered at an increasing rate; over a thousand TNOs were detected in the
15 years that followed the discovery of 1992 QB1.

The orbital parameters of the known trans-Neptunian objects are plotted in Fig-
ure 11.5. The upper panel shows orbital inclination i as a function of semimajor axis
a; the lower panel shows orbital eccentricity e as a function of a. Uranus is the large
dot at a = 19.2 AU and low inclination and eccentricity; Neptune is the large dot at
a = 30.1 AU and low inclination and eccentricity. Figure 11.5 also includes a number of
objects with orbits smaller than that of Neptune. These objects, which lie outside the orbit

6 In fact, the presence of icy bodies in the belt beyond Neptune had previously been predicted by Kenneth
Edgeworth as early as 1943. Thus, the alternate name “Edgeworth–Kuiper belt” is also used.
7 Newly discovered minor bodies are given a name that consists of the year of discovery, a letter that tells
the half-month during which it was discovered (“Q” indicates the period August 16–31), and another letter
plus a subscripted number that tells the order of discovery in that half-month (“B1” indicates the 27th object
discovered in a particular half-month).
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FIGURE 11.5 (a) Orbital inclination as a function of semimajor axis for all
known TNOs. Vertical dotted lines are drawn at the 3:2 and 2:1 orbital resonance
with Neptune. (b) Orbital eccentricity as a function of semimajor axis. Solid curved
lines are drawn for orbits with perihelia of q = 30 AU and q = 35 AU.

of Jupiter but inside that of Neptune, are called Centaurs; this is because the first such
object discovered was given the name Chiron, after the most famous of the mythological
centaurs.

Notice, in Figure 11.5, that most of the trans-Neptunian objects have semimajor
axes that place them in a narrow classic Kuiper belt, with 35 AU <∼ a <∼ 50 AU. Most
inclinations are relatively small, with the majority of TNOs having i < 10◦, but this is
partly a selection effect; the early searches for TNOs concentrated on the region near the
ecliptic. Eccentricities have a fairly wide range; most TNOs have 0 < e < 0.3, but a few
have higher eccentricity. Notice that there is a large excess of TNOs with a ≈ 39.5 AU,
similar to the semimajor axis of Pluto’s orbit. These objects, called plutinos, after their
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prototype, are all in a 3:2 orbital resonance with the planet Neptune. In addition, there is
a smaller, but still significant, excess of TNOs with a ≈ 47.8 AU. These bodies have
sidereal orbital periods of P ≈ 330 yr, and thus are in a 2:1 orbital resonance with
Neptune. These objects have been given the name of twotinos (rhymes with “plutinos”).

Interestingly, there are very few low-eccentricity TNOs beyond the twotinos. Most
known TNOs with a > 48 AU have e > 0.2. In fact, as shown in Figure 11.5b, most
of these distant TNOs have a combination of a and e that places their perihelion in the
range 30 AU <∼ q <∼ 40 AU, close to the orbit of Neptune. These distant, high-eccentricity
TNOs are called scattered disk objects; the most plausible explanation for their orbits
is that they were originally on low-eccentricity orbits within the classical Kuiper belt but
were scattered onto larger, high-eccentricity orbits by their gravitational encounters with
Neptune.

The TNOs have a range of sizes; at present, the largest known TNO is the scattered
disk object Eris. The radius of Eris is R = 1200 km, which means it is a bit larger than
Pluto. Eris was discovered in 2005 January, from images taken in 2003 October. In
addition to being large, Eris also has a remarkably high albedo (A = 0.86). The reason
why it was not discovered until 75 years after the discovery of Pluto is that it is very
distant. In Figure 11.5, Eris is represented by the filled square at a = 67.7 AU, i = 44.2◦,
and e = 0.44. At the moment, Eris is close to its aphelion distance of Q = a(1 + e) =
97.5 AU. This means that Eris is both very faint and very slowly moving as seen from
Earth, which added to the difficulty of its detection.

The third largest known TNO, named Makemake, is significantly smaller than Eris
or Pluto; its radius is R ≈ 750 km.8 However, its albedo (A ≈ 0.8) is nearly as large
as that of Eris, and its orbital size (a = 45.8 AU) places it significantly closer to us
than Eris currently is. This means that the flux of Makemake is six times that of Eris.
In fact, Clyde Tombaugh would have been able to detect it back in the 1930s, were
it not for the unfortunate coincidence that Makemake was then passing close to the
Milky Way, which provided a bright background against which Makemake could not
be detected.

The discovery of hundreds of trans-Neptunian objects, one of them larger than Pluto,
caused astronomers to ask both the specific question, Is Pluto a planet? and the more
general question, What is a planet? In 2006, the International Astronomical Union (IAU)
approved a definition of the word “planet” that seemed, to the majority of astronomers
who voted on the issue, the most useful way of defining that word. According to the IAU
definition, an object within the solar system is a planet if

1. It is in orbit around the Sun, and is not a satellite of another planet.

2. It has sufficient mass for its self-gravity to overcome its compressional strength,
and thus assume a spherical, or spheroidal, shape in hydrostatic equilibrium.

3. It has cleared its orbital neighborhood (this criterion is sometimes referred to as
“orbital dominance”).

8 “Makemake” is pronounced with four syllables: “Mah′-kay-mah′-kay”. In the mythology of the Rapanui (the
Polynesian inhabitants of Easter Island), Makemake is the creator of the human race.
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The four terrestrial planets and four Jovian planets satisfy all these criteria, and so they
are labeled “planets.” Objects that satisfy the first two criteria, but not the last, are called
“dwarf planets.” Eris, Pluto, Makemake, Haumea, and Ceres are dwarf planets. Ceres has
an orbit similar to that of other asteroids but does not significantly affect their motions.
Likewise, Pluto has an orbit similar to that of other plutinos but does not significantly
affect their motions (in fact, all of the plutinos are dominated by Neptune). Eris has an
orbit similar to that of other scattered disk TNOs but is not sufficiently massive to affect
their motions.

11.3 COMETS

When we observe the asteroid belt, we can directly detect asteroids down to a size limit
d ∼ 1 km. We can deduce indirectly that smaller bodies exist in the asteroid belt because
of the impact craters they create on larger asteroids (see, for instance, Color Figure 11).
When we observe the Kuiper belt, because of its much greater distance, we can detect
only TNOs larger than d ∼ 30 km. Nevertheless, we have good reason to believe that
smaller icy objects exist in trans-Neptunian space. Imagine an icy body ∼ 1 km across
in the Kuiper belt; if we moved such a body toward the inner solar system, then once it
was within ∼ 4 AU of the Sun, its ices would start to sublime. The resulting gases would
form a large, tenuous atmosphere, or coma, that would be more easily visible than the
tiny iceball at its center.

In fact, we have just described the behavior of a comet. The nucleus of a comet is an
icy planetesimal left over from the formation of the solar system. Typical cometary nuclei
are 1 → 10 km across, and have a mass of 10 → 100 billion tons. Cometary nuclei are
often described as “dirty snowballs,” since they consist of loosely packed ices, mixed
with rocky material. Spacecraft have been sent to rendezvous with Comet Halley and
with Comet Tempel 1 (Figure 11.6). Both these comets have nuclei that are cratered and
irregular in shape. Their densities are quite low (as small as ρ ∼ 300 kg m−3), indicating
that the nuclei must be very loosely packed snowballs indeed. The surfaces have low
albedos; the sublimation of ices has left a surface layer that consists of dark refractory
rock.

If a cometary nucleus comes within ∼ 4 AU of the Sun, the sublimation of ices pro-
duces a coma that may be as much as ∼ 105 km in diameter. In addition, the sublimation
releases chunks of rock and dust particles that were previously locked inside the ice.
The gravitational force of the nucleus on the gas and dust of the coma is small. Thus,
material from the coma is easily driven away by nongravitational forces. Ionized gas
is swept away by the charged particles in the solar wind and forms a long, narrow ion
tail. Tiny dust particles are pushed away from the coma by the gentler force of radiation
pressure from sunlight; the dust grains form a broad, curved dust tail. Thus, comets
generally have two tails (Color Figure 12), although from some viewing angles they are
superimposed and appear as a single tail. In extreme cases, a comet’s tails can be nearly
1 AU in length.

Comets can be divided into two classes, based on their orbital parameters. Short-
period comets are those with P < 200 yr, and hence a < 34 AU. Short-period comets
have other characteristics in common:
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FIGURE 11.6 Composite image of the nucleus of Comet Tempel 1; the longest
dimension of the nucleus is ∼ 8 km.

. Most short-period comets have moderate inclination (i < 30◦), though a few are
retrograde (i > 90◦).

. Most short-period comets have fairly large eccentricity (e ∼ 0.8 is a typical value).

At present, there are roughly 200 short-period comets known. The most famous short-
period comet is Comet Halley, with P = 76 yr; it is also one of the few retrograde
short-period comets, with i = 162◦. After a few hundred perihelion passes a comet tends
to lose all its ices. Thus, after less than 105 years, a short-period comet becomes an
inert pile of rubble. Given this brief time scale, there must exist a repository of cometary
nuclei in the cold outer solar system, from which the supply of short-period comets is
replenished. One obvious repository is the Kuiper belt, which is known to contain icy
bodies. If short-period comets come from the Kuiper belt, this would explain why most
of them have relatively small inclinations, which match the relatively small inclination
of the majority of Kuiper belt objects (see Figure 11.5). But how can we explain the
short-period comets that are on retrograde orbits? To explain the origin of retrograde
short-period comets, it helps to consider the origin of long-period comets.

Long-period comets are defined as comets with P > 200 yr, and hence a > 34 AU.
Some long-period comets have periods that are very long indeed, up to P ∼ 3 × 107 yr,
implying a ∼ 100,000 AU. Long-period comets have other characteristics in common,
besides their long orbital periods:
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FIGURE 11.7 The Oort cloud is an extended distribution of cometary objects
surrounding the Sun; the inner Oort cloud connects with the Kuiper belt.

. Long-period comets have random inclinations to the ecliptic, with as many being
on retrograde orbits (i > 90◦) as on prograde orbits (i < 90◦).

. Long-period comets have extremely high orbital eccentricities (e ≈ 1).

Over 800 long-period comets have been detected over the course of history. The Dutch
astronomer Jan Oort proposed that long-period comets reside in a large, roughly spherical
cloud of radius ∼ 50,000 AU, centered on the Sun; this distribution of cometary bodies
is called the Oort cloud. Figure 11.7 shows the relative sizes and shapes of the small,
flattened Kuiper belt, and the large, quasi-spherical Oort cloud. The radius of the Oort
cloud is not negligibly tiny compared to the distance of ∼ 270,000 AU to the Sun’s
nearest neighboring star. The orbits of cometary bodies in the Oort cloud can be perturbed
by passing stars; this alters their orbits and sometimes permits them to approach the inner
solar system. Those few objects with perihelion distances q <∼ 4 AU grow comas and tails
and can be observed by us as comets. Retrograde short-period comets, such as Comet
Halley, represent long-period comets that have had a close encounter with a Jovian planet
that has flung them onto a smaller orbit.9

The chemical composition of cometary nuclei indicates that they were probably
formed about 20 → 30 AU from the Sun, between the orbits of Uranus and Neptune,
where the temperature of the pre-solar nebula was T ∼ 100 K. If they had formed closer

9 Close encounters of comets with Jovian planets are common enough to have been seen in modern times.
Comet Shoemaker–Levy 9 was captured from its Sun-centered orbit onto a highly eccentric Jupiter-centered
orbit. The fragile, low-density cometary nucleus was torn apart when it came within the Roche limit; on the
next pericenter passage, in 1994 July, the fragments collided with the atmosphere of Jupiter.
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to the Sun, they would not have been icy. If they had formed farther from the Sun, their
water would have been locked up in solid hydrates of ammonia and methane. Since water
vapor is detected in the spectra of comets, this clearly did not happen. The orbits of these
small cometary bodies were easily altered by encounters with the massive Jovian planets.
Thus, they were scattered onto a wide variety of different orbits, with a variety of ultimate
fates:

. Comets on small orbits made frequent perihelion passages and sublimed early in
the history of the solar system.

. Comets on large orbits constituted the Oort cloud.

. Comets on unbound (hyperbolic) orbits were able to escape the solar system
altogether.

Those cometary bodies that suffered only minor perturbations to their initial orbit ended
up in the Kuiper belt, a region of relative orbital stability outside the area dominated by
the Jovian planets.

11.4 METEOROIDS AND DUST

In the standard scenario for the formation of the solar system, as outlined in Section 8.3,
small, solid particles condensed from the pre-solar nebula. The small particles then
accreted to form larger planetesimals, and the planetesimals coalesced to form planets.
We know that the formation of planets from planetesimals was not completely efficient:
leftover planetesimals are seen today, in the form of comets and asteroids. Similarly,
we might expect that the formation of planetesimals from smaller particles was not
completely efficient, leaving behind leftover dust grains and snowflakes in the solar
system. However, as we shall see, nongravitational effects can remove small solid
particles from the solar system.

The smallest solid particles can be removed by radiation pressure. The force of radi-
ation acting on a particle is Frad = Pradσpr, where Prad is the pressure exerted by photons
and σpr is the effective cross-section of the particle for interaction with photons. For a
spherical dust grain of radius R, the cross-section can be written as σpr = QprπR2, where
πR2 is the geometrical cross-section, and Qpr ≤ 1 is the radiation pressure coefficient.
The value of Qpr depends primarily on the size of the dust grain relative to the wave-
length of the light acting on it. The spectrum of the Sun, as we have seen in Section 8.2,
peaks at a wavelength λp ≈ 5000 Å. If a dust grain has R � λp, then it has Qpr = 1; its
cross-section for interactions with light is equal to its geometric cross-section. However,
if the grain is tiny, with R � λp, it will have Qpr � 1. If tiny grains interacted only by
Rayleigh scattering, as described in Section 9.2, we would expect Qpr ∼ (R/λp)

4 when
R � λp. Since dust grains can absorb as well as scatter light, the dependence of Qp is
different from that predicted by pure Rayleigh scattering. Empirically, it is found that
dust grains made of rock or ice have Qpr ∝ R2 in the limit that R � λp.

Since pressure is equivalent to momentum flux, and since the momentum of a photon
is p = E/c = hν/c, the pressure of solar radiation is simply related to the energy flux:
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Prad = 1

c

L�
4πr2

, (11.7)

where r is the distance of the particle from the Sun. Thus, radiation pressure will push
the spherical particle away from the Sun, with a force

Frad = L�
4πr2c

QprπR2 = L�
4c

R2

r2
Qpr. (11.8)

If the spherical particle has a density ρ, then its mass will be m = 4πρR3/3, and the
gravitational force exerted on the particle by the Sun will be

Fgrav = −GM�m

r2
= −GM�

r2

4πρR3

3
. (11.9)

Since the radiative force and the gravitational force both follow inverse square laws,
the ratio of radiative force to gravitational force will be independent of distance from
the Sun:

Frad

|Fgrav|
= 3

16π

L�
GM�c

Qpr

ρR

= 5.8 × 10−7
(

1000 kg m−3

ρ

) (
1 m

R

)
Qpr. (11.10)

For small dust grains, with R � λp, the ratio of radiative force to gravitational force
increases linearly with R, since Qpr ∝ R2 in this range of sizes. For larger dust grains,
with R � λp, the same ratio decreases as 1/R, since Qpr = 1 for these large grains.
Thus, the ratio of radiative force to gravitational force has a maximum at a grain size
R ∼ λp ∼ 5000 Å.

Dust grains will be accelerated out of the solar system if the magnitude of the outward
radiative force is greater than that of the inward gravitational force. This will occur if the
grain radius R satisfies the criterion

R < 5800 Å

(
1000 kg m−3

ρ

)
Qpr. (11.11)

Thus, unless dust grains are extremely low in density (ρ � 1000 kg m−3), tiny dust
grains, with R � λp, will not be blown away; their values of Qpr fall off too rapidly
as R decreases. On the other hand, large dust grains, with R � λp, will not be blown
away either; their masses increase too rapidly as R increases. Thus, only those grains
with R ∼ λp ∼ 5000 Å will be accelerated out of the solar system by radiation pressure.

For dust grains with R � 5000 Å, where the Sun’s gravity dominates over radiation
pressure, a more subtle mechanism, the Poynting–Robertson effect, acts as a brake on
orbiting particles, decreasing their angular momenta so that they slowly spiral into the
Sun. In the frame of reference of an orbiting particle, the phenomenon of aberration
(described in Section 2.6.2) causes a slight displacement in the direction of motion for
photons striking the particle. Just as astronomers have to tilt their telescopes slightly in
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FIGURE 11.8 The Poynting–Robertson effect: an orbiting particle loses angular
momentum since the aberrated sunlight exerts a force that is not exactly parallel to
the particle–Sun line.

the Earth’s direction of motion to capture photons from a distant star, a particle receives
photons from the Sun in a direction that is slightly aberrated in the particle’s direction
of motion (Figure 11.8).

As the particle moves along its orbit about the Sun, its orbital angular momentum is
�L = �r × �p, where the linear momentum of the particle is �p = m�v.10 The torque exerted
on the particle by radiation forces is

�τ ≡ �r × �Frad = d �L
dt

. (11.12)

By referring to Figure 11.8, we see that

τ = |�r × �Frad| = −rFrad sin θ, (11.13)

where θ is the angle of aberration. In Section 2.6.2, we learned that the angle of aberration
is given by the relation tan θ = v/c, where v is the speed of the moving object. Since
orbital motions in the solar system are nonrelativistic, the aberration angles are small,
and we may write

v

c
= tan θ ≈ sin θ ≈ θ. (11.14)

Therefore, the torque due to the radiation force of aberrated sunlight is

τ ≈ −rFradθ ≈ −rFrad
v

c
. (11.15)

10 In this derivation, please distinguish carefully between L, the magnitude of the orbital angular momentum,
and L�, the luminosity of the Sun.
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If we approximate our particle as a sphere of radius R, we can use the relation for radiation
force that we found in equation (11.8) and write

τ = −r

(
L�
4c

R2

r2
Qpr

)
v

c
, (11.16)

or, since τ = dL/dt ,

dL

dt
= −L�

4c2
R2Qpr

v

r
. (11.17)

This equation for angular momentum loss becomes particularly simple if we assume
the particle is on a nearly circular orbit. In that case, v = (GM�/r)1/2, L = mvr =
m(GM�r)1/2, and equation (11.17) becomes

m(GM�)1/2 1

2
r−1/2 dr

dt
= −L�

4c2
R2Qpr(GM�)1/2r−3/2, (11.18)

or

rdr = −L�
2c2

R2

m
Qprdt. (11.19)

This equation can be integrated from a time t = 0, when the particle is at its initial
distance from the Sun, r = a, to the time t = tpr at which r = 0. The time tpr is the
Poynting–Robinson timescale, which tells us how long it takes for the particle to spiral
in to the Sun’s location. The integration of equation (11.19) yields

−a2

2
= −L�

2c2

R2

m
Qprtpr, (11.20)

or

tpr = a2c2

L�
m

R2

1

Qpr
= a2c2

L�
4πρR

3

1
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where we have used the expression m = 4πρR3/3 for the mass of the spherical particle.
Expressed numerically, the Poynting–Robertson timescale is

tpr ≈ 0.7 Gyr

(
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)2 (
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1000 kg m−3

) (
R

1 m

)
, (11.22)

if we assume R � λp ∼ 5000 Å and hence Qpr = 1. If we assume a density ρ ∼
3000 kg m−3, comparable to that of rock, primordial chunks of matter less than 1 m
across will be cleared away out to a distance a ∼ 1.5 AU from the Sun. Primordial
chunks of matter less than 1 cm across will be cleared away out to a distance a ∼ 15 AU.

Despite the presence of radiation pressure and the Poynting–Robertson effect, small
solid particles are known to exist in the inner solar system. At visible wavelengths, these
particles manifest themselves as the zodiacal light (Figure 11.9), a faint glow of diffuse
light centered on the ecliptic. The zodiacal light is sunlight that is backscattered from
the small opaque particles that exist near the ecliptic plane. These particles are called
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FIGURE 11.9 The diffuse glow of zodiacal light is seen near the horizon in this
long exposure.

meteoroids.11 The fact that meteoroids with d <∼ 10 cm exist in the inner solar system
implies that these objects must constantly be replenished. The sources of these small
objects are comets and asteroids. Comets release small solid particles as their surfaces
sublime. The smallest particles (d ∼ 0.5 μm) are blown away by radiation pressure
from sunlight and form the comet’s dust tail; larger particles travel on nearly Keplerian
orbits about the Sun, gradually spiraling inward due to the Poynting–Robertson effect.
Asteroids release small particles as the result of the collisions that create impact craters
on their surfaces.

Occasionally, these meteoroids encounter the Earth and enter the Earth’s atmosphere.
In that case, friction with air molecules heats them to incandescence. The outer layer of
the meteoroid vaporizes, leaving a trail of ionized atoms and molecules. These long,
glowing streaks of ionized gas are called meteors.12 At 1 AU from the Sun, a meteoroid
can be traveling as fast as the solar escape speed, which is vesc = 42 km s−1 at r = 1 AU.
Given the Earth’s orbital speed of v⊕ = 30 km s−1, this means that a meteoroid on a
retrograde orbit can enter the Earth’s atmosphere at a speed as high as 72 km s−1, but
only after local midnight, when such head-on encounters are geometrically possible. The
typical size of a meteoroid that gives rise to a naked-eye meteor is <∼ 1 cm across. By
observing the same meteor from different locations on the Earth, we find by triangulation
that meteors typically occur at an elevation of h ∼ 90 km, at the top of the mesosphere.

11 The boundary between small asteroids and large meteoroids is a fuzzy one. A commonly used convention is
that rocky and metallic bodies smaller than ∼ 300 m across are called meteoroids and larger objects are called
asteroids.
12 The word “meteor” comes from the Greek word meteoron, meaning “a thing up high.” Initially, the term
“meteor” applied to any atmospheric phenomenon, which is why the study of weather is called “meteorology.”
(The study of meteors, meteoroids, and meteorites is called “meteoritics.”)
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FIGURE 11.10 Origin of the Perseid meteor shower. At the point where the
Earth’s orbit and the comet’s orbit intersect, the direction of the meteor stream
appears to originate in the constellation Perseus. This gives the meteor shower its
name.

Meteor showers happen when the Earth crosses the path of a comet, as illustrated in
Figure 11.10. Many of the solid particles that were liberated from the subliming comet
are in orbits similar to that of the comet from which they came. Thus, if the Earth’s orbit
passes close to a comet’s orbit, the Earth is likely to pass through the particles shed by
the comet. There are two types of meteor shower:

. Annual showers occur when meteoroids have been distributed along the entire
orbital path of a comet or ex-comet. These showers occur with high predictability
each year. For instance, the Perseid meteor shower occurs around August 12 each
year, as the Earth passes through the solid particles released by Comet Swift–
Tuttle.

. Periodic showers occur when meteoroids are clumped into certain locations along
the comet’s orbit. For a periodic meteor shower to take place, the Earth must cross
the cometary orbit when the clump of meteoroids is near the intersection point.
For instance, the Leonid meteor shower occurs around November 17 but is only
a spectacular event once every 33 years, when the Earth passes through a clump
of particles liberated from Comet Tempel–Tuttle. (The particles, like their parent
comet, are on retrograde orbits with P ≈ 33 yr.)

Generally, meteor showers are not very spectacular events. A meteor shower usually
includes one or two visible meteors per minute. On rare occasions, however, larger,
more spectacular displays have occurred. The greatest meteor shower in recorded history
happened in 1833, when the Leonid meteor shower produced up to 100 visible meteors
per second.
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It is estimated that over 25 million potentially observable meteors plunge through the
Earth’s atmosphere every day. By accreting small particles in this way, the Earth’s mass
grows by ∼ 100 tons per day. However, the vast majority of meteoroids that enter the
Earth’s atmosphere are completely vaporized. Only objects larger than d ∼ 3 cm are able
to survive the passage through the Earth’s atmosphere. A meteoroid remnant that reaches
the Earth’s surface intact is called a meteorite. The relatively rare, large meteoroids that
survive as meteorites are primarily chunks of asteroids; the much more common small
meteoroids that completely vaporize are primarily material from comets. The general rule
of thumb is Most meteorites originate in asteroids; most meteors originate in comets.

Meteorites come in two major categories:

. Stony meteorites are made, as their name implies, from silicate rock, with mass
density ∼ 3000 kg m−3. About 95% of meteorites are stony. However, they are
difficult to distinguish from surface rocks on the Earth, so the best place to search
for them is on the thick icecaps of Antarctica.

. Iron meteorites are made of an iron–nickel alloy (about 85% iron and 15% nickel).
Freshly fallen iron meteorites are easy to recognize, since the oxygen in the
atmosphere ensures that the native iron is in the form of iron oxides.

Some meteorites fall into a special subcategory called “carbonaceous chondrites.” These
are primitive, undifferentiated bodies that are rich in carbon and complex carbon com-
pounds (some even contain amino acids). The complex molecules in carbonaceous
chondrites are fragile, and would have broken apart if the meteoroid had ever been at
T > 500 K for a significant length of time.

Many meteorites, by contrast with the primitive carbonaceous chondrites, have been
processed; they consist either of metallic material (presumably from the core of a
differentiated body) or of volcanic rock (presumably from the mantle or crust of a
differentiated body). By studying the crystal sizes in the processed iron meteorites,
we can learn how rapidly the iron cooled as it solidified (Figure 11.11). As a general
rule, the slower the cooling, the larger the crystals. By examining iron meteorites, we
find that the iron was originally at a temperature of T ∼ 800 K and cooled at a very
slow rate, dropping only ∼ 3 K per million years. The cooling time for these meteorites
is consistent with an object having an iron–nickel core covered with an outer shell of
rock hundreds of kilometers thick. Thus, we can deduce that iron meteorites probably
originated in asteroids with sizes of 300 to 600 kilometers. It is hypothesized that some of
these differentiated asteroids were destroyed by giant impacts in the early solar system.

Some of the processed meteorites have distinctive compositions that allow us to
identify their origin. For instance, some meteorites prove to have originated on the Moon
or on Mars.13 Violent collisions with large meteoroids, of the sort that create big impact
craters, can accelerate small bits of debris to speeds greater than the escape speed from
the Moon (vesc = 2.4 km s−1) or Mars (vesc = 5.0 km s−1). These ejected bits of matter
go into orbit around the Sun, and a few of them eventually collide with the Earth.

13 The martian meteorites have gases trapped within them that are identical in composition to the martian
atmosphere.
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FIGURE 11.11 When an iron meteorite is sliced in half and etched with acid, it
reveals its inner crystal pattern, indicative of the conditions under which its parent
body formed and cooled.

Impacts of large meteoroids can have disastrous results for life on Earth. Some fairly
large impacts of the recent past include

. Tunguska, Siberia, 1908. This event was probably the impact of a small cometary
body that detonated before reaching the surface, since no impact crater was created.
It flattened trees, however, for tens of kilometers in all directions, and shattered
windows hundreds of kilometers away.

. Barringer Crater, Arizona. This well-known impact crater (seen in Figure 11.12)
is approximately 1.5 km in diameter. It was created by the impact of an iron
meteorite ∼ 50 m across, about 50,000 years ago.

There are reasons to believe that large impacts might be related to large-scale extinc-
tions of species on Earth. The most famous mass extinction occurred at the end of the
Cretaceous period, 65 million years ago. This extinction resulted in the disappearance
of dinosaurs, as well as the death of 99% of all organisms and the extinction of 75% of
all species. The origin of this Cretaceous–Tertiary extinction is believed to be the impact
of an asteroid or comet with the Earth. If this hypothesis is correct, then the dinosaurs
were not killed directly by the impact, but indirectly by the events in its aftermath. Tiny
dust particles kicked up by the impact would have lingered in the atmosphere for years,
severely inhibiting photosynthesis. This prolonged dimming of sunlight is referred to as
nuclear winter, since it was first recognized as a possible side effect of global nuclear
war. The extinction of the dinosaurs enabled mammals (which were mostly small, om-
nivorous, mouselike creatures at the time of the Cretaceous extinction) to flourish in the
newly opened ecological niches.



288 Chapter 11 Small Bodies in the Solar System

FIGURE 11.12 Aerial view of the Barringer Crater, in northern Arizona.

Part of the evidence for a large impact at the time of the Cretaceous–Tertiary extinction
is iridium-rich sediments in geological strata that are 65 million years old. These iridium-
enhanced layers are found all over the world. While iridium is rare in the Earth’s crust, it
is much more common in meteorites. The total amount of iridium found would require
an asteroid about 10 km in diameter. The most likely impact site for the asteroid is the
Chicxulub Crater on the Yucatan peninsula. This crater is buried under thick layers of
sediment and was only discovered by drilling during the course of oil exploration. The
Chicxulub Crater has a diameter of 180 km (about right for an impacting body 10 km
across), and radioactive dating of rocks melted by the impact yielded an age of 64.98
million years (about right for the time of the Cretaceous–Tertiary extinction).

PROBLEMS

11.1 The asteroid Eugenia has a small natural satellite orbiting it. The orbital period of the
satellite is P = 4.76 days. The semimajor axis of its orbit is a = 1180 km. What is
the mass of Eugenia? (Hint: it is safe to assume that the mass of the satellite is tiny
compared to the mass of Eugenia.)

11.2 A cometary nucleus rotates rapidly and has an albedo A = 0.05. When its surface
temperature reaches T ≈ 150 K, the ice of which it’s mostly made starts to sublime
and forms a gaseous coma. How far is the cometary nucleus from the Sun when the
coma starts to form?
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11.3 The Oort cloud is thought to contain as many as 1012 cometary bodies. Estimate
the total mass of the Oort cloud and compare it to the mass of the Earth. State the
assumptions made in your calculation.

11.4 Imagine a regulation bowling ball (mass m = 7.2 kg, diameter d = 21.6 cm) orbiting
the Sun at a = 1 AU. How long will it take the Poynting–Robertson effect to cause
the bowling ball to spiral into the Sun?

11.5 In Section 4.3.2, we computed the Hill radius of the Earth, that is, the maximum
stable radius of a satellite around the Earth, given the differential tidal force provided
by the Sun. What is the maximum stable radius of a comet around the Sun, given the
differential tidal force provided by the Alpha Centauri system, which has M ≈ 2M�?
In view of this calculation, what do you expect the approximate radius of the Oort
cloud to be?

11.6 An asteroid is 3 AU away from the Sun when it is observed from the Earth at
opposition. How large does the asteroid have to be in order to occult a Sun-like
star at a distance d = 10 pc?

11.7 Comet Halley has a perihelion distance q = 0.586 AU and orbital eccentricity
e = 0.967.

(a) What is the semimajor axis of its orbit?
(b) What is its orbital speed at perihelion?
(c) What is its aphelion distance?
(d) What is its orbital speed at aphelion?

11.8 The Wilkinson Microwave Anisotropy Probe, which we encounter again in Chapter 24,
is a satellite located near the L2 point of the Sun–Earth system, 1.5 million km “down-
Sun” of the Earth (see Figure 11.3). It is protected from solar radiation by a circular
sunshield with diameter d = 4.5 m.

(a) Calculate the radiation force exerted on the sunshield. (For simplicity, assume
that the shield is perpendicular to the Sun’s rays, that it absorbs every photon that
strikes it, and that it’s outside the Earth’s penumbra.)

(b) The satellite and sunshield together have a mass m = 830 kg. What is their
acceleration as a result of the radiation force?

(c) Estimate the force exerted by the solar wind on the sunshield. Is this greater than
or less than the radiation force?



12 The Solar System
in Perspective

Our aim in studying planets in the solar system (aside from the intrinsic thrill of ex-
ploring new worlds) is to understand how the solar system was formed and how it has
evolved with time. We have approached this problem through comparative planetology,
comparing and contrasting the properties of objects within the solar system. In addition,
recent advances have permitted astronomers to detect planets around stars other than the
Sun. The properties of these extrasolar planets, or exoplanets, as they are called, can
be compared and contrasted with the properties of planets within the solar system. This
new information enables us to address the broader questions of how planetary systems
in general are formed, and how they evolve with time.

12.1 COMPARATIVE PLANETOLOGY WITHIN THE SOLAR SYSTEM

Comparative planetology, as practiced in the preceding chapters, has a number of lessons
to teach us.

Lesson 1: Surfaces of planets are shaped by competing internal mechanisms
and external mechanisms. The primary internal mechanisms are volcanism and (in the
case of the Earth) plate tectonics. The primary external mechanism is impact cratering
due to bombardment. We expect that the internal mechanisms will be more important
for the larger bodies, since these will retain their internal heat longer and thus remain
geologically active for longer periods of time. Among the terrestrial planets, this is indeed
correct. The larger planets, Venus and the Earth, have surfaces on which volcanism and
erosion have all but obliterated the evidence of the early bombardment era. The smallest
planet, Mercury, has surface features that are primarily the result of bombardment early
in the history of the solar system, with little modification by volcanism and erosion. Mars
is the intermediate case, with ample cratering in some locations and large volcanos in
other locations; moreover, there is ample evidence for past erosion by water and current
erosion by wind.

Lesson 2: More massive, colder planets are better able to retain atmospheres.
Whether or not a body can retain an atmosphere, and the chemical composition of the
atmosphere it does retain, depends on the competition between atmospheric temperature
and gravity. More massive planets, all other things being equal, have higher escape
speeds and are better able to retain an atmosphere. At a given temperature, the lightest

290
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atmospheric particles are moving most rapidly and are the most easily lost to space. In
order of increasing mass, consider an array of objects within the solar system:

. Pluto is extremely cold (T ≈ 50 K at perihelion), but it is too low in mass to retain
anything other than a thin methane atmosphere.

. The Moon is more massive than Pluto, but it is too hot (T ≈ 350 K at the subsolar
point) to retain any atmosphere at all.

. Mercury is too low in mass and too hot to retain an atmosphere, aside from transient
solar wind particles and atoms sputtered from its surface.

. Mars is cool (T ≈ 290 K on a warm summer day), but its mass is too small for it
to retain anything more than a weak CO2 atmosphere.

. Venus is hot (T ≈ 740 K), but it is massive enough to retain a thick CO2 atmo-
sphere.

. The Earth is warmer than Mars, but it is massive enough to have retained a dense
CO2 atmosphere initially. This evolved into a thinner N2 and O2 atmosphere
because of the presence of liquid water, which removed the CO2, and plant life,
which added the O2.

. The Jovian planets are sufficiently cold and massive to retain thick atmospheres
of hydrogen and helium.

Lesson 3: Giant satellites of Jovian planets show patterns consistent with our
ideas about formation of the planets. The satellite systems surrounding the Jovian
planets formed in a process that mirrored that of the solar system as a whole, with a
central, massive, warm object surrounded by an orbiting disk of material. The inner
satellites of Jovian planets (Io and Europa, for instance) formed under relatively warmer
conditions than the outer satellites (Ganymede and Callisto, for instance). The higher
densities of the inner satellites imply a higher fraction of dense, refractory rock and a
lower fraction of low-density, volatile ice. Inner satellites show evidence of volcanism,
driven by tidal heating in this case, and resurfacing (Figure 12.1). In the solar system,
the largest planets, Jupiter and Saturn, formed in the middle of the system, where there
was a favorable trade-off between temperature (cool enough for volatiles to condense)
and density (high enough to make massive bodies). Similarly, in the satellite systems
of the Jovian planets, the largest satellites formed in the middle of the system: Jupiter’s
Ganymede, Saturn’s Titan, and Uranus’s Titania.1

Lesson 4: Many unusual features of the solar system can be attributed to giant
impacts. It is only within the last few decades that astronomers have realized that some
of the more unusual properties of solar system bodies can best be explained by “giant
impacts” that occurred relatively late in the formation of the solar system. Giant impacts
seem to be the best way to account for the relatively large satellites of small planets. In the
case of the Earth–Moon system, the nonequatorial orbit of the Moon and the differences

1 Neptune’s giant satellite, Triton, is a special case, since it seems to be a captured TNO that didn’t form in
Neptune’s immediate vicinity.
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(a) Io (Jupiter) (b) Enceladus (Saturn) (c) Europa (Jupiter)

FIGURE 12.1 The Galilean satellites Io and Europa, and Saturn’s midsize satellite
Enceladus (not to scale), all show evidence of tidally driven volcanism that has
renewed their surfaces.

in surface composition between the Earth and the Moon suggest that the histories of
these objects are quite different.

A giant impact between the Earth and a Mars-sized planetoid seems the best way to
account for the current Earth–Moon system. In the case of Neptune’s satellite Triton,
its retrograde motion strongly argues that it is a captured body; the most obvious way
of slowing Triton sufficiently for it to be captured by Neptune is to have it collide with
a satellite already orbiting that planet. In addition, the retrograde rotation of Venus and
the “sideways” rotation of Uranus is best accounted for by impacts with large bodies
that severely altered the orientation of their rotation axes. On bodies with the oldest
surfaces, we see clear direct evidence for major collisions in the impact basins on the
Moon, Mercury, and Callisto (Figure 12.2). Collisions with large objects can have a
global impact on a planet’s topography, as the Caloris Basin on Mercury attests: at the
antipodes of the Caloris Basin, the surface has been shattered into chaotic terrain by the
converging seismic waves set off by the impact.

12.2 ORIGIN OF THE SOLAR SYSTEM

Our understanding of the history and evolution of the solar system is still incomplete,
but a comprehensive, self-consistent picture has begun to emerge. Our mental picture of
the solar system forming from a rotating protoplanetary disk explains many of the basic
features of the solar system:

1. Planetary orbits are all in nearly the same plane.

2. The Sun’s equator lies close to this plane.

3. Planetary orbits are nearly circular.
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(a) Mare Orientale (Moon) (b) Callisto (Jupiter satellite) (c) Caloris Basin (Mercury)

FIGURE 12.2 The Moon, Callisto, and Mercury all show evidence of large
impacts that altered their surfaces.

4. Planets all orbit in the same direction.

5. Most planets (and the Sun) rotate in the same direction as the planets’ orbital
motion.

We have also noted that although the Sun contains 99.8% of the mass in the solar system,
it contains less than 5% of the angular momentum. The planets represent the material in
the pre-solar nebula that had too much angular momentum to contract into the Sun as it
was forming.

If we refer back to the list of questions at the end of Section 8.1, about the differ-
ences between terrestrial and Jovian planets, we can provide plausible answers to all of
them. We have already noted that formation from a rotating gaseous disk explains why
planetary orbits are circular, and we can address the other questions as well.

. The nature of small bodies. In the picture we have developed, comets are primitive
bodies, planetesimals left over from the first phases of formation of the solar
system. Asteroids are a mix of primitive planetesimals and fragments of larger
differentiated bodies that were broken up in collisions. Some of these bodies have
been captured as satellites by planets. Other satellites, particularly larger satellites
in prograde, equatorial, nearly circular orbits, were probably formed at the same
time as their central planet, mimicking on a smaller scale the formation of the solar
system as a whole. Small debris in the solar system is replenished from comets
and asteroids; otherwise, the Poynting–Robertson effect would clear out the solar
system of these small bodies.
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. Differences in chemical composition. The broad chemical composition differ-
ences within the solar system reflect the temperature gradient within the proto-
planetary disk. The inner planets are primarily composed of the least volatile
substances. The outer planets were able to grow to larger sizes because volatile
ices could condense at the lower temperatures found in the outer disk. The com-
bination of icy, rocky, and metallic planetesimals let the outer planets grow to a
sufficiently high mass to retain hydrogen and helium (the most abundant elements
in the pre-solar nebula) in their atmospheres.

. Rings around Jovian planets. All the Jovian planets have ring systems inside
their Roche limits. The ring systems represent either bodies that failed to form
because of tidal stresses or bodies that were destroyed by tidal forces—or perhaps
both.

. Chemical differentiation of the terrestrial planets Radioactivity is the key to
understanding why all but the very smallest rocky and metallic bodies in the
solar system are chemically differentiated. In the early solar system, radioactivity
provided enough heat to melt iron in planetary interiors, thus precipitating a
complete liquefaction of the interior, and subsequent stratification by density.

12.3 DETECTING EXOPLANETS

Although astronomers have developed a broad outline of how the solar system formed,
details are still lacking. One of the most active fields in astronomy is the study of exo-
planets, or planets around stars other than the Sun. As more exoplanets are discovered,
the statistical study of planetary systems will allow a better general understanding of how
planets form and evolve, and whether our own solar system is ordinary or anomalous.

Detecting planets around other stars is far more difficult than detecting planets orbiting
the Sun. Neptune was discovered when it was close to opposition, ∼ 29 AU from the
Earth. By comparison, the Sun’s nearest neighbor among the stars, Proxima Centauri, is
at a distance d ∼ 270,000 AU ∼ 1.3 parsecs from the Earth. To illustrate the difficulties
involved in detecting exoplanets, let’s imagine we are located at the position of Proxima
Centauri and want to detect Jupiter as it orbits the Sun. (Since Jupiter is the largest planet
in the solar system, we expect it to be the most easily detected.) Jupiter is on a nearly
circular orbit, with semimajor axis a = 5.2 AU. Its maximum angular separation from
the Sun, as seen from a distance d = 270,000 AU (and shown in Figure 12.3), will be

θ = a

d
= 5.2 AU

270,000 AU
= 1.9 × 10−5 rad. (12.1)

Converting from radians to arcseconds, and scaling to an arbitrary orbit size a at an
arbitrary distance d , we find

θ = 4.0 arcsec

(
a

5.2 AU

) (
d

270,000 AU

)−1

. (12.2)
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FIGURE 12.3 Finding the maximum angular separation θ between the Sun and
Jupiter, as measured from a distance d.

Thus, in the diffraction-limited case (see equation 6.7), a telescope with D >∼ 4 cm would
provide sufficient angular resolution to distinguish Jupiter from the Sun, as seen from
Proxima Centauri. In reality, the difficulty in detecting Jupiter would come not from its
proximity to the Sun but from its dimness relative to the Sun.

At visible wavelengths, Jupiter’s luminosity is due to reflected sunlight. Jupiter’s
distance from the Sun is a ≈ 5.2 AU ≈ 7.8 × 108 km, its radius is RJup ≈ 11R⊕ ≈ 7.2 ×
104 km, and its albedo is A ≈ 0.51. Its luminosity of reflected light is thus

LJup =
(

L�
4πa2

)
(πR2

Jup)A = L�
4

(
RJup

a

)2

A. (12.3)

(Compare this to equation 8.6, which gives the rate at which a planet absorbs sunlight.)
The ratio of Jupiter’s reflected luminosity to the Sun’s intrinsic luminosity is

LJup
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≈ 0.51

4
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7.2 × 104 km

7.8 × 108 km

)2

≈ 4 × 10−9. (12.4)

If an object with a luminosity L ∼ 4 × 10−9L� were seen against a very dark back-
ground, it would be detectable from the distance of Proxima Centauri. However, the
Sun’s image would provide a bright background for the image of Jupiter, making the
unambiguous detection of Jupiter’s image far more difficult.

One way we can increase the apparent brightness of Jupiter relative to the Sun is to
look for the thermal emission from Jupiter at photon energies hν <∼ kTJup. Given Jupiter’s
temperature of TJup ≈ 150 K, this implies ν <∼ 3 × 1012 Hz or λ >∼ 100 μm. At these low
frequencies, the emission from both Jupiter and the Sun is in the Rayleigh–Jeans limit
(equation 5.87). Thus, the ratio of the specific flux of Jupiter to that of the Sun is

Fν,Jup

Fν,�
= πIν,Jup

πIν,�
≈ 2kTJupν

2

c2

c2

2kT�ν2
≈ TJup

T�
, (12.5)

independent of ν. Of course, we must also take into account the fact that the surface area
of Jupiter is smaller than that of the Sun. Approximating both Jupiter and the Sun as
spherical blackbodies, the ratio of their specific luminosities (that is, their luminosities
per unit frequency) is
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as long as we stay in the low-frequency Rayleigh–Jeans limit. Given RJup ≈ 0.1R� and
TJup ≈ 0.026T�, this implies that

Lν,Jup

Lν,�
≈ 3 × 10−4. (12.7)

Thus, by switching from visible light (λ ∼ 0.5 μm) to far infrared light (λ >∼ 100 μm),
we increase the ratio of Jupiterlight to sunlight from a tiny 4 × 10−9 to a more respectable
3 × 10−4.

Because direct imaging of exoplanets is difficult, planet searches have so far concen-
trated on indirect methods of finding exoplanets. For instance, the existence of a dim
exoplanet can be deduced from its gravitational effect on its parent star. Newton’s law
of universal gravitation tells us that the force exerted by Jupiter on the Sun, for instance,
is equal in magnitude to the force exerted by the Sun on Jupiter. Thus, instead of saying
Jupiter orbits the Sun, we should strictly say that both Jupiter and the Sun orbit the center
of mass of the Jupiter–Sun system. The location of the center of mass of a two-body
system can be readily calculated. Suppose that two spherical objects, such as a star and a
planet, are gravitationally bound to each other. The more massive object has a mass MA
and the less massive object has a mass MB; the two objects are separated by a distance
a, as shown in Figure 12.4. The center of mass lies on the line segment connecting the
centers of the two objects. If aA is the distance from MA to the center of mass, and aB is
the distance from MB to the center of mass, then

aB

aA
= MA

MB
. (12.8)

The center of mass is always closer to the more massive object.
To revert to our example of the Jupiter–Sun system, the mass of Jupiter is MB ≈

10−3MA, where MA = 1M�. Thus, as Jupiter travels on a large elliptical orbit with
semimajor axis aB = 5.2 AU = 7.8 × 108 km, the Sun travels on a small elliptical orbit
with semimajor axis aA = 5.2 × 10−3 AU = 780,000 km ≈ 1.1R�.

a

aBaA

MBMA

FIGURE 12.4 The center of mass of a two-body system.
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As we computed above, the semimajor axis of Jupiter’s orbit subtends an angle of 4
arcseconds as seen from the distance of Proxima Centauri; this implies that the semimajor
axis of the Sun’s orbit will subtend an angle of only 4 milliarcseconds. Generalizing, if
a star of mass MA has an exoplanet of mass MB � MA at a distance a, the semimajor
axis of the star’s orbit will subtend an angle

θA = 0.004 arcsec

(
MB/MA

0.001

) (
a

5.2 AU

) (
d

270,000 AU

)−1

, (12.9)

where d is the distance from the observer to the star. Thus, the angular size of the star’s
orbit is greatest for nearby stars with massive planets on large orbits.

If we were in the vicinity of Proxima Centauri, discovering Jupiter by direct imaging
(that is, taking a “snapshot” of Jupiter) or by astrometry (that is, watching the Sun
trace out a small ellipse) we would face different technical difficulties. The orbit of
Jupiter would be relatively large in angular size—a point in favor of direct imaging—
but detecting Jupiter would be difficult because of its tiny luminosity compared to the
Sun. The Sun itself would be simple to detect—a point in favor of astrometry—but its
orbit would be too small to resolve with a standard optical telescope.

Because of the difficulties involved in direct imaging and astrometry, most exoplanets
discovered to date have been found using other techniques. One such technique is the
radial velocity method. If the orbital velocity of a star, caused by an unseen exoplanet,
has a component vr along the line of sight to an observer, it will cause a Doppler shift

�λ

λ
= vr

c
(12.10)

in the absorption lines of the star’s spectrum. Consider the simple case of a star, with
mass MA, and a planet, with mass MB, on circular orbits about their center of mass; this
is illustrated in Figure 12.5a. The orbital periods of the star and planet about the center
of mass are identical. Thus, the orbital speed vA of the star is related to the orbital speed
vB of the planet by the equation

P = 2πaA

vA
= 2πaB

vB
. (12.11)

With the assistance of equation (12.8), we deduce

vA

vB
= aA

aB
= MB

MA
. (12.12)

Let’s use the Jupiter–Sun system as our example, once again. If we approximate the
orbit of Jupiter as a circle, its orbital speed is

vB = 2πaB

P
= 2π(5.2 AU)

11.9 yr

(
1 yr

3.16 × 107 s

) (
1.50 × 108 km

1 AU

)
= 13 km s−1. (12.13)

The orbital speed of the Sun will then be

vA = MB

MA
vB = 0.001(13 km s−1) = 13 m s−1. (12.14)
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FIGURE 12.5 (a) A star (solid orbit) and a planet (dashed orbit) moving about
their center of mass. The observer is in the orbital plane, far to the left. The numbers
indicate the locations of the star and planet at specific times. (b) The radial velocity
of the star (solid curve) and the planet (dashed curve) relative to the observer. The
numbered positions correspond to the locations indicated in part (a).

Thus, the Sun’s orbital speed is a modest 13 m s−1, or about 29 mph.2 With current
techniques, the radial velocity of relatively bright stars can be determined to within
∼ 1 m s−1; thus, it is technologically feasible to detect Jupiter-like exoplanets from their
effect on the radial velocity of Sun-like stars.

Suppose that we are looking at a system that consists of a star and a single planet. The
center of mass of the system will be moving with some radial velocity vcm. In addition,
if the star and planet are on circular orbits, and we are in the orbital plane of the system
(as shown in Figure 12.5a), the radial velocity of the star will show sinusoidal variations.
The sinusoidal curve (as shown in Figure 12.5b) will have an amplitude vA and a period
P equal to the orbital period of the planet. In general, though, we will not be in the
orbital plane of the system; we will be observing the orbital plane at an inclination i, as
illustrated in Figure 12.6. Thus, the measured amplitude of a radial velocity curve is only
equal to vA if we are observing the orbital plane edge-on (i = 90◦); at all other orbital
inclinations, the amplitude is vA sin i < vA.

From the velocity curve of a star with an unseen companion, we can determine the
orbital period P and the value of vA sin i. Let’s see how we can use these measured
quantities to deduce the properties of the perturbing exoplanet. Kepler’s third law, as
modified by Newton (equation 3.53), tells us that

(aA + aB)3 = G(MA + MB)P 2

4π2
. (12.15)

2 For comparison, this also happens to be the average air speed of an unladen European swallow (Park et al.,
2001, Journal of Experimental Biology, vol. 204, p. 2741).
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FIGURE 12.6 The maximum radial velocity vr that we measure is the projection
of the orbital speed v onto the line of sight: vr = v sin i.

In the case that MA � MB, and hence aA � aB, we can simplify this to

a3
B ≈ GMAP 2

4π2
. (12.16)

The mass MA of the star, as we see in Chapter 13, can usually be deduced from its
spectrum. For instance, stars with spectra similar to the Sun’s have masses close to a
solar mass. Knowledge of the star’s mass enables us to estimate the size of the planet’s
orbit:

aB ≈ 1 AU

(
MA

1M�

)1/3 (
P

1 yr

)2/3

. (12.17)

In addition, the amplitude of the velocity curve, vA sin i, gives us some knowledge
of the mass of the planet. Using the relation aB = (MA/MB)aA, we start by rewriting
equation (12.16) in the form

M3
A

M3
B

a3
A ≈ GMAP 2

4π2
. (12.18)

Solving for MB, the planet’s mass, we find

MB ≈
(

4π2M2
A

GP 2
a3

A

)1/3

. (12.19)
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Although aA, the size of the star’s orbit, is generally too tiny to be measured by the
astrometric method, we can make the substitution 2πaA = PvA into equation (12.19) to
yield

MB ≈
(

M2
AP

2πG
v3

A

)1/3

. (12.20)

Unfortunately, we can’t measure vA; we can measure only vA sin i. Thus, we can’t
compute MB; we can compute only

MB sin i ≈
(

M2
AP

2πG

)1/3

vA sin i

≈ 11M⊕

(
MA

1M�

)2/3 (
P

1 yr

)1/3 (
vA sin i

1 m s−1

)
. (12.21)

In the above equation, M⊕ = 6.0 × 1024 kg is the Earth’s mass; it takes 318 Earths to
equal the mass of one Jupiter.

If an exoplanet is to be detected by the radial velocity method, it must produce
vA sin i large enough to measure. Thus, exoplanets whose orbits are more nearly edge-
on (sin i ∼ 1) are more readily detected. In addition, since vA ∝ MBM

−2/3
A P −1/3 (from

equation 12.21), the radial velocity method favors the detection of massive, short-period
planets around relatively low-mass stars. In addition, measuring P accurately requires
observing the star for a time ∼ P or longer; this adds to the difficulty of detecting long-
period exoplanets.

The detection of exoplanets by the transit method requires a different set of obser-
vations, and favors the detection of exoplanets with somewhat different properties than
those found by the radial velocity method. In the language of astronomers, a “transit”
is the passage of a planet between its parent star and the observer. Within the solar sys-
tem, for instance, observers on Earth can occasionally see transits of Mercury and Venus
across the Sun. During such a transit, the inferior planet appears as a small, dark circle
against the bright circle of the Sun, as shown in Figure 7.5. When an exoplanet makes a
transit, neither the star nor the exoplanet can be resolved in angle as seen from the Earth.
However, the transiting planet can be detected indirectly since it blocks part of the star’s
flux. If the cross-section of the planet is πR2

B and the cross-section of the star is πR2
A,

then when the planet lies directly between the star and an observer, the star’s measured
flux F drops by a fractional amount

δF

F
= πR2

B

πR2
A

=
(

RB

RA

)2

. (12.22)

If a distant observer saw Jupiter transit across the Sun, for instance, the Sun’s flux would
drop by a fraction

δF

F
=

(
RJup

R�

)2

=
(

69,900 km

696,000 km

)2

= 0.010, (12.23)
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FIGURE 12.7 (a) Events when a planet transits a star. (b) The light curve
(measured flux as a function of time) during the transit, with a marker indicating the
flux during the corresponding event in part (a).

since Jupiter would cover 1% of the Sun’s area.3

The light curve of a star during a transit is shown in more detail in Figure 12.7.
From the light curve, we can measure the drop in flux at mid-transit, δF/F ; we can

also measure the times of first, second, third, and fourth contact, as defined in the figure.
If we wait patiently, we can also measure the time between successive transits; this is

3 This simple calculation assumes that the Sun’s surface brightness is uniform. The effects of limb darkening
(described in Section 7.1) slightly complicate matters.
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equal to the orbital period P of the exoplanet. The drop in flux tells us the relative sizes
of the exoplanet and the star (equation 12.22):

RB

RA
=

(
δF

F

)1/2

. (12.24)

If the planet is much less massive than the star, its orbital semimajor axis aB is given by
Kepler’s third law (equation 12.16), and its speed (assuming a circular orbit) is

vB ≈ 2πaB

P
≈ 30 km s−1

(
MA

1M�

)1/3 (
P

1 yr

)−1/3

. (12.25)

If we are seeing the exoplanet’s orbit exactly edge-on, then between the time of first
contact (t1) and the time of second contact (t2), the planet moves a distance equal to its
own diameter. In this case, the radius of the planet is

RB = 1

2
vB(t2 − t1) ≈ 54,000 km

(
MA

1M�

)1/3 (
P

1 yr

)−1/3
t2 − t1

1 hr
. (12.26)

Similarly, between the time of first and third contact, if the exoplanet’s orbit is edge-on,
the planet moves a distance equal to the star’s diameter, enabling the radius of the star
to be calculated as well.

For an arbitrary exoplanet, our probability of seeing it in transit across its star is small.
This is because a transit can be seen only if we are very close to the orbital plane of the
planet. Figure 12.8 shows a star (A) and planet (B) separated by a distance a. The star is
at a distance d from an observer and the planet is at a distance d ′; however, when d � a,
as we expect when observing exoplanets, we can make the approximation d ′ ≈ d. The
angular radius of the star, as seen by the observer, will be θA ≈ RA/d. The angular radius
of the planet will be θB ≈ RB/d ′ ≈ RB/d. The observer will see a transit when the angle
θ between the planet’s center and the star’s center satisfies the relation

θ ≤ θA + θB ≈ RA + RB

d
. (12.27)

a

d

90° – i

d'

θ

Observer

Planet (B)

Star (A)

FIGURE 12.8 The geometry that determines whether an observer will see a
planet (B) transit a star (A).
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From the rule of sines applied to the triangle in Figure 12.8, we find

sin θ

a
= sin(90◦ − i)

d ′ ≈ cos i

d
, (12.28)

where i is the inclination of the exoplanet’s orbit around the star. Since θ must be small
when d � a, we can write

θ ≈ sin θ ≈ a

d
cos i. (12.29)

By combining equations (12.27) and (12.29), we can find the range of inclination i for
which a transit is observed:

a

d
cos i <∼ RA + RB

d
, (12.30)

or

cos i <∼ RA + RB

a

<∼ 0.0046

(
RA + RB

1R�

) (
1 AU

a

)
. (12.31)

Unless the planet is only a few stellar radii away from its parent star, cos i must be small
for a transit to be observed, and thus i must be very close to 90◦. A distant observer would
see Mercury transit the Sun only if Mercury’s orbit were at an inclination i >∼ 89.3◦.
However, a distant observer would see Neptune transit the Sun only if the inclination
were i >∼ 89.99◦.

The range of inclinations for which an exoplanet produces a transit is largest for
planets close to their parent star. In addition, if an exoplanet is to be detected by the transit
method, it must produce δF/F large enough to be measured. Thus, exoplanets that are
large in radius compared to their parent star are more readily detected. For a dedicated
exoplanet hunter, the jackpot comes when a transiting exoplanet produces measurable
radial velocity variations in the star that it orbits. The combination of transit data and
radial velocity data provides a large payout of planetary parameters. The transit allows
the radius of the planet to be known. Since the inclination of a transiting planet must be
i ≈ 90◦, this permits an exact calculation of the planetary mass from equation (12.21).

For instance, the star HD 209458 is a Sun-like star (MA ≈ 1M�, RA ≈ 1R�) that is
orbited by a transiting planet. The planet’s orbital period is P = 3.525 days, implying
an orbital size aB ≈ 0.045 AU. The reduction of flux during the transit is δF/F ≈ 0.02,
implying that the radius of the planet is RB ≈ 0.14R� ≈ 1.4RJup. The orbital velocity of
the star is vA = 85 m s−1, implying a planetary mass (equation 12.21) MB ≈ 200M⊕ ≈
0.7MJup. Thus, we are presented with a planet astonishingly close to its star; its volume
is greater than that of Jupiter, but its mass is smaller, implying an average density of just
ρ ∼ 400 kg m−3. Obviously, exoplanets are not all carbon copies of planets within our
solar system.
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12.4 PROPERTIES OF EXOPLANETS

Recent searches for exoplanets have contributed greatly to our knowledge of planetary
properties. First, and most fundamental, these searches have shown that exoplanets exist,
and that the Sun is not unique in having an entourage of planets. By the middle of the
year 2008, about 300 exoplanets had been discovered, primarily by the radial velocity
and transit methods. With such large numbers of planets known, it becomes useful to
do statistical analysis of planetary properties. When doing the statistics, however, we
must keep in mind the selection biases involved in searches for exoplanets. The radial
velocity method favors the discovery of high-mass planets on small orbits; the transit
method favors the discovery of large-radius planets on small orbits. In general, big things
are easier to detect than small things; it’s easier to detect a hippopotamus in your living
room than it is to detect an ant. Despite the ease of detection, it is still surprising, however,
to find a hippo lounging on your sofa.

One of the most startling results of exoplanet searches is the astronomical equivalent
of finding a living-room hippo; searches have revealed a significant population of hot
Jupiters, where a hot Jupiter is a planet with a mass comparable to that of Jupiter, on
an orbit with a <∼ 0.1 AU.4 It is estimated that ∼ 1% of stars surveyed have planets with
MB sin i ≥ 0.5MJup on orbits with a ≤ 0.1 AU. Going out to larger radii, ∼ 6% of the
stars have planets in the same mass range on orbits with a ≤ 5 AU, comparable to the
size of Jupiter’s orbit.

Figure 12.9a shows MB sin i as a function of semimajor axis length a for exoplanets
detected with the radial velocity technique. Exoplanets lying below the dashed line in the
figure would produce a radial velocity of vr

<∼ 3 m s−1 in their parent star, and thus would
be difficult to detect using current techniques. In addition, exoplanets with a >∼ 5 AU
would have orbital periods of P >∼ 11 yr, assuming a 1M� parent star; few stars have been
monitored for a long enough time at high enough spectral resolution to detect such long-
period planets. Of the eight major planets in our solar system, indicated as the squares
in Figure 12.9, only Jupiter falls within the region of parameter space where exoplanets
can be reliably detected. Thus, current techniques for finding exoplanets cannot tell us
about Earth-mass planets on Earth-like orbits. They are most effective at finding types
of planets that are not seen in our own solar system: “hot Jupiters” and “hot Neptunes.”

In the previous section, we discussed, for the sake of simplicity, the case of exoplanets
on nearly circular orbits. If an exoplanet is on a circular orbit with constant orbital speed,
then the radial velocity variations of its parent star will trace out a sinusoidal curve. If
the star’s radial velocity variations are not sinusoidal, that is a sign that the perturbing
exoplanet is on an eccentric orbit with varying orbital speed. If the shape of the radial
velocity curve is measured with sufficient accuracy, the eccentricity of the exoplanet’s
orbit can be calculated. Figure 12.9b shows the orbital eccentricity e as a function
of semimajor axis length a for exoplanets detected with the radial velocity method.
Exoplanets on extremely small orbits (a <∼ 0.05 AU) tend to have nearly circular orbits;
this is a result of the very strong tides acting on these planets. At larger radii, however,

4 For comparison, Mercury has a ≈ 0.4 AU and M ≈ 0.0002MJup.
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FIGURE 12.9 (a) MB sin i as a function of orbit size a for planets detected by
the radial velocity technique. The dashed line is the value of MB sin i that would
produce vr ≈ 3 m s−1 in a Sun-like star. (b) Eccentricity e as a function of orbit size
a. In both (a) and (b), solar system planets are indicated by squares.

exoplanets have a wide range of eccentricities. This is a strong contrast to the eccentricity
of planetary orbits within the solar system (shown as the squares in Figure 12.9b).

The search for exoplanets has thus provided some surprising results. The discovery
of hot Jupiters posed a challenge to existing models for the formation and evolution of
planetary systems. Jovian planets should not be able to form within 0.1 AU of a Sun-like
star; the temperature there is too hot for even the most refractory substances to condense
into solids. Thus, hot Jupiters must be formed far from their parent stars, then migrate
inward. To move from a large orbit to a smaller one, a planet must lose orbital angular
momentum. There are various mechanisms by which a young planet can lose angular
momentum. Planets initially form in gaseous protoplanetary disks (see Figure 8.3). The
viscous gas of the disk can exert a torque on protoplanets as they form, decreasing their
orbital angular momentum and driving them to smaller orbits. At a later stage, close
encounters with planetesimals can transfer angular momentum from the exoplanet to the
planetesimals. Finally, if two planets have a close encounter (as opposed to a collision,
like the one that formed the Moon), orbital angular momentum will be transferred from
one planet to the other. In this case, one planet will be driven inward to a smaller orbit,
while the other will be driven outward (and may even attain escape speed). It is not yet
known which of these mechanisms is the primary one that drives hot Jupiters inward.
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Future exoplanet surveys will increase our knowledge about planets on larger orbits,
and about planets of lower mass. Even our limited knowledge so far, however, has opened
our eyes to new types of planetary systems. The existence of hot Jupiters, and of high-
mass planets on eccentric orbits, has taught us that not all planetary systems are like the
solar system.

PROBLEMS

12.1 What would be the minimum Earth–Moon distance at which the center of mass of
the Earth–Moon system would lie outside the Earth’s surface?

12.2 The star 51 Pegasi has a mass MA = 1.06M�. Its radial velocity varies sinusoidally
with a period P = 4.23 days and an amplitude vA sin i = 56 m s−1. What is MB sin i

of the exoplanet causing these velocity variations?

12.3 What fractional decrease in flux, δF/F , would be caused by an Earth-like planet
transiting a Sun-like star? If a transit of the Earth across the Sun were viewed by a
very distant observer in the Earth’s orbital plane, how long would the transit last?

12.4 Compute the ratio of Jupiter’s luminosity to the Sun’s luminosity, Lν,Jup/Lν,�, at a
wavelength λ = 20 μm.

12.5 What is the rotational angular momentum of Jupiter? What is the sum of the orbital
angular momenta of the four Galilean satellites? Explain how the analogy of a “solar
system in miniature” breaks down here.

12.6 While doing a transit study, you find an exoplanet around a nearby Sun-like star.
The time between transits is P = 32 days. During a transit, the time from first
to second contact is t2 − t1 = 30 minutes and the time from first to third contact
is t3 − t1 = 5 hours. The depth of the transit is δF/F = 0.01. Doing follow-up
radial velocity measurements of the star, you find that its peak radial velocity is
vr = 65 m s−1.

(a) What is the radius of the planet?
(b) What is the mass of the planet?
(c) What is the semimajor axis of the planet’s orbit?



13 Properties of Stars

Although astronomers study a wide range of objects, from dust grains to superclusters
of galaxies, the study of stars, and the laws dictating their behavior, is a key part of
astronomy. A star can be concisely defined as a luminous ball of gas powered by nuclear
fusion in its interior. This definition distinguishes stars from smaller objects like planets
and brown dwarfs that are too cool inside for fusion to take place. And it also distinguishes
stars from stellar remnants like white dwarfs and neutron stars that were stars once but
no longer host a fusion reactor in their interiors.1

13.1 HOW FAR IS A STAR?

Astronomers have developed many methods of estimating distances to stars and other
celestial objects. We review only a few of the more useful techniques. Within the solar
system, the distances between planets can be accurately measured using radar. A brief,
powerful burst of radio waves is sent toward a planet, using the dish of a large radio
telescope to collimate the radiation. After a time δt , a radio “echo” is detected; the time
δt , which can be measured with great accuracy, is the round-trip travel time for a photon.
The one-way distance from the radio telescope to the planet is then d = c(δt)/2.

Thanks to careful radar measurements, distances within the solar system are known
with great accuracy. For instance, the length of the astronomical unit is known to better
than one part per billion (1 AU = 149,597,870.7 km). The radar technique for measuring
distances is useful only within the solar system. Even if you had the patience to wait more
than 8 years for a reflected radio signal from Proxima Centauri (the nearest star other
than the Sun), the signal would be far too faint to detect with current technology.

A useful tool in the astronomer’s kit for measuring the distance to nearby stars is
stellar parallax. Stellar parallax was mentioned in Chapter 2 (see Section 2.6) as a
proof of the Earth’s motion around the Sun. The Earth’s motion around the Sun creates
an apparent motion of nearby stars in a tiny ellipse. The semimajor axis of the ellipse

1 Despite their name, “neutron stars” are not gaseous and not fusion-powered; thus, they are not stars by the
strict definition we have adopted.
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has an angular size π ′′, given by the formula (equation 2.33)

π ′′ = 206,265 arcsec

d[AU]
. (13.1)

Thus, if the parallax π ′′ of a star is large enough to be measured with the equipment at
hand, the distance d to the star can be calculated:

d = 206,265 AU

π ′′[arcsec]
. (13.2)

Since we know the length of the astronomical unit very well, the accuracy with which
we know the distances to nearby stars is determined by the accuracy with which we can
measure π ′′. The astronomical unit is an inconveniently small unit for measuring stellar
distances. Thus, astronomers tend to measure stellar distances in parsecs, where

d = 1 parsec

π ′′[arcsec]
. (13.3)

Thus, the parsec (abbreviated pc) is the distance at which a star has a parallax angle π ′′
equal to one arcsecond.2 In metric units, 1 pc = 3.086 × 1016 m.

The angle π ′′, even for the Sun’s nearest neighbors among the stars, is less than
one arcsecond. When Friedrich Wilhelm Bessel first measured stellar parallax in 1838,
he found that the star 61 Cygni had π ′′ = 0.3 arcsec; that’s the size of a 1-cent coin
(U.S. or Canadian) as seen 14 km away. Currently, the best measurements of parallax
angles at visible wavelengths are those made by the Hipparcos satellite, which measured
π ′′ for over 100,000 stars in our galaxy, with a typical accuracy of a milliarcsecond
(0.001 arcsec).

The Sun’s nearest neighbors are the three stars of the Alpha Centauri (α Cen) system.
The nearest of the three is Alpha Centauri C, also known, from its proximity to us, as
Proxima Centauri. From the Hipparcos measurements, we know the parallax, and thus
the distance, to each star in the system:

. Proxima Centauri:

π ′′ = 0.7723 ± 0.0024 arcsec
d = 1 pc/π ′′ = 1.295 ± 0.004 pc = 267,100 ± 800 AU

. Alpha Centauri A and B:

π ′′ = 0.7421 ± 0.0014 arcsec
d = 1.348 ± 0.003 pc = 277,900 ± 500 AU

Alpha Centauri A and B form a closely bound binary pair, with an average separation
of a = 24 AU (slightly larger than the distance between the Sun and Uranus). Proxima
Centauri, however, is 0.053 pc = 10,800 AU closer to us than Alpha Centauri A and
B are. In addition, Proxima Centauri is separated from Alpha Centauri A and B by

2 Because of this definition, there are 206,265 astronomical units in 1 parsec, just as there are 206,265
arcseconds in 1 radian.
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7849 arcseconds (more than 2 degrees) as seen from Earth. This angular separation
corresponds to a physical distance

D =
(

7849 arcsec

206,265 arcsec rad−1

)
267,100 AU = 10,200 AU (13.4)

at the distance of Proxima Centauri. Thus, the three-dimensional distance between
Proxima Centauri and the Alpha Centauri A and B pair is

D =
[
(10,800 AU)2 + (10,200 AU)2

]1/2 = 14,900 AU, (13.5)

or about 0.07 pc.
Even with the accurate angular measurements provided by Hipparcos, stellar parallax

is useful only for stars within 200 parsecs of us. That’s less than 3% of the distance from
here to the center of our galaxy. Hipparcos measured the parallax of ∼ 42,000 stars with
an error of less than 20%; compared to the estimated 200 billion stars in our galaxy,
the number with distances estimated by stellar parallax is small. For the overwhelming
majority of stars in our galaxy, we must develop techniques other than stellar parallax
to find their distances. We will return to the problem of distance determination later in
the text. For the moment, let us divert our attention to the problem of determining the
brightness of a star.

13.2 HOW BRIGHT IS A STAR?

In casual conversation, the word “brightness” is often used loosely. In astronomy, it
is useful to distinguish between intrinsic brightness and apparent brightness. The
intrinsic brightness of a star is a measure of how much light the star emits in a given time.
The apparent brightness of a star is a measure of how much starlight per unit area enters
our pupils (or the aperture of our telescope) in a given time. The apparent brightness
of a star, or any other luminous object, depends on both its intrinsic brightness and its
distance; the farther away a star is, the lower its apparent brightness.

The intrinsic brightness of a star is also known as its luminosity L. The luminosity
of a star is the rate at which it emits energy in the form of electromagnetic radiation. Lu-
minosity is commonly measured in watts (W). For example, the Sun has a luminosity of

L� = 3.86 × 1026 W. (13.6)

This luminosity includes all electromagnetic radiation emitted by the Sun, from radio
waves to gamma rays. It is also an average over time, since the Sun’s luminosity is slightly
variable, changing by about 0.1% over the course of a sunspot cycle.3

The apparent brightness of a star is also known as its flux F . The flux of a star is
the rate per unit area at which its energy strikes a surface held perpendicular to the star’s

3 Strange though it may seem, the Sun’s luminosity is greatest when the number of sunspots is largest. This
is because increased numbers of dark sunspots are correlated with increased numbers of bright plages. The
increase in light from the plages more than compensates for the decrease in light from the sunspots.
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rays. Flux is commonly measured in watts per square meter. The light emitted by stars is
usually isotropic; that is, it’s the same in all directions. Consider a transparent sphere of
radius d centered on a star of luminosity L. The flux of light energy through the sphere
is the luminosity of the star divided by the sphere’s area:

F = L

4πd2
. (13.7)

The observed flux of a star falls off as the inverse square of its distance d. For example,
the Sun’s flux at the Earth’s location is

F = L�
4π(1 AU)2

= 3.86 × 1026 W

4π(1.496 × 1011 m)2
= 1370 W m−2. (13.8)

Sunlight is a potentially potent power source on Earth; unfortunately, solar panels are
inefficient, our atmosphere is not transparent, clouds are frequent, and half the Earth is
in shadow at any given time.

In equation (13.8), we computed the Sun’s flux, given its luminosity and distance. In
practice, astronomers more commonly work in the other direction: after measuring the
flux and distance of a star, they compute its luminosity. Consider, for example, the star
Sirius, also known as Alpha Canis Majoris (α CMa), the apparently brightest star in our
night sky. From the Earth’s northern hemisphere, Sirius can be seen in the winter sky,
“dogging the heels” of the constellation Orion. The flux of Sirius is

FS = 1.2 × 10−7 W m−2. (13.9)

To intercept 1370 watts of sunlight, you’d need a panel one meter on a side; to intercept
1370 watts of Siriuslight, you’d need a panel roughly the size of Connecticut. The
distance to Sirius, computed from its parallax, is

dS = 2.637 pc = 8.14 × 1016 m. (13.10)

Thus, we can compute the luminosity of Sirius to be

LS = 4πd2
SFS = 1.0 × 1028 W = 26L�. (13.11)

This tells us that stars don’t all have the same luminosity.
Measuring the total flux of a star, integrated over all wavelengths of light, is a difficult

task. The history of stellar flux measurement began when a prehistoric human looked
up at Sirius and said the prehistoric equivalent of “Gosh, that’s a bright star!” As a flux
measurement, this has two drawbacks. First, the human eye can only detect light in the
wavelength range 4000–7000 Å. Second, the exclamation “Gosh, that’s a bright star!” is
not quantitative.

The first recorded attempt to quantify stellar flux at visible wavelengths was made
by the Greek astronomer Hipparchus in the second century BC. After noting that stars
differed in their apparent brightness, he classified them in six categories. The stars with
the greatest flux were stars of the 1st magnitude. The stars with the next highest flux
were stars of the 2nd magnitude, and so on down to stars of the 6th magnitude, which
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are the faintest stars visible to the human eye. After the invention of the telescope,
the apparent magnitude scheme of Hipparchus was extended to fainter stars (7th
magnitude, 8th magnitude, and so forth). A 6-inch amateur telescope at a dark site can
reach to 13th magnitude or so; the faintest objects in the Hubble Ultra Deep Field, shown
as Color Figure 22, are about 29th magnitude. Improvements in measuring flux led to
the introduction of fractional magnitudes; careful photometry can routinely measure a
star’s flux to within 0.01 magnitudes, and in high-precision applications, errors as small
as 0.001 magnitudes can be achieved.

The apparent magnitude system was placed on a firm mathematical basis by Norman
Pogson in the mid-nineteenth century, when he realized that a difference of 5 magnitudes
represents a multiplicative factor of 100 in flux. To illustrate this point, consider two
stars; star #1 has an apparent magnitude m1 and star #2 has an apparent magnitude
m2. If m2 − m1 = 5, we say that star #1 is 5 magnitudes brighter than star #2.4 With
m2 − m1 = 5, the ratio of the stars’ fluxes is

F1

F2
= 100. (13.12)

If m2 − m1 = 1 (that is, if star #1 is 1 magnitude brighter than star #2), the ratio of
fluxes is

F1

F2
= 1001/5 = 100.4 ≈ 2.512. (13.13)

In general, the relation between apparent magnitude and flux is

F1

F2
= 100(m2−m1)/5 = 100.4(m2−m1), (13.14)

or

m2 − m1 = 2.5 log(F1/F2), (13.15)

where “log” represents a common logarithm, with base 10.
The apparent magnitude m can be thought of as a logarithmic measure of the flux,

with

m = C − 2.5 log F. (13.16)

The constant C has historically been chosen so that the star Vega (Alpha Lyra, or α

Lyr) has an apparent magnitude of zero.5 Thus, C = 2.5 log FVega. Here are a few other
apparent magnitudes of stars, taking into account only the flux at visible wavelengths:

4 Please note: the apparent magnitude system is “bass-ackwards,” in that smaller values of m correspond to
larger flux.
5 Why Vega? It’s an apparently bright star, which makes its flux easier to measure. It doesn’t have a binary
companion providing contaminating light. It is a fairly hot star, so it emits a significant amount of light at visible
wavelengths, where cooler stars are comparatively faint. Finally, its luminosity doesn’t vary significantly.
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Star Apparent Magnitude, m

Sirius −1.5

Alpha Centauri A 0.0

Alpha Centauri B 1.4

Proxima Centauri 10.7

Sun −26.75

This tells us that we receive the same flux of visible light from Alpha Centauri A as we
do from Vega. However, the flux from Vega is greater than that from Proxima Centauri
by a factor

FVega

FProx
= 100.4(10.7−0.0) ≈ 19,000. (13.17)

Since a star’s flux depends on both luminosity and distance, so does the star’s apparent
magnitude. If we want a logarithmic measure of the luminosity alone, we use the absolute
magnitude of a star, designated by the symbol M . The absolute magnitude M of a star
is defined as the apparent magnitude it would have if it were at a distance d = 10 pc.6

Since the apparent magnitude of a star is

m = C − 2.5 log F (13.18)

= C − 2.5 log L + 2.5 log(4π) + 5 log d, (13.19)

the absolute magnitude of the star is

M = C − 2.5 log L + 2.5 log(4π) + 5 log(10 pc) (13.20)

= C − 2.5 log L + 2.5 log(4π) + 5. (13.21)

If we measure the apparent magnitude of a star (by comparing its flux to that of Vega
or some other standard star) and then measure the distance to the star (by finding its
parallax), the absolute magnitude can then be computed:

M = m − 5 log d + 5, (13.22)

where d is measured in parsecs, or

M = m − 5 log(d/10 pc). (13.23)

For instance, consider Proxima Centauri. In Section 13.1, we found that its distance from
us is d = 1.295 pc; its apparent magnitude at visible wavelengths, as tabulated above, is
m = 10.7. The absolute magnitude of Proxima Centauri is then

M = 10.7 − 5 log(1.295/10) = 15.1. (13.24)

6 Why 10 parsecs? When the absolute magnitude was first defined in the early twentieth century, the only stars
whose distances were accurately known were those within 10 parsecs of the Sun (and hence with parallaxes
of more than 0.1 arcsec).
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If Proxima Centauri were 10 parsecs away from us, it would be 4.4 magnitudes fainter
than it actually is.

The difference between a star’s apparent magnitude m and its absolute magnitude M

is known as its distance modulus. From equation (13.23), the distance modulus is

m − M = 5 log(d/10 pc). (13.25)

Thus, the distance modulus is a logarithmic measure of the distance to a star. If you hear
an astronomer say “That star has a distance modulus of 10,” you know that the star in
question is 1000 parsecs away. Let’s look at the apparent magnitude, absolute magnitude
and distance modulus of our example stars:

Star Name m M m − M

Sirius −1.5 1.4 −2.9

Alpha Centauri A 0.0 4.4 −4.4

Alpha Centauri B 1.4 5.8 −4.4

Proxima Centauri 10.7 15.1 −4.4

Sun −26.75 4.83 −31.58

Note the wide range of absolute magnitudes for these stars. The most luminous (Sirius) is
13.7 magnitudes brighter than the least luminous. That’s a factor of 100.4×13.7 ≈ 300,000
in luminosity.

13.3 HOW HOT IS A STAR?

Stars are not monochromatic; they emit light with a wide range of wavelengths. Let Fλ

be the specific flux of a star, defined so that Fλdλ is the star’s flux at wavelengths in
the range λ → λ + dλ. Figure 13.1 shows the specific flux Fλ of the star Vega at visible
and near infrared wavelengths. The spectrum of Vega, like most stellar spectra, consists
of a continuum (approximately a blackbody) with absorption lines superimposed. Since
our eyes can only detect radiation from wavelengths in the range 4000–7000 Å, they
can give a misleading impression of the total flux of a star. This point was driven home
to astronomers in the nineteenth century, when it became feasible to photograph stars.
Since the photographic emulsions they used were insensitive to wavelengths longer
than ∼ 5400 Å, stellar fluxes measured photographically differed from those measured
by the human eye. Thus, astronomers began to distinguish between the photographic
apparent magnitude of a star, mpg, and its visual apparent magnitude, mvis. Both systems
were calibrated so that Vega had mpg = mvis = 0; this meant that red stars, to which
photographic plates were insensitive, had mpg > mvis.

The total flux of a star, integrated over all wavelengths,

Fbol =
∫ ∞

0
Fλdλ, (13.26)

is also known as the bolometric flux. (A bolometer is a very sensitive thermometer that
absorbs all the photons that strike it; it was invented by Samuel Langley in the nineteenth
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FIGURE 13.1 Spectrum (flux per unit wavelength) of the star Vega. The flux is
in arbitrary units.

century, when he was attempting to measure the Sun’s total flux.) Unfortunately, mea-
suring the bolometric flux of apparently faint stars is difficult. For one thing, the Earth’s
atmosphere is opaque at many wavelengths, requiring you to place your detectors above
the atmosphere.

If you manage to measure the bolometric flux Fbol of a star, the apparent bolometric
magnitude of the star is

mbol = Cbol − 2.5 log Fbol. (13.27)

Because of the difficulty of measuring bolometric fluxes, there was long debate about the
appropriate value of the constant Cbol. Finally, in 1997, Commission 25 of the Interna-
tional Astronomical Union (which deals with stellar photometry) requested that everyone
use a scale on which the Sun’s absolute bolometric magnitude is Mbol,� = 4.74. The Sun,
rather than Vega, was chosen for the honor of normalizing the bolometric magnitude
scale because the Sun is the only star whose bolometric flux has been measured with
extremely high accuracy. With the IAU-approved normalization, the relation between
absolute bolometric magnitude and luminosity is

Mbol = 4.74 − 2.5 log(L/L�), (13.28)

or

L/L� = 100.4(4.74−Mbol). (13.29)
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FIGURE 13.2 Spectral sensitivity S(λ) of the Johnson–Cousins filters.

Given the difficulty of measuring bolometric fluxes, astronomers usually content
themselves with measuring the flux over a strictly defined range of wavelengths. This
is done, in practice, by putting a colored filter in the light path of a telescope, thus
eliminating the unwanted wavelengths of light. Many different filter systems are in use.
One of the most durably popular is the Johnson–Cousins system devised by Harold
Johnson, A. W. J. Cousins, and their collaborators. There are five main filters in the
Johnson–Cousins system: U (ultraviolet), B (blue), V (visual), R (red), and I (infrared).
The spectral sensitivity, S(λ), of the five basic Johnson–Cousins filters is displayed in
Figure 13.2. The spectral sensitivity S gives the fraction of the light at wavelength λ that
can pass through a filter. The Johnson-Cousins filters were chosen to highlight different
spectral regions. The V filter, in particular, was chosen to approximate what our eyes see
(although the V filter admits a narrower range of wavelengths than the human eye can
detect).7

In practice, the flux of starlight detected through a particular filter depends on the
specific flux Fλ of the star and the combined spectral sensitivity S(λ) of the filter and
the detector used. A star’s flux seen through the V filter, for instance, would be

FV =
∫ ∞

0
FλSV (λ)dλ, (13.30)

where Fλ is the star’s differential flux and SV (λ) is the combined spectral sensitivity of
the V filter and the detector. The apparent magnitude of the star in the V band is then

mV = CV − 2.5 log FV . (13.31)

7 The Johnson–Cousins filters are popular in part because they can be constructed from relatively inexpensive
colored glass, available “off the shelf” from specialty glass manufacturers like Schott Glaswerke and Corning
Incorporated.
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Similarly, the U band apparent magnitude is

mU = CU − 2.5 log FU, (13.32)

the B band apparent magnitude is

mB = CB − 2.5 log FB, (13.33)

and so forth, through all the filters. In keeping with astronomical tradition, the UBVRI
magnitudes are normalized so that Vega has an apparent magnitude close to zero. More
precisely, it turns out that Vega has mU = mB = mV = mR = mI = +0.03.

A filter can be approximately described by its bandwidth and effective wavelength.
The bandwidth 	λ can be defined in different ways; one common definition is the width
of the spectral response S(λ) at half its maximum value. The V band, for instance (see
Figure 13.2), has a bandwidth 	λV = 840 Å. The effective wavelength of the V band is

λeff,V =
∫ ∞

0 λSV (λ)Fλdλ∫ ∞
0 SV (λ)Fλdλ

, (13.34)

and similarly for the other bands in the Johnson–Cousins system. Obviously, the effective
wavelength depends on the shape of the spectrum; the effective wavelength is shorter for
a bluer star. For the Sun, the effective wavelength of the V band is λeff,V = 5502 Å;
for Vega, a bluer star, the effective wavelength is only λeff,V = 5448 Å. When effective
wavelengths are given without reference to a particular star, it is usually the case that
equation (13.34) has been computed assuming a blackbody in the Rayleigh–Jeans limit
where Fν ∝ ν2, or equivalently, Fλ ∝ λ−4.

Multicolor photometry (that is, the practice of measuring a star’s flux through multiple
filters) is useful for two main reasons. First, the more filters you look through, the
more accurate your reconstruction of the star’s spectrum and bolometric flux. Second,
multicolor photometry yields information about the color, and hence the temperature,
of a star. The color index of a star is the difference of its apparent magnitude seen through
two different filters. For instance, one popular color index is

B − V = mB − mV . (13.35)

Other frequently used color indices are U − B = mU − mB , and V − R = mV − mR.8

Color indices are useful because they depend on the temperature of the star’s photosphere
(usually called the star’s “surface temperature,” even though stars don’t have a sharply
defined surface).

By definition, the star Vega has B − V = 0. The surface temperature of Vega is
T ≈ 10,000 K. If a star has T > 10,000 K, it will be bluer than Vega (its B flux will
be enhanced relative to its V flux), and thus it will have B − V < 0, thanks to the
backward nature of the magnitude scale. By contrast, if a star has T < 10,000 K, it will be
redder than Vega (its V flux will be enhanced relative to its B flux), and thus it will have

8 The universal convention is that color indices are m(shorter effective wavelength) − m(longer effective
wavelength).
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B − V > 0. The relation between the surface temperature T and the color index B − V

can be computed for a blackbody. However, since stars aren’t exactly blackbodies, it’s
more useful to use a purely empirical relation such as

T ≈ 9000 K

(B − V ) + 0.93
, (13.36)

which provides a good fit for stars with color index −0.1 <∼ B − V <∼ 1.4, implying
surface temperatures 4000 K <∼ T <∼ 11,000 K. Measuring a color index such as B − V

thus gives you a quick and cheap way of estimating a star’s surface temperature. It’s
usually much easier than taking a star’s spectrum and doing a detailed spectral analysis.

Because bolometric fluxes are so difficult to measure, what astronomers generally do
is measure the V band apparent magnitude and then add a bolometric correction:

BC = mbol − mV = Mbol − MV . (13.37)

For instance, the Sun has Mbol = 4.74 and MV = 4.83, so its bolometric correction
is BC = 4.74 − 4.83 = −0.09. The calibration of the bolometric magnitude scale
(Mbol,� = 4.74) was chosen so that normal stars have BC ≤ 0. The bolometric correc-
tion is equal to zero for stars with T ≈ 6700 K, since these are the stars whose emission
peaks in the V band; for these stars, estimating the bolometric flux from the V band
flux yields a pretty good approximation. For hotter stars, most of the energy escapes at
shorter wavelengths; for cooler stars, most of the energy escapes at longer wavelengths.
The bolometric correction can be calculated by using model stellar atmospheres and
computing how much of the total flux is emitted in the V band. In practice, the bolo-
metric correction is something that you can look up, because someone else has done the
dirty work of calculating it for you.9

To review how magnitudes, color indices, and bolometric corrections work, let’s
do an example. The star Epsilon Eridani (ε Eri) has mV = 3.73 and mB = 4.61; it’s
visible to the naked eye but is not eye-catchingly bright. Its color index is B − V =
4.61− 3.73 = 0.88 (redder than Vega). The empirical relation given in equation (13.36)
tells us that the surface temperature of Epsilon Eridani is T ≈ 5000 K (cooler than Vega).
The bolometric correction for a normal star of this temperature is BC = −0.40. The
apparent bolometric magnitude of Epsilon Eridani is mbol = 3.73 − 0.40 = 3.33. The
distance to Epsilon Eridani, found by stellar parallax, is d = 3.218 pc, so the absolute
bolometric magnitude is

Mbol = mbol − 5 log(d/10 pc) = 5.80 (13.38)

and its luminosity is

L/L� = 100.4(4.74−Mbol) = 10−0.42 = 0.38. (13.39)

9 Exactly how this dirty work is done, in the relatively simple case of a blackbody, is outlined in the appendix
to this chapter.
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Thus, measuring the flux of a star through two filters and measuring its parallax is
sufficient for us to compute its surface temperature and luminosity.

Warning: we have been making the assumption that the space between the star and
our telescope is completely transparent. In the real universe, we must take the effect of
extinction into account. Atmospheric extinction, due to the Earth’s atmosphere, causes
about 0.2 magnitudes of dimming in the V band when a telescope is pointing straight up
(toward the zenith). The exact amount of extinction depends on your location and is also
variable with time. Let Z be the angle between the zenith direction and the direction in
which the telescope is pointing; Z = 0◦ when the telescope is pointing straight up, and
Z = 90◦ when it’s pointing toward the horizon. When Z < 60◦, a useful approximation
to the amount of dimming is

mV (above atmosphere) ≈ mV (observed) − 0.2 sec Z. (13.40)

(When Z > 60◦, you should think twice about observing something so close to the
horizon.) When you look up the apparent magnitude of a star in a reference work, it
will already be corrected for atmospheric extinction. Interstellar extinction, due to
scattering by interstellar dust, can also be significant, especially within the disk of our
galaxy, where most of the dust lies. We discuss interstellar extinction in more detail in
Chapter 17, which deals with the interstellar medium.

You might, at this point, be asking yourself why astronomers persist in use of the
magnitude scale when it is possible to measure fluxes in real physical units (energy
per unit time per unit area). There is a good, but somewhat subtle, reason for retaining
the magnitude system; namely, that astronomers can measure relative brightnesses to
greater accuracy than absolute brightnesses. The magnitude system is a relative scale:
the magnitude of a given star tells us precisely how bright that star is relative to Vega.
The next step, that of calibrating the magnitude system in physical units (as in equation
13.31), is thus a separate, and in fact a more difficult, process. Use of the magnitude
system allows us to keep the observations separate from the “zero-point” calibration
(the constant CV in equation 13.31), which can change as observations improve.

13.4 HOW BIG IS A STAR?

If you know the distance d to a star, and its angular diameter α, then its radius R can be
determined by a simple bit of trigonometry:

R

d
= tan

(
α

2

)
. (13.41)

Therefore,

R = d tan

(
α

2

)
≈ dα

2
, (13.42)

in the small angle limit, where α � 1 rad. Computing the Sun’s radius is easy. The
average distance to the Sun is d = 1 AU = 1.496 × 108 km. The average angular diameter
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FIGURE 13.3 Hubble Space Telescope image of Betelgeuse, with finding chart.

of the Sun is α = 1919 arcsec = 9.30 × 10−3 rad, so

R� = (1.496 × 108 km)(9.30 × 10−3)

2
= 696,000 km. (13.43)

Stars other than the Sun have angular diameters that are very small, and hence difficult
to measure. If we were to view the Sun from the location of Proxima Centauri (d =
1.295 pc = 267,000 AU), its angular size would be

α = 1919 arcsec

(
1 AU

267,000 AU

)
= 7.2 × 10−3 arcsec. (13.44)

Measuring an angular size of 7 milliarcseconds is difficult.
Only one star other than the Sun has had its angular diameter resolved by direct imag-

ing. The star Betelgeuse (Alpha Orionis, or α Ori) has been resolved by the Hubble Space
Telescope (Figure 13.3). The distance to Betelgeuse, determined from its parallax, is

dB = 131 pc = 2.70 × 107 AU. (13.45)

The angular diameter of Betelgeuse, measured at ultraviolet wavelengths using the
Hubble Space Telescope, is

αB = 0.125 arcsec = 6.06 × 10−7 rad. (13.46)

Thus, its radius is

RB = dBαB/2 = 8.2 AU = 1.2 × 109 km = 1800R�. (13.47)
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two slits and falls on a screen to the left.

Betelgeuse is a supergiant star, swollen to an immense radius. If you placed its center at
the Sun’s location, it would extend far beyond Jupiter’s orbit. Supergiant stars are rare;
Betelgeuse is the nearest supergiant to the Sun. All the stars closer than Betelgeuse are
smaller in radius, and all the stars larger than Betelgeuse are farther away.

Stars less bloated than Betelgeuse can have their radii measured using interferom-
etry. To see how the principle of interference can tell you the angular size of a star,
consider the classic “two-slit” interference experiment illustrated in Figure 13.4. Light
of wavelength λ comes from a point source far to the right of the image and strikes a
wall in which two narrow slits have been cut. The light passing through one slit interferes
with the light passing through the other slit, causing constructive interference where
the wavecrests add together, and destructive interference where wavecrests from one
slit encounter wave troughs from the other slit. If a screen is placed to the left of the
slits, parallel to the wall, a pattern of bright and dark bands is seen (bright = constructive
interference, dark = destructive interference). The distance between the bright bands on
the screen is x = λd/b, where d is the distance between the wall and the screen, and b

is the distance between the slits.
If stars were perfect point sources, they would produce interference bands in exactly

this way. However, stars have a finite (although small) angular size α. Thus, light from
the upper limb of the star approaches the slits from a slightly different angle than light
from the lower limb of the star. This means that when light from the upper limb of the
star falls on the screen, its bright and dark bands are slightly displaced from the bright
and dark bands produced by light from the lower limb. The interference pattern produced
by a star of angular diameter α will be smeared out when

α[radians] > λ/b. (13.48)
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Thus, if you observed a star of angular diameter α at a wavelength λ through a pair of
movable slits, the interference pattern would be smeared out once the baseline between
the slits increased to

b > λ/α. (13.49)

Scaling to a plausible angular diameter for a nearby star,

b > 10 m

(
λ

5000 Å

) (
α

0.01 arcsec

)−1

. (13.50)

In practice, the technique of stellar interferometry doesn’t use two slits in a wall; it uses
two telescopes separated by a distance b.

The angular diameter of Betelgeuse was measured using interferometry as early as the
year 1920.10 Currently, the interferometer at the Very Large Telescope (VLT) in Chile
uses telescopes separated by a distance as large as 140 meters; thus, it can measure angles
smaller than a milliarcsecond. The VLT interferometer has been used, for instance, to
find the angular diameters of the stars in the Alpha Centauri system:

. Alpha Centauri A: α = 8.5 × 10−3 arcsec, R = 1.23R�.

. Alpha Centauri B: α = 6.0 × 10−3 arcsec, R = 0.87R�.

. Proxima Centauri: α = 1.0 × 10−3 arcsec, R = 0.14R�.

Note that the most luminous star in the system (α Cen A) is also the largest in size. It is
particularly interesting to discover that Proxima Centauri isn’t much larger than Jupiter,
which has r = 0.10R�. We tend to think of stars as huge balls of gas, but the smallest
stars aren’t much larger than the biggest planets. At the moment, there are roughly a
thousand stars whose radii have been measured using interferometric techniques. They
span the range from supergiants like Betelgeuse to dwarfs like Proxima Centauri.

When a star’s radius and luminosity are both known, we have a new way of estimating
its temperature. For a spherical blackbody,

L = 4πR2σSBT 4, (13.51)

where σSB is the Stefan–Boltzmann constant. Whether a star is really a blackbody or not,
we can assign it an effective temperature, defined as

Teff =
(

L

4πR2σSB

)1/4

. (13.52)

If this temperature doesn’t agree closely with the temperature as estimated from the star’s
spectrum or color index, then the star must be far from being a blackbody.

10 The angular diameter of Betelgeuse at visible wavelengths is found to be α = 0.058 arcsec, less than half
its size measured at ultraviolet wavelengths. This indicates that Betelgeuse has an extended atmosphere that
is far more opaque to ultraviolet light than to visible light.
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13.5 HOW MASSIVE IS A STAR?

The mass of a star can be determined using Kepler’s third law, as modified by Isaac
Newton (Section 3.1.3):

MA + MB = 4π2

G

a3

P 2
, (13.53)

where MA and MB are the masses of two objects orbiting their mutual center of mass,
P is their orbital period, and a is the semimajor axis of their relative orbit.11 Kepler’s
law restricts us to measuring the total mass (MA + MB) of a binary system. Finding the
mass of an isolated star is like recording the sound of one hand clapping. Fortunately, the
majority of stars in the solar neighborhood have companions: a star, a substellar object
(a brown dwarf or planet), or a formerly stellar object (a white dwarf ).

Binary stellar systems are usually classified by the way in which they are detected.
There are three main classes.

. Visual binary. The two stars in the binary system are individually resolved in your
telescope. You can tell they are not a chance superposition of stars at different
distances, because one star moves on an elliptical orbit relative to the other. Visual
binaries tend to have large separations, and hence long periods.

. Spectroscopic binary. The two stars are unresolved, appearing as a single blob.
However, the spectrum of the binary system shows absorption lines that oscillate
in wavelength as the stars’ radial velocities change. Spectroscopic binaries tend to
have high orbital speeds, and hence small orbits and short periods.

. Eclipsing binary. The two stars are unresolved. However, the orbital plane of the
system is seen nearly edge-on, so the stars periodically eclipse each other, causing
dips in the flux. Eclipsing binaries tend to have small separations, and hence short
periods.

We discuss each of these in turn.

13.5.1 Visual Binaries

An example of a visual binary is the Sirius system. It was realized in the nineteenth
century that the star we know as Sirius has a much fainter companion. The more
luminous component of the binary system is now known as Sirius A, while its dim
companion is called Sirius B. At visible wavelengths, Sirius A is roughly 8000 times
brighter than Sirius B; at X-ray wavelengths, however, Sirius B is the brighter of
the two, as shown in Figure 13.5. Sirius A has a surface temperature T = 9900 K
(estimated from its spectrum) and a luminosity L = 26L�. By contrast, Sirius B has

11 Unfortunately, the letter “M” does double duty, indicating both a star’s mass and its absolute magnitude.
The context should make it clear which meaning is appropriate.
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FIGURE 13.5 Sirius B (with diffraction spikes) and Sirius A (above and to the
right) as seen in X-rays.

a surface temperature T = 24,800 K but a luminosity of only L = 0.024L�, most of
which emerges at wavelengths too short for the human eye to detect.

Sirius B is much less luminous than Sirius A, despite having a higher surface temper-
ature. This means that Sirius B must have a much smaller surface area. From the relation
among radius, temperature, and luminosity for a spherical blackbody,

RB

RA
=

(
LB

LA

)1/2 (
TA

TB

)2

= (0.00092)1/2(0.40)2 = 0.0048. (13.54)

Since the radius of Sirius A is known to be rA = 1.71R�, from stellar interferometry, the
radius of Sirius B must be

RB = 0.0048RA = 0.0084R� = 0.92R⊕. (13.55)

When Sirius B and similar objects were determined to have high temperatures but low
luminosities, they were termed “white dwarfs,” since they are small in size (comparable
in size to the Earth) but high enough in temperature to be white hot.

The motion of Sirius B relative to Sirius A has been traced for well over a century;
thus, the relative orbit of the two objects, as projected onto the plane of the sky, is well
known (Figure 13.6). The orbital period of the Sirius system is P = 50.05 yr. To find
the semimajor axis a of the relative orbit, we must deproject the observed ellipse. That
is, we must ask the question What ellipse, with Sirius A at one focus, appears (when
viewed at an angle), like the ellipse in Figure 13.6? This question has a unique answer.
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FIGURE 13.6 The projected orbit of Sirius B relative to Sirius A. The five-
pointed star is the position of Sirius A, and the small points are observed positions of
Sirius B, from the year 1862 to 1979; coordinates are in arcseconds. The best-fitting
ellipse for the orbit of Sirius B is shown.

We won’t go into the geometrical details,12 but will simply quote the answer. The true
three-dimensional orbit of Sirius B relative to Sirius A has an eccentricity of e = 0.59
and a semimajor axis of angular length

a′′ = 7.50 arcsec = 3.64 × 10−5 rad (13.56)

and is viewed at an inclination i = 43.4◦.13 Since the distance to the Sirius system is
d = 2.637 pc = 544,000 AU, the semimajor axis of the orbit of Sirius B relative to
Sirius A is

a = a′′d = 19.78 AU, (13.57)

comparable to the average distance from Uranus to the Sun, and slightly smaller than
the average distance between Alpha Centauri A and B.

We now have the necessary information to compute the total mass of the Sirius system.
If the masses MA and MB are in solar masses, a is in AU, and P is in years, Kepler’s
third law can be written in the form

MA + MB = a3

P 2
. (13.58)

12 A good textbook on celestial mechanics will give you all the details you might want.
13 An inclination i = 0◦ means we are looking at the orbit face-on; an inclination i = 90◦ means we are looking
at the orbit edge-on.
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FIGURE 13.7 The long-term motion of the Sirius system. The asterisk represents
Sirius A, and the dot represents Sirius B.

For the Sirius system,

MA + MB = (19.78)3

(50.05)2
= 3.09M�. (13.59)

We know that Sirius A and Sirius B, taken together, have a mass more than three times
that of the Sun; but how is the mass allocated between the two objects?

To determine how the total mass is divided between Sirius A and Sirius B, we must
locate the center of mass of the binary system. When the positions of Sirius B and
Sirius A are plotted relative to background objects (such as distant quasars), they show
the “wobbly” motion displayed in Figure 13.7. This motion is the combination of the
linear motion of the center of mass of the Sirius system plus the elliptical motions, with
period P = 50.05 yr, of Sirius A and Sirius B relative to the center of mass. (The small
annual wiggles due to stellar parallax are not shown in this plot.)

If Sirius B had a negligibly small mass—as you might expect from its tiny volume—
then the motion of Sirius A would be a straight line. Since Sirius A does show wobbles
in its motion, the mass of Sirius B must be significant.14 The motion of the center of
mass is a straight line if we assume aB/aA = 2.2. Thus, from equation (12.8), we may
conclude

MA

MB
= aB

aA
= 2.2. (13.60)

That is, Sirius A is just over twice the mass of Sirius B. When we combine our two bits
of information, MA + MB = 3.09M� and MA = 2.2MB, we find the solution

MB = 0.97M�, MA = 2.12M�. (13.61)

When astronomers first learned that white dwarfs like Sirius B had masses comparable
to the Sun, but volumes comparable to the Earth, they were flabbergasted. The average
density of Sirius B is more than 2 tons per cubic centimeter.

14 In fact, the wobbles in the motion of Sirius A were first noticed by Friedrich Bessel (of parallax fame) in
1844, nearly 20 years before Sirius B was seen through a telescope.
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13.5.2 Spectroscopic Binaries

Spectroscopic binaries are detected by variability in the Doppler shift of one or both
stars in the binary system. In a double-lined spectroscopic binary, the absorption
lines of both stars can be seen in the spectrum of the binary system. In a single-lined
spectroscopic binary, the absorption lines of only one star in the system can be seen;
the existence of the dimmer star can only be inferred from the Doppler shift it gives to
its brighter companion. An exoplanet and its parent star, as discussed in Section 12.3,
can be thought of as a variety of single-lined spectroscopic binary, in which the Doppler
shift of one object (the star) can be detected, but the shift of the other (the exoplanet)
cannot be.

Suppose we start with the case of a double-lined spectroscopic binary. This is the case
in which we have more information and can learn more about the properties of the binary
system. For a double-lined binary, the radial velocity curve of both stars can be plotted;
the amplitudes of the two radial velocity curves (see Figure 12.5b for an example) yield
vA sin i and vB sin i. By convention, vA is the orbital speed of the more massive star, and
vB > vA is the orbital speed of the less massive star; the parameter i is the inclination of
their orbital plane (as illustrated geometrically in Figure 12.6).

For spectroscopic binaries, it is generally safe to assume that the orbits are approxi-
mately circular. This would be a bad assumption for visual binaries, since many visual
binaries, such as the Sirius system, have large eccentricity. However, spectroscopic bi-
naries tend to have larger orbital speeds, and hence smaller orbits: small orbits, as we
have seen when looking at hot Jupiters, tend to become circularized with time by tidal
friction. The radial velocity curves also tell us the orbital period P of the two stars.

What properties of the double-lined spectroscopic binary can we compute, given the
measurable quantities vA sin i, vB sin i, and P ? Starting with equation (12.12), which
applies to all binary systems on circular orbits, we can write

MB

MA
= vA

vB
= vA sin i

vB sin i
(13.62)

and thus find the ratio of the stellar masses in the binary system. In addition, we know
that

P = 2πaA

vA
= 2πaB

vB
, (13.63)

and thus we can compute

aA sin i = PvA sin i

2π
(13.64)

and

aB sin i = PvB sin i

2π
. (13.65)

Note that we cannot determine the size of the orbits without some independent method
of determining the inclination i. This also implies that we cannot determine the total
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mass, MA + MB, of the spectroscopic binary system. To see why this is so, let’s start
with Kepler’s third law in the form (compare to equation 12.15):

MA + MB = 4π2

GP 2
(aA + aB)3. (13.66)

However, as we have just seen, we cannot determine aA and aB using the spectroscopic
information alone; we know only aA sin i and aB sin i. Thus, we can compute only the
quantity

(MA + MB) sin3 i = 4π2

GP 2
(aA sin i + aB sin i)3

= P

2πG
(vA sin i + vB sin i)3, (13.67)

where we have made use of equations (13.64) and (13.65). Thus, although we can
compute the mass ratio MB/MA without knowing the inclination, we can only place
a lower limit on the total mass, since MA + MB ≥ (MA + MB) sin3 i.

There are two ways in which we can deal with our ignorance of the inclination i.
First, we can look solely at spectroscopic binaries that are also eclipsing binaries. A
binary will undergo eclipses, with one star passing in front of the other, only in the
case i ≈ 90◦. Thus, for an eclipsing spectroscopic binary, we can make the substitution
sin i ≈ 1 in equation (13.67). Second, we can look at a large sample of spectroscopic
binaries, which will allow us to make statements about the mass in a statistical fashion.
If we average the observed properties of many double-lined spectroscopic binaries, we
find, from equation (13.67),

〈MA + MB〉〈sin3 i〉 = 1

2πG
〈P(vA sin i + vB sin i)3〉. (13.68)

To find the average mass, 〈MA + MB〉, for the sample of binaries in question, we must
obtain an average value 〈sin3 i〉. In general, to obtain the average value of a function f (i)

of the inclination angle, as shown in Figure 13.8, we must compute

〈f (i)〉 =
∫ π/2

0 f (i) sin i di∫ π/2
0 sin i di

. (13.69)

Since the denominator on the right-hand side is unity, we can compute

〈sin3 i〉 =
∫ π/2

0
sin4 i di = 3i

8
− sin 2i

4
+ sin 4i

32

∣∣∣∣
π/2

0
= 3π

16
= 0.59. (13.70)

This tells us that inclination effects cause us to underestimate masses typically by about
41%.

There is, however, an important subtlety: binary systems are decreasingly likely to be
discovered as the inclination of the system decreases. Indeed, a binary at i = 0◦ cannot
be detected as a spectroscopic binary, since the radial component of its stars’ velocity is
zero. We should thus adjust our calculation to account for this selection effect. A simple
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FIGURE 13.8 The polar angle i can in this case take values between 0 and π/2.
A circumscribed circle obtained by rotating a line around the z axis has a differential
area 2π sin i di.

approximation might be that all binaries with i ≥ i0 are detected, and no binaries with
i < i0 are detected. In this case, the average value of sin3 i for the detected spectroscopic
binaries will be

〈sin3 i〉 =
∫ π/2
i0

sin4 i di∫ π/2
i0

sin i di
. (13.71)

If i0 = 45◦, for instance, then 〈sin3 i〉 ≈ 0.77 for the detected binaries, and the un-
derestimate in mass will be 23%. If we set a lower detection limit of i0 = 60◦, then
〈sin3 i〉 ≈ 0.88, and the underestimate will be only 12%. By eliminating from our ob-
servation the nearly face-on systems for which the underestimates are most severe, the
selection effects produce estimates that are closer to the true value of MA + MB.

Although we have been discussing double-lined spectroscopic binaries, the more
limited information provided by a single-lined binary is not totally useless. If we know
P and vA sin i, but not vB sin i, it is useful to write equation (13.67) in the form

(MA + MB) sin3 i = P

2πG
(vA sin i)3

(
1 + vB sin i

vA sin i

)3

. (13.72)

Substituting from equation (13.62), we can eliminate the unknown value of vB sin i:

(MA + MB) sin3 i = P

2πG
(vA sin i)3(1 + MA/MB)3. (13.73)

Rearranging, we find

MB

(1 + MA/MB)2
sin3 i = P

2πG
(vA sin i)3. (13.74)
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Thus, from P and vA sin i, observable properties of a single-lined spectroscopic binary,
we can compute the mass function

f (MA, MB) = MB

(1 + MA/MB)2
sin3 i = M3

B

(MA + MB)2
sin3 i. (13.75)

Since f (MA, MB) ≤ MB, the mass function gives us a lower limit on the mass of
the unseen component of the single-lined spectroscopic binary. Note that in the limit
MB � MA, f (MA, MB) ≈ (M3

B/M2
A) sin3 i. In that case, equation (13.75) reduces to

M3
B sin3 i ≈ M2

AP

2πG
(vA sin i)3, (13.76)

a result that we have already derived (equation 12.21) for the case of a star–exoplanet
system, which can be thought of as a single-lined spectroscopic binary with MB (the
exoplanet’s mass) much smaller than MA (the star’s mass).

13.5.3 Eclipsing Binaries

Eclipsing binaries are detected as variable stars, whose brightness changes with time.
In Section 17.3, we discuss pulsating variable stars whose luminosities actually do
change on timescales that can by detected by humans; however, eclipsing binaries vary
in brightness only because each star completely or partially eclipses the other star once
each orbit. Obviously, this requires the observer to be quite close to the orbital plane of
the system, so i ≈ 90◦ for eclipsing systems. Many eclipsing binaries are in close pairs
and have periods of a few days or less.

The light curve for a typical eclipsing binary is shown in Figure 13.9. Unlike the light
curve of a star transited by a dark exoplanet, the light curve of an eclipsing binary shows
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FIGURE 13.9 (a) The orbit of the smaller component of an eclipsing binary
relative to the larger component. (b) The light curve of the eclipsing binary. The
numbers on the light curve correspond to the corresponding positions in part (a).
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two dips in flux per orbit. This reflects the fact that there are two eclipses during one
orbit: one when star A is the closer of the two stars to the observer, and the other when
star B is closer. The depth of each eclipse depends on how much radiating area is blocked
from the observer’s view. Unless the two stars have the same surface temperature, the
two eclipses will have different values of δF/F . It is left as an exercise for the reader
to demonstrate that the primary eclipse, the deeper of the two, occurs when the hotter
star is eclipsed.

13.6 HOW ARE MASS, RADIUS, AND LUMINOSITY RELATED?

If we plot radius R versus mass M for stars whose mass we know (Figure 13.10), we find
that most stars lie along a fairly well-defined mass–radius relation. The stars that obey
the mass–radius relation are called “main sequence” stars. The Sun, Sirius A, Epsilon
Eridani, and the stars of the Alpha Centauri system are all main sequence stars. As you
can see from the figure, more massive main sequence stars are larger in radius, but not
with the R ∝ M1/3 relation that you would expect if all stars had the same density. Stars
that are larger in radius are lower in density. Although a single power law doesn’t give
a good fit over the full range of the mass–radius relation, a reasonable fit15 is given by a
pair of power laws:

R/R� = 1.06(M/M�)0.945 M < 1.66M�
R/R� = 1.33(M/M�)0.555 M > 1.66M�. (13.77)

Among the stars that don’t fall on the usual mass–radius relation are Betelgeuse (which
has an overly large radius for its mass) and Sirius B (which has an overly small radius for
its mass). Thus, supergiants like Betelgeuse and white dwarfs like Sirius B are special
cases that don’t follow the same relations as ordinary “main sequence” stars.

If we plot stellar luminosity versus mass (Figure 13.11), we find that most stars
lie along a well-defined mass–luminosity relation. More massive stars are higher in
luminosity. A reasonably good empirical fit to the mass–luminosity relation16 is

L/L� = 0.35(M/M�)2.62 M < 0.7M�
L/L� = 1.02(M/M�)3.92 M > 0.7M�. (13.78)

Note the steep dependence of luminosity upon mass, particularly for high-mass stars;
this has important implications for stellar evolution. A star is its own fuel tank; that is,
it powers itself by fusion of the material that it contains. Thus, the total fuel supply of
a star is proportional to its mass M . The rate at which it uses fuel is proportional to its
luminosity. The lifetime τ of a star before it exhausts its fuel is then τ ∝ M/L. For the
observed mass–luminosity relation,

15 From Demircan and Kahraman 1991, Astrophysics and Space Science, pp. 181, 313.
16 Also from Demircan and Kahraman 1991, Astrophysics and Space Science, pp. 181, 313.
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FIGURE 13.10 Stellar radius versus mass (logarithmic scale). The dashed line
is the fit given in equation (13.77).
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FIGURE 13.11 Stellar luminosity versus mass (logarithmic scale). The dashed
line is the empirical fit given in equation (13.78).
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τ ∝ M/L ∝ M−1.62 M < 0.7M� (13.79)

τ ∝ M/L ∝ M−2.92 M > 0.7M�. (13.80)

For example, Sirius A, which has a mass more than twice that of the Sun, will have a
lifetime less than 1/8 as long, before it runs out of fuel for its fusion “engine.”

APPENDIX: DETERMINATION OF BOLOMETRIC CORRECTIONS

A star’s bolometric correction takes account of the fact that much of a star’s flux is emitted
at wavelengths outside the band in which we are observing. In the case of a blackbody,
the bolometric correction is a relatively simple function of temperature. For illustrative
purposes, we will derive the bolometric correction of a blackbody, and then compare it to
the numerically computed bolometric corrections found for model stellar atmospheres.

From equation (5.98), we recall that the luminosity of a spherical blackbody is

L = 4πR2σSBT 4, (13.81)

where R is the radius of the blackbody and T is its surface temperature. The bolometric
absolute magnitude is then (equation 13.28)

Mbol = 4.74 − 2.5 log(L/L�)

= 4.74 + 2.5 log L� − 2.5 log(4πR2σSBT 4)

= K ′ − 10 log T, (13.82)

where the constant K ′ contains all terms that are not temperature dependent.
The specific luminosity of the blackbody—that is, the luminosity per unit wave-

length—is proportional to the Planck function Iλ (equation 5.90):

Lλ = 4πR2πIλ

= 4πR2 2πhc2

λ5

1

ehc/λkT − 1
. (13.83)

The absolute V magnitude of the blackbody can then be written as

MV = KV − 2.5 log

(∫
LλSλ(V )dλ

)
, (13.84)

where Sλ(V ) is the spectral sensitivity of the V filter. To compute MV with extreme accu-
racy, we would need to determine the exact shape of Sλ(V ). However, since the V band
is not extremely wide in wavelength, we can approximate the integral in equation (13.84)
as the bandwidth 	λV times the value of Lλ evaluated at the effective wavelength λeff,V .
Thus,

MV = KV − 2.5 log

(
	λV

. 4πR2 2πhc2

λ5
eff,V

1

ehc/kT λeff,V − 1

)
. (13.85)
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This can be rewritten as

MV = K ′
V

+ 2.5 log(ehc/kT λeff,V − 1), (13.86)

where the constant K ′
V

contains all terms that are not temperature dependent.
The effective wavelength λeff,V depends to some extent on the temperature of the

observed blackbody; however, for temperatures similar to the Sun’s surface temperature,
it is adequate to use the approximation λeff,V = 5500 Å. This characteristic wavelength
can be used to define a characteristic temperature

TV ≡ hc

kλeff,V
= 26,160 K. (13.87)

Using this parameter, we can write the absolute V magnitude as

MV = K ′
V

+ 2.5 log(eTV /T − 1) (13.88)

and the bolometric correction (using equation 13.82) as

BC = Mbol − MV

= K ′′ − 10 log(T /TV ) − 2.5 log(eTV /T − 1), (13.89)

where the constant K ′′ contains all terms that are not dependent on the dimensionless
temperature T/TV .

The bolometric correction BC for a blackbody (equation 13.89) is plotted as the solid
line in Figure 13.12. The extremum in BC as a function of T can be found from inspection
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FIGURE 13.12 Bolometric correction as a function of temperature. The solid line
shows the bolometric correction of a blackbody; the dotted line shows the bolometric
correction for a more realistic stellar atmosphere model.
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of the figure, or by differentiating BC with respect to T and finding the temperature
at which d(BC)/dT = 0. This temperature turns out to be T = 0.255TV = 6670 K,
representing the temperature at which a blackbody has the largest fraction of its flux
in the V band. The usual convention is to have BC = 0 mag at this temperature, which
requires setting K ′′ = −1.70 in equation (13.89).

The dotted line in Figure 13.12, for comparison, indicates the bolometric correction
calculated for a realistic model stellar atmosphere. The blackbody approximation is
reasonably good for stars with small bolometric corrections but underestimates the
required bolometric correction for very hot (T >∼ 10,000 K) and very cool (T <∼ 3000 K)
stars.

PROBLEMS

13.1 What is the apparent magnitude of the Sun as seen from Mercury at perihelion? What
is the apparent magnitude of the Sun as seen from Eris at aphelion?

13.2 Considering absolute magnitude M , apparent magnitude m, and distance d or parallax
π ′′, compute the unknown for each of these stars:

(a) m = −1.6 mag, d = 4.3 pc. What is M?
(b) M = 14.3 mag, m = 10.9 mag. What is d?
(c) m = 5.6 mag, d = 88 pc. What is M?
(d) M = −0.9 mag, d = 220 pc. What is m?
(e) m = 0.2 mag, M = −9.0 mag. What is d?
(f ) m = 7.4 mag, π ′′ = 0.0043′′. What is M?

13.3 What are the angular diameters of the following, as seen from the Earth?

(a) The Sun, with radius R = R� = 7 × 105 km
(b) Betelgeuse, with MV = −5.5 mag, mV = 0.8 mag, and R = 650R�
(c) The galaxy M31, with R ≈ 30 kpc at a distance D ≈ 0.7 Mpc
(d) The Coma cluster of galaxies, with R ≈ 3 Mpc at a distance D ≈ 100 Mpc

13.4 The Luyten 726-8 star system contains two stars, one with apparent magnitude
m = 12.5 and the other with m = 12.9. What is the combined apparent magnitude of
the two stars?

13.5 A cluster of stars contains 100 stars with absolute magnitude M = 0.0, 1000 stars
with M = 3.0, and 10,000 stars with M = 6.0. What is the absolute magnitude of the
cluster taken as a whole?
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13.6 A visual binary has a parallax π ′′ = 0.4 arcsec, a maximum separation a′′ = 6.0
arcsec, and an orbital period P = 80 yr. What is the total mass of the binary system?
Assume a circular orbit.

13.7 The stars β Aurigae A and β Aurigae B constitute a double-lined spectroscopic binary
with an orbital period P = 3.96 days. The radial velocity curves of the two stars have
amplitudes vA sin i = 108 km s−1 and vB sin i = 111 km s−1. If i = 90◦, what are the
masses of the two stars?

13.8 The star Procyon A has an effective temperature TA = 6530 K and a radius
RA = 2.06R�. Its companion Procyon B has a radius RB = 0.0096R� and an absolute
bolometric magnitude Mbol,B = 12.9.

(a) What is the ratio of the two objects’ luminosities?
(b) What is the ratio of their surface temperatures?

13.9 Astronomers often use the approximation that a 1% change in brightness of a star
corresponds to a change of 0.01 magnitudes. Justify this approximation.

13.10 At visible wavelengths, what is the ratio of the flux of the full Earth as seen from the
Moon to the flux of the full Moon as seen from the Earth? (Hint: the albedos of the
Earth and the Moon are given in Section 8.2.)

13.11 Prove that in an eclipsing binary system, the primary (deeper) eclipse always occurs
when the hotter (not necessarily the larger or more luminous) star is eclipsed.

13.12 Show that for a blackbody at low temperatures, the relation between the effective
temperature and the B − V color is

Teff ≈ 7090 K

(B − V ) + 0.71
.

(Hint: use the Wien approximation, and assume λeff,B = 4450 Å and λeff,V =
5500 Å.) This relation is a really lousy approximation at high temperatures. Why?



14 Stellar Atmospheres

Most of what we know about stars other than the Sun comes from gathering photons that
the stars emit. The problem with photons is that they tell us only what is happening in
the photosphere, the relatively thin layer of a star from which the photons escape. When
we compute the “radius of a star,” for instance, we are really computing the radius of the
star’s photosphere. When astronomers talk about the “temperature of a star,” they mean
the temperature of the star’s photosphere, unless they explicitly state otherwise.

14.1 HYDROSTATIC EQUILIBRIUM

To understand how a star’s spectrum is produced, we must understand the basic physics
of stellar atmospheres. In some ways, the atmosphere of a star is like the Earth’s
atmosphere; despite winds and storms, both types of atmosphere are in hydrostatic
equilibrium, as described in Section 9.2. In other ways, a star’s atmosphere is unlike the
Earth’s. For one thing, the Earth’s atmosphere rests upon a solid or liquid surface; since
stars are completely gaseous, you can think of them as being nothing but atmosphere.
Another difference between stellar atmospheres and the Earth’s atmosphere is that the
atmospheres of stars are relatively hot, and ionization becomes important.

For a spherical star in hydrostatic equilibrium (equation 9.8),

dP

dr
= −GM(r)ρ

r2
, (14.1)

where r is the distance from the star’s center, P is the local pressure, M(r) is the mass
contained within a sphere of radius r , ρ is the local mass density, and G is the Newtonian
gravitational constant. In other words, the upward force due to the pressure gradient (the
left-hand side of equation 14.1) is exactly balanced by the downward force due to gravity
(the right-hand side of equation 14.1).

The pressure at any point inside the star is well approximated by the ideal gas law
(equation 7.16):

P = nkT = ρkT

μmp

, (14.2)
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where the mean molecular mass μ depends on the mix of elements present as well as
the degree of ionization. If we characterize the elements present as hydrogen (atomic
number = 1), helium (atomic number = 2), and “metals” (atomic number > 2), the total
mass density ρ can be broken down into three components:

ρ = ρH + ρHe + ρmetal. (14.3)

The chemical composition of the atmosphere can then be expressed in terms of the
hydrogen mass fraction,

X ≡ ρH/ρ, (14.4)

the helium mass fraction,

Y ≡ ρHe/ρ, (14.5)

and the “metal” mass fraction,

Z ≡ ρmetal/ρ = 1 − X − Y. (14.6)

In Section 7.1, for instance, you learned that the Sun’s photosphere has X� = 0.734,
Y� = 0.250, and Z� = 0.016. Most of the mass of “metals” is contributed by oxygen
and carbon, with neon, iron, and nitrogen rounding out the list of the top five metals.

The mean molecular mass μ of a gas depends both on its mass fractions (X, Y , and
Z) and on its ionization state. Consider, for instance, a gas consisting of pure atomic
hydrogen (X = 1). If it is neutral, it will have a mean molecular mass μ = 1and a number
density n = ρ/mp.1 If the hydrogen is fully ionized, the number of particles is doubled,
since one electron is freed from each atom. Thus, the number density of a hydrogen
gas doubles to n = 2ρ/mp if it is fully ionized, and its mean molecular mass drops to
μ = 1/2.

Now consider a gas made of pure helium (Y = 1). If it is neutral, it will have a mean
molecular mass μ = 4 and a number density n = ρ/(4mp), since each helium atom
contains four nucleons—two protons and two neutrons.2 If the helium is fully ionized,
the number of particles is tripled, since two electrons are freed from each atom. Thus,
the number density of a helium gas triples to n = 3ρ/(4mp) if it is fully ionized, and its
mean molecular mass drops to μ = 4/3.

Finally, consider a gas made of “metals” (Z = 1). If the average number of nucleons
per atom is A, the number density of atoms for the gas in its neutral state is n = ρ/(Amp),
and the mean molecular mass is μ = A. If the number of protons and neutrons in each
nucleus is roughly equal, then ∼ A/2 electrons will be liberated from each atom when the
gas is fully ionized. The number density of the gas will then be n ≈ ρ/(2mp), assuming
A/2 � 1, and its mean molecular mass will be μ ≈ 2.

1 Our calculations will be sufficiently accurate if we assume that the mass of an electron is negligibly small
compared to the mass of a proton.
2 Our calculations will be sufficiently accurate if we assume that the mass of a neutron and the mass of a proton
are the same.
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Thus, if a gas consists of a mix of hydrogen, helium, and metals, its number density
of particles, in a fully ionized state, will be

n ≈ X

(
2ρ

mp

)
+ Y

(
3ρ

4mp

)
+ Z

(
ρ

2mp

)
(14.7)

≈
(

2X + 3

4
Y + 1

2
Z

)
ρ

mp

. (14.8)

For a fully ionized gas, the mean molecular mass will then be

μ(ionized) = ρ

nmp

=
(

2X + 3

4
Y + 1

2
Z

)−1

. (14.9)

For the Sun’s photosphere, the mean molecular mass, assuming total ionization, is

μ� = 1

2(0.734) + 0.75(0.250) + 0.5(0.016)
= 1

1.664
= 0.60. (14.10)

By contrast, for a gas of neutral atoms, the mean molecular mass will be

μ(neutral) =
(

X + Y

4
+ Z

A

)−1

. (14.11)

If the Sun’s photosphere were not ionized, its mean molecular mass would be μ� ≈ 1.25;
since the rare metals contribute so little to the computation of μ, it doesn’t really matter
what their value of A is. We conclude that no matter how highly ionized the Sun’s
atmosphere is, its mean molecular mass will be roughly 1.

Ionized gas has a higher pressure than a gas of neutral atoms with the same mass
density for two reasons:

. Maintaining a gas in an ionized state requires a high temperature T ; higher tem-
perature implies a higher thermal velocity, and hence more pressure per particle.

. Ionization frees large quantities of electrons, thus increasing the number density
n of particles at a given mass density.

Ionizing a gas thus increases both T and n in the relation P = nkT .
Stars are usually stable. The Sun has been shining away for 4.6 billion years without

exploding or imploding. Some stars pulsate in and out perceptibly, and now and then a
supernova explodes, but for the most part, stars are in sedate hydrostatic equilibrium:

dP

dr
= −GM(r)

r2
ρ = −gρ, (14.12)

where

g ≡ GM(r)

r2
(14.13)
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is the gravitational acceleration (directed inward) at a distance r from the star’s center.
Since g and ρ are nonnegative, the pressure gradient is dP/dr ≤ 0. That is, the pressure
becomes greater as you dive inward to the center of a star.

At the Sun’s photosphere, M(r) ≈ M� = 1.99 × 1030 kg; the mass of the chromo-
sphere and corona above the photosphere are negligible. The radius of the photosphere
is R� = 6.96 × 108 m. The gravitational acceleration at the Sun’s photosphere (often
called the “surface gravity” of the Sun) is then

g� = GM�
R2�

= 274 m s−2, (14.14)

about 28 times the gravitational acceleration at the Earth’s surface. For an ideal gas, the
mass density and pressure are related by the law

ρ = μmp

kT
P, (14.15)

so the equation of hydrostatic equilibrium (eq. 14.12) can be written in the form

dP

dr
= −gμmp

kT
P. (14.16)

If we are in a region of the star where g, μ, and T are roughly constant with radius,
equation (14.16) has a solution of the form

P ∝ exp

(
− r

H

)
, (14.17)

where the scale height H is

H = kT

gμmp

. (14.18)

For the Sun’s photosphere, with T� ≈ 5800 K and μ� ≈ 0.60, the scale height is

H� = kT�
g�μ�mp

≈ 300 km. (14.19)

This is much longer than the scale height H ≈ 8 km of the Earth’s atmosphere, which
is cooler and has a higher mean molecular mass. However, it is much shorter than the
Sun’s radius of R� ≈ 700,000 km. Thus, our assumption of constant g�, μ�, and T�
within the photosphere is a reasonable first approximation.

14.2 SPECTRAL CLASSIFICATION

A star’s spectrum contains information about the photosphere’s chemical composition
and temperature. Every absorption line that you see in a star’s spectrum represents the
transition of an electron from a lower energy level to a higher level, in a particular element



340 Chapter 14 Stellar Atmospheres

in a particular ionization state.3 The solar spectrum (Color Figure 13) contains absorption
lines from most of the elements found in nature.4

The strength of absorption lines, as measured by their equivalent width W , depends on
the temperature of the photosphere. For example, the absence of helium absorption lines
in the Sun’s photospheric spectrum doesn’t mean that all the helium has run off to the
chromosphere; rather, it indicates that the photosphere isn’t hot enough to excite helium
atoms above their ground state. As a relatively simple example of how line strength
depends on temperature, let’s consider the Balmer lines of hydrogen, created when
electrons in the n = 2 energy level absorb photons of the correct energy to lift them
to a higher (n > 2) energy level. As we computed in Section 5.6, when the temperature
T of gaseous hydrogen increases, the fraction of neutral atoms that have their electron in
the n = 2 level increases. However, as T increases, the fraction of atoms that are neutral
decreases. These two competing effects maximize the total number of electrons in the
n = 2 level at T ≈ 10,000 K, as shown in Figure 5.13. This is roughly the temperature
of the photospheres of Vega and Sirius A.

The Balmer lines can be used to estimate the temperature of a star; the stars with
the strongest Balmer lines are those with T ≈ 10,000 K. What about stars with weak
Balmer lines? There are three possible reasons why the Balmer lines might be weak or
nonexistent:

. There’s little or no hydrogen present in the photosphere. (Given the ubiquity of
hydrogen in the universe, this is an implausible explanation.)

. The photospheric temperature is T � 10,000 K.

. The photospheric temperature is T � 10,000 K.

We can distinguish between the high-temperature case and the low-temperature case by
looking at the absorption lines of elements other than hydrogen.

Consider a neutral helium atom. Its ionization potential is χ = 24.5 eV, roughly
twice the ionization potential of hydrogen. The energy required to lift an electron
from the ground level to the first excited level is E2 − E1 = 20.9 eV, roughly twice
the equivalent energy in a hydrogen atom. Given the relative energy scales, we expect
absorption by helium to occur at energies (and hence temperatures) roughly twice that
of hydrogen. If a star has weak Balmer lines and strong helium lines, we conclude that
it has T > 10,000 K.

Now consider an atom with a single electron in its outer shell (lithium, sodium, and
so forth). These atoms have low ionization potentials (for sodium, χ = 5.1 eV). Thus,
lines of neutral sodium are seen only in relatively cool stars; in hotter stars, the sodium
is nearly all ionized. If a star has weak Balmer lines and strong neutral sodium lines,
we conclude that it has T < 10,000 K. We can also conclude that a star is cool if it has
molecular absorption bands. The dissociation energy for molecules tends to be small
compared to the ionization energy of hydrogen. Titanium oxide is a relatively tough

3 In some cooler stars, you also see absorption bands due to molecules.
4 As we have seen, however, the element helium (the second most abundant element in the universe) reveals
its presence in the Sun only by emission lines from the chromosphere.
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molecule; its dissociation energy is about 6.9 eV. Strong TiO absorption bands are seen
in stars with T ≈ 3000 K.

Detailed study of the strength of different absorption lines provides a good estimate
of the photospheric temperature. Given the vagaries of history, however, it shouldn’t
astonish you greatly that the spectral classification of stars long predates the realization
that the spectral sequence of stars is a temperature sequence. The spectral classification
scheme we use today had its origin around the year 1890, when Edward Pickering, at
the Harvard College Observatory, undertook the task of sorting out thousands of stellar
spectra. Needing a collaborator who was experienced at creating order out of chaos, he
hired his housekeeper, Williamina Fleming, as his assistant.

Pickering and Fleming proposed a scheme in which each spectrum was assigned a
letter, from “A” through “Q.” The letter “J” was not used (apparently because it looks
like “I” when scribbled quickly). This meant that Pickering and Fleming had 16 types
in all. The letter “P” was assigned to planetary nebulae (a type of small gaseous nebula)
and the “Q” was their wastebasket type: if a spectrum was too bizarre to fit any other
type, it went there. The other letters in their scheme were assigned in order of decreasing
strength of the Balmer lines, with A stars having the strongest Balmer lines, and O stars
the weakest.

The classification of Pickering and Fleming started out as a purely empirical scheme,
like sorting buttons by their color. At the beginning of the twentieth century, however,
astronomers began to have a clearer idea of how the strength of the Balmer lines
depended on temperature. Another Harvard astronomer, Annie J. Cannon, tossed out the
redundant types in the Pickering–Fleming scheme and reordered the remaining types
according to temperature. The order, from hot to cold, was OBAFGKM.5 With higher
resolution spectra, Cannon was able to refine the classification further. A single letter
was subdivided into numbered subtypes. For instance, G stars are subdivided into G0
stars (the hottest), G1, G2, G3, G4, G5, G6, G7, G8, and G9 stars (the coolest). The Sun,
for instance, is a G2 star.

The coolest stars in the standard classification scheme were M9 stars, with T ≈
2400 K. For many decades, astronomers toiled to discover starlike objects cooler than
2400 K. Such relatively cool bodies are extremely difficult to detect at visible wave-
lengths, since most of their luminosity emerges in the infrared. A blackbody with
T ≈ 1500 K, for instance, has a spectrum peaking at λmax ≈ 2 μm.

Not coincidentally, an all-sky infrared survey called the 2 Micron All-Sky Survey
(2MASS, for short) examined the sky at wavelengths of ∼ 2 μm, with one of its major
goals being the discovery of objects cooler than M9 stars. This goal was attained. The
2MASS survey found a number of cool dwarfs, comparable in size to an ordinary “main
sequence” M9 star but with temperatures T < 2400 K. Cool dwarfs with a temperature
of T ∼ 2000 K have been given the name L dwarfs.6 L dwarfs have distinctive spectral
characteristics:

5 The traditional mnemonic for this sequence is “Oh Be A Fine Girl; Kiss Me.” However, if you prefer kissing
guys (or goats or gorillas), feel free to make the appropriate substitution.
6 Why “L”? It was available, since it was one of the types discarded by Cannon.
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. Disappearance of TiO (and other oxide) absorption bands common in M dwarfs.

. Appearance of metal hydride absorption bands (FeH, CrH, and so forth).

. Greater flux in the infrared than in the visible.

The nearest known L dwarf is at a distance d = 5.0 pc; the estimated number density of
L dwarfs in our vicinity is n ∼ 0.01 pc−3, about 1/10 the number density of M stars.

Encouraged by their success, astronomers looked for still cooler dwarfs. With consid-
erable effort, they found a few dim cool dwarfs that display methane absorption bands,
similar to those seen in the spectrum of Jupiter. Methane is a relatively fragile molecule,
compared to metal oxides and metal hydrides; it dissociates at T ≥ 1300 K. The ultra-
cool dwarfs that have T < 1300 K have been given the name T dwarfs.7 The distinctive
spectral characteristic of T dwarfs is their methane absorption bands. Because of their
lower luminosity, T dwarfs are harder to detect than L dwarfs. It is estimated, though, that
their number density is n ∼ 0.01 pc−3, comparable to the number density of L dwarfs.
The nearest known T dwarfs are a pair of companions to the star ε Indi, at a distance
d = 3.6 pc from the Sun.

The extended spectral classification scheme is now OBAFGKMLT. An approximate
(but handy) translation of spectral type into temperature is

Spectral Type Temperature

O 40,000 K

B 20,000 K

A 9000 K

F 7000 K

G 5500 K

K 4500 K

M 3000 K

L 2000 K

T < 1300 K

You may have noticed that we’ve been using the names L dwarfs and T dwarfs rather
than L stars and T stars. This is because L and T dwarfs are not hot and dense enough to
fuse hydrogen into helium in their cores. Thus, they are not stars by the strict definition
of the term. Rather, L and T dwarfs are examples of brown dwarfs, objects that fall into
the gap between stars and planets. Brown dwarfs are balls of gas, but they are balls of
gas without central fusion reactors. Thus, they cool down with time. A brown dwarf that
starts as an L dwarf will end as a T dwarf. Main sequence stars, by contrast, maintain a
roughly constant surface temperature as long as they have a supply of hydrogen to fuse
into helium at their centers.

7 Why “T”? It was available, since it wasn’t part of the original Pickering–Fleming classification scheme.
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As seen in Color Figure 14, M, L, and T dwarfs are all comparable in size to Jupiter.
Because of the difference in temperatures, LM > LL > LT > LJup. Color Figure 14 is
astronomically correct in that it shows “clouds” and “weather” on the T dwarf, similar
to the clouds and weather on Jupiter.

14.3 LUMINOSITY CLASSES

The spectral types O through T are a temperature sequence. Although the photospheric
temperature is the most important parameter determining a star’s spectrum, it is not the
only one. In the 1930s, W. W. Morgan and Philip Keenan added an extension to the old
OBAFGKM scheme by introducing the concept of luminosity classes. Empirically, the
six luminosity classes, I, II, III, IV, V, and VI, correspond to different absorption line
widths, with luminosity class I having the narrowest lines at a given temperature and
luminosity class VI having the broadest. As an example, Figure 14.1 shows the spectra
of three stars, each of spectral type A0. Spectrum (a), which has luminosity class I, has
perceptibly narrower Balmer absorption lines than spectrum (c), which has luminosity
class V. (In fact, the lowest spectrum is that of Vega.)

In practice, it is found that the six luminosity classes correspond to stars of different
radii:

Luminosity Class Star Size

I supergiant

II bright giant

III giant

IV subgiant

V dwarf (main sequence)

VI subdwarf

(a)

(b)

(c)

FIGURE 14.1 Spectra (negative photographic images) of three A0 stars. (a)
Luminosity class I. (b) Luminosity class II. (c) Luminosity class V.
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The majority of stars (like the Sun, Sirius A, Alpha Centauri A, Alpha Centauri B,
Proxima Centauri, and Vega) are of luminosity class V. Betelgeuse is a supergiant,
of luminosity class I. Arcturus and Capella are examples of giants, with luminosity
class III.8

Why should supergiants (luminosity class I) have narrower absorption lines than
ordinary main sequence stars (luminosity class V) of the same surface temperature?
To understand, let’s first think about what it means to look at the photosphere of a star.
If you look at a star from a distance, the optical depth τ increases as you look farther
into the star’s interior. For a thin spherical shell of radius r and thickness dr , the relation
between the shell’s optical depth dτ and physical thickness dr is (equation 5.60):

dτ = −n(r)σ (r)dr, (14.20)

where n is the number density of absorbers (or scatterers) and σ is the average cross-
section. Alternatively, we can write

dτ = −ρ(r)κ(r)dr, (14.21)

where ρ is the mass density of the shell and κ is the opacity.9 The opacity κ is found
by adding together the cross-sections of all the absorbers and scatterers in the shell,
and dividing by the total mass of the shell. Thus, the units of κ are m2 kg−1, and from
equations (14.20) and (14.21), we find

κ = nσ

ρ
. (14.22)

In general, the opacity κ is a function of temperature, density, and chemical compo-
sition; in the Sun’s photosphere, the opacity is κ ∼ 3 m2 kg−1. The negative sign in
equation (14.21) is a reminder that τ increases as r decreases. For a thin shell, dτ is
just the probability that a photon is absorbed or scattered as it passes through the shell.
As you dive inward into a star, the photosphere is where the optical depth reaches a
value τ ≈ 1.

Since the equation of hydrostatic equilibrium tells us that

dP

dr
= −gρ, (14.23)

we can write the dependence of pressure on optical depth as

dP

dτ
= dP

dr

dr

dτ
= g

κ
. (14.24)

If we assume that g/κ is roughly constant in the star’s atmosphere,

P ≈ g

κ
τ. (14.25)

8 White dwarfs are sometimes classified as luminosity class VII, and supergiants are often subdivided into class
Ia (“hypergiants”) and class Ib (“ordinary” supergiants).
9 In general, the cross-section σλ is dependent on the wavelength of light; thus, κλ will be wavelength-
dependent, too.
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As you dive into a star’s atmosphere, the pressure and optical depth both exponentially
increase with the same scale height. Since τ ≈ 1 in the photosphere, we can compute the
pressure at the location of the photosphere as

Pphot ≈ gphot

κphot
. (14.26)

For the Sun, for instance, the pressure in the photosphere is P� ≈ 100 N m−2 ≈
10−3 atm. In combination with the photospheric temperature of T� = 5800 K and a
mean molecular mass of order unity, this implies a density in the photosphere of
ρ� ≈ 10−5 kg m−3.

In general, stars with a higher gravitational acceleration g will have higher pressures
P in their photosphere, since the photospheric opacity κphot doesn’t vary wildly from
one star to another. This means that stars with high acceleration will have more pressure
broadening of their absorption lines.10 As a specific example, let’s compare Betelgeuse
with Proxima Centauri. Betelgeuse is an M2 I star, and has an absolute magnitude
MV ≈ −5.5 mag. Proxima Centauri is an M5 V star, and has an absolute magnitude
MV ≈ 15 mag. Betelgeuse and Proxima Centauri are similar in surface temperature
(T ≈ 3000 K) but differ by over 20 magnitudes in MV ; that’s a difference of ∼ 108 in
luminosity. Betelgeuse is more luminous than Proxima Centauri by a factor of ∼ 108

because it’s larger in radius11 by a factor ∼ 104. Because Betelgeuse is much larger than
Proxima Centauri, the gravitational acceleration in its photosphere is much smaller:

gBetel

gProx
= MBetel

MProx

(
RBetel

RProx

)−2

≈ (200)(13,000)−2 ≈ 10−6. (14.27)

Thus, the pressure at Proxima Centauri’s photosphere will be greater by a factor ∼ 106,
leading to a greater amount of pressure broadening of its absorption lines.

The Sun’s complete spectral classification is G2 V. This grouping of three symbols
contains a wealth of information. Empirically, the spectral type G2 indicates that the
Sun’s spectrum has weak Balmer lines and very strong Ca ii lines. (Ca ii is calcium
with one electron stripped away; given the low ionization potential of calcium, this does
not imply a high temperature.) By deduction from the relative strength of Balmer lines
and Ca ii lines, the spectral type G2 corresponds to a surface temperature T = 5800 K.
Empirically, the luminosity class V means that the Sun’s absorption lines are broad. By
deduction, the luminosity class V corresponds to an ordinary main sequence star, with
relatively high pressure in its photosphere.

14.4 HERTZSPRUNG–RUSSELL DIAGRAMS

In the early twentieth century, when the OBAFGKM spectral classification system was
being sorted out, it occurred independently to a pair of astronomers that it might be

10 Pressure broadening is described in Section 5.3.
11 Recall from Section 13.4 that RBet ≈ 1800R�, whereas RProx ≈ 0.14R�.
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interesting to plot the absolute visual magnitude of stars versus their spectral type. (This
is the approximate equivalent of plotting luminosity versus surface temperature.) The
two scientists who had this idea were the Danish astronomer Ejnar Hertzsprung and the
American astronomer Henry Norris Russell. Their joint invention—the plot of absolute
magnitude versus spectral type—is called the Hertzsprung–Russell diagram, or H–R
diagram for short.

Russell’s first published H–R diagram is shown in Figure 14.2a. To generate his plot,
Russell first computed the absolute magnitude of stars with known distances. He then
plotted the absolute magnitude of each star versus its spectral type, determined from
its spectrum. Russell found that the stars were not splattered randomly around the plot.
Instead, they fell along a broad band from the upper left (hot, luminous stars) to the lower
right (cool, dim stars). The general results of Russell are confirmed by the more data-
rich plot seen in Figure 14.2b. Part (b) plots MV versus B − V color index for a sample
of more than 16,000 stars whose parallaxes were measured with an error < 10% by the
Hipparcos satellite. Since the B − V color index and the OBAFGKM spectral type are
both related to surface temperature, an H–R diagram can use either quantity along its
x axis.

The diagonal band from upper left to lower right in an H–R diagram is called the
main sequence and is the origin of the term “main sequence stars.” All the stars on the
main sequence have luminosity class V and are relatively dense, small dwarf stars. The
small number of stars above and to the right of the main sequence (cool but luminous
stars) are of luminosity class III. The scattered points below and to the left of the
main sequence are white dwarfs, those dense stellar remnants of which Sirius B is an
example.

It is instructive to look at the H–R diagrams for different populations of stars. As an
example, let’s start by looking at the 25 stars that are closest to Earth. These are stars
whose distances, and hence absolute magnitudes, are well known (the most distant is at
d ≈ 4 pc). These nearby stars should also constitute a “fair sample” of the stars in our
galaxy, since we don’t think there’s anything particularly special about our location. What
do we find when we look at the H–R diagram for local stars, as shown in Figure 14.3a?
We find a strong temptation to paraphrase Abraham Lincoln, and say “M main sequence
stars are the best in the universe: that is the reason the Lord makes so many of them.”12

There are no giants or supergiants in the Sun’s immediate neighborhood. On the main
sequence, there is nothing hotter or more luminous than Sirius A (spectral type A1;
T ≈ 10,000 K). Over half the stars in our neighborhood are type MV: small, cool, main
sequence stars.

As another example, let’s look at the apparently brightest stars (that is, the stars with
the highest flux as seen from Earth). The H–R diagram of the 25 highest-flux stars is
shown in Figure 14.3b. The apparently brightest stars are an unrepresentative sample
of stars. Most of them are hot, luminous main sequence stars, giants, and supergiants.
Although supergiants are extremely rare, their high luminosity makes them visible over

12 What Lincoln actually said, according to his secretary John Hay, was “Common looking people are the best
in the world: that is the reason the Lord makes so many of them.”
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FIGURE 14.2 (a) Henry Russell’s original H–R diagram. (b) H–R diagram for
stars observed by the Hipparcos satellite.
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FIGURE 14.3 (a) H–R diagram for the 25 stars closest to Earth. (b) H–R diagram
for the 25 apparently brightest stars as seen from Earth. In both (a) and (b), the filled
dot represents the Sun.

long distances.13 The M dwarfs that make up more than half the population of stars are
all invisible to the naked eye. Even Proxima Centauri, the closest M dwarf, would have
to be moved to 1/10 its present distance to be visible.

The fact that the main sequence is a relatively narrow band on the H–R diagram (see
Figure 14.2) gives us a new way of estimating the distances to stars; this new method is
called spectroscopic parallax. To see how spectroscopic parallax works, suppose that
you take the spectrum of a star and find that it has luminosity class V; that is, it’s on the
main sequence. For any main sequence star, its absolute magnitude (or equivalently, its
luminosity) is determined by its spectral type. For instance, an O5 main sequence star
has MV = −6.0 mag; an M5 main sequence star has MV = 12.3 mag.14 If you measure
the apparent magnitude mV of a star, you can find its distance from the relation

log(d/10 pc) = (mV − MV )/5. (14.28)

13 Supergiants are the “celebrities” of the galaxy; although there aren’t many of them, they have a talent for
publicity, so everyone knows about them.
14 The absolute magnitudes of main sequence stars can be read from an H–R diagram or taken from a table.
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There will be some error in this calculation. Not all stars of the same spectral classifi-
cation have exactly the same absolute magnitude; the main sequence is a band, not an
infinitesimally thin line. In addition, we have ignored any extinction by interstellar dust
along the line of sight to the star; we return to this topic in Section 16.1.2.

PROBLEMS

14.1 The star 9 Sagittarii is a main sequence star with spectral type O5. Its apparent
magnitude is mV = 6.0. What is the distance to 9 Sagittarii (ignoring any extinction
by dust)?

14.2 At the center of the Sun, the mass density is ρ = 1.52 × 105 kg m−3 and the mean
opacity is κ = 0.12 m2 kg−1. What is the mean free path for a photon at the Sun’s
center?

14.3 Use the equation of hydrostatic equilibrium and the assumption of constant density
to compute approximate central pressures for each of the following:

(a) a K0 V star (M = 0.8M�, R = 0.85R�)
(b) a K0 III star (M = 4M�, R = 16R�)
(c) a K0 I star (M = 13M�, R = 200R�)

14.4 Show explicitly that if the Sun’s photosphere were not ionized, its mean molecular
mass would be μ ≈ 1.25.

14.5 When a Hertzsprung–Russell diagram is constructed from observed data (as in
Figure 14.2b), part of the width of the main sequence is due to errors in distance
measurements. If a typical uncertainty in parallax is 10%, in which direction and by
how much (in magnitudes) will stars typically be displaced from their true positions
on the H–R diagram?

14.6 How does surface gravity vary as a function of luminosity along the main sequence?

14.7 Consider the two stars whose properties are described below:

Star V B − V MV Teff(K) Spectral Class BC

Betelgeuse 0.45 1.50 −0.60 3370 M2 Ib −1.62

Gliese 887 7.35 1.48 9.76 3520 M2 V −1.89

How much larger in radius is Betelgeuse than Gliese 887?



15 Stellar Interiors

Our observations of stars are only skin-deep. The mass of the Sun’s photosphere, chro-
mosphere, and corona (the portions of the Sun we can see directly) is only 10−10 of the
Sun’s total mass. We are not entirely ignorant of the 99.99999999% of the Sun that is
opaque, however. Because the structure of the Sun, and other stars, is dictated by well-
understood laws of physics, we can make mathematical models of stellar interiors, using
the observed surface properties of stars as our boundary conditions.

15.1 EQUATIONS OF STELLAR STRUCTURE

The internal structure of a spherical star in equilibrium is dictated by a few basic
equations of stellar structure. The first equation of stellar structure is the familiar
equation of hydrostatic equilibrium (eq. 9.8):

dP

dr
= −GM(r)ρ(r)

r2
. (15.1)

Make note of the assumptions that have gone into this equation: the star is spherical
and nonrotating; the star is neither expanding nor contracting; and gravity and pres-
sure gradients provide the only forces. Equation (15.1) is a single equation with three
unknowns—P(r), M(r), and ρ(r)—so even with known boundary conditions, we can’t
solve it to find a unique solution for the pressure and density inside the star. However,
we can still extract interesting information from the equation of hydrostatic equilibrium.
For instance, we can make a very crude estimate of the central pressure of the Sun.

A rough approximation to the equation of hydrostatic equilibrium is

	P

	r
≈ −G〈M〉〈ρ〉

〈r〉2
, (15.2)

where 	P is the difference in pressure between the Sun’s photosphere and its center;
	r is the difference in radius between the Sun’s photosphere and its center; and 〈M〉,
〈ρ〉, and 〈r〉 are typical values of mass, density, and radius in the Sun’s interior. As a
rough guess, we can set 〈ρ〉 ≈ ρ� ≈ 1400 kg m−3, the average density of the Sun. We
can also guess that 〈M〉 ≈ M�/2 ≈ 1.0 × 1030 kg and 〈r〉 ≈ R�/2 ≈ 3.5 × 108 m. The

350
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pressure at the photosphere will be much less than the central pressure, so we can rewrite
equation (15.2) as

0 − Pc

R� − 0
≈ −G(M�/2)ρ�

(R�/2)2
≈ −2GM�ρ�

R2�
, (15.3)

implying a central pressure

Pc ≈ 2
GM�ρ�

R�
≈ 8π

3
Gρ2

�R2
�. (15.4)

For comparison, in Section 10.2.1, we computed the central pressure for a planet of
uniform density. With the uniform-density assumption, we computed a central pressure
(given in equation 10.18) that was smaller by a factor of 4 than that given in equa-
tion (15.4). From this discrepancy, we learn that although the relation Pc ∼ GMρ/R

should hold true for any sphere in hydrostatic equilibrium, we should regard our com-
puted values of Pc as order-of-magnitude approximations, unless we know the exact
density profile ρ(r).

With the numerical values of M�, ρ�, and R� inserted into equation (15.4), we find
that

Pc ≈ 2
GM�ρ�

R�
≈ 5 × 1014 N m−2 ≈ 5 × 109 atm. (15.5)

When we compare this to the pressure Pphot ≈ 10−3 atm in the Sun’s photosphere, as
computed in Section 14.3, we see that the center of a star is a high-pressure place.

The second equation of stellar structure is the equation of mass continuity:

dM

dr
= 4πr2ρ(r). (15.6)

This simply tells us that the total mass of a spherical star is the sum of the masses
of the infinitesimally thin spherical shells of which it is made. It tells us the relation
between M(r), the mass enclosed within a radius r , and ρ(r), the local mass density at
r . Combining equations (15.1) and (15.6) gives us two equations in the three unknowns,
P(r), M(r), and ρ(r). We need further information before we can compute unique
solutions for P , M , and ρ.

Of course, we do have another equation that relates P to ρ: the equation of state,
which tells the relation among density, temperature, and pressure for a gas. For most
stars, the appropriate equation of state is the ideal gas law:

P(r) = ρ(r)kT (r)

μmp

. (15.7)

Strictly speaking, we should also include the radiation pressure exerted by the photons,

Prad(r) = a

3
T (r)4, (15.8)
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where a = 4σSB/c = 7.56 × 10−16 J m−3 K−4 is the radiation constant. However, for all
but the hottest stars, the radiation pressure is negligibly tiny compared to the gas pressure.
Generally, the mean molecular mass μ in equation (15.7) is a function of r , since the
chemical composition and ionization state change with radius inside a star.

Most of the Sun is almost completely ionized, and the chemical composition is nearly
constant outside the central regions where hydrogen is fused to helium; thus, for most
of the Sun’s radius, the mean molecular mass is μ ≈ 0.6 (see Section 14.1). If we
approximate the mean molecular mass as being constant in a star, we now have three
equations in four unknowns, T , P , M , and ρ. Although this is insufficient for a complete
solution within the solar interior, we can make a crude estimate of the central temperature
of the Sun, using the ideal gas law as the equation of state:

Tc ≈ Pc

μ�mp

ρ�k
≈ 2GM�μ�mp

R�k
. (15.9)

With μ� = 0.60, this yields

Tc ≈ 3 × 107 K. (15.10)

Careful computer models of the Sun’s interior yield a central temperature Tc = 1.47 ×
107, so our guesstimate is off by a factor of 2. Note that we are able to guess the central
temperature of the Sun without knowing anything about how energy is generated in the
Sun. The central temperature of a star of mass M and radius R is dictated by the fact
that it is a sphere made of ideal gas in hydrostatic equilibrium. We have used the central
temperature of the Sun as our example, but note that

Tc ∝ Mμ

R
(15.11)

for any sphere of ideal gas in hydrostatic equilibrium. In Section 13.6, we found that
main sequence stars with M < 1.66M� have R ∝ M , approximately. Since all main
sequence stars have similar mean molecular masses (μ ∼ 1), this implies that low-mass
main sequence stars have

Tc ∝ M

R
≈ constant. (15.12)

Thus, all main sequence stars with M < 1.66M� should have central temperatures close
to that of the Sun.

15.1.1 Energy Transport in Stars

One of the defining characteristics of stars (and one that’s been ignored so far in this
chapter) is that they glow in the dark. A basic question about stars—one so simple that
a child might ask it—is Why do stars shine? The basic answer to that question is Stars
shine because they are hot. If you place a hot, bright object in the middle of cool, dark
space, then energy, in the form of photons, will flow away from the hot object. Not only
do stars shine because they are hot, but within the star, energy flows from the very hot
center (Tc ≈ 14,700,000 K for the Sun) to the not-so-hot photosphere (Tphot ≈ 5800 K
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for the Sun). The rate at which thermal energy flows outward is dictated by the next
equation of stellar structure, the equation of energy transport.

Thermal energy can be transported by one of three methods: radiation, convection, and
conduction. Radiative energy transport occurs when energy is carried from one location
to another by photons. Radiation tends to be the dominant form of energy transport in
transparent media. Convective energy transport occurs when thermal energy is carried by
the bulk motion of hot fluids. Convection is thus the dominant form of energy transport
in relatively opaque liquids and gases. Conductive energy transport occurs when the
random thermal motion of atoms or molecules causes them to collide with adjacent atoms
or molecules, with a resulting transfer of kinetic energy. Conduction is the dominant form
of energy transport in relatively opaque solids and thus can be disregarded in gaseous
stars. Within a star, energy can be transported from the center to the photosphere either
by convection (hot blobs of gas move upward, while cooler blobs sink downward to take
their place) or by radiation. In the Sun, it happens that over most of the distance from
the core to the photosphere, the energy is transported by photons. Thus, we’ll look first
at radiative energy transport.1

15.1.2 Radiative Transport

Consider a thin spherical shell centered on a star’s center. The inner radius of the shell
is r; the outer radius is r + dr , with dr � r . The temperature at the inner surface of the
shell is T ; the temperature at the outer surface is T + dT , where |dT | � T . Typically,
stars have dT < 0, meaning that the temperature drops as you move away from the center.
The radiation pressure at the inner surface of the shell is

Prad(r) = a

3
T 4, (15.13)

while the radiation pressure at the outer surface is

Prad(r + dr) = a

3
[T + dT ]4 = a

3
T 4

[
1 + dT

T

]4

≈ a

3
T 4

[
1 + 4

dT

T

]
, (15.14)

where in the last step we have used a first-order expansion, assuming that |dT /T | � 1.
The net radiation force acting on the shell will be the pressure difference between the
inside and outside, multiplied by the shell’s area:

Frad = [
Prad(r) − Prad(r + dr)

]
4πr2 (15.15)

≈ −a

3
4T 4 dT

T
4πr2 = −16π

3
ar2T 3dT . (15.16)

Thus, a temperature gradient across a thin shell is accompanied by a net radiation force,
caused by photons shoving on the material inside the shell. We’ve already seen that the
optical depth of a thin spherical shell is (equation 14.21)

dτ = −ρ(r)κ(r)dr, (15.17)

1 To avoid accusations of helio-chauvinism, we’ll also look at convective energy transport a little later on.
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where κ is the opacity, in units of m2 kg−1. If dτ � 1, the probability that a photon will
be absorbed while crossing the shell is dP ≈ dτ . The total rate at which photons carry
energy through the shell is just the luminosity, L(r). Since a photon has a momentum
p = E/c, where E is the photon energy, the rate at which photons carry momentum
through the shell is L(r)/c. Thus, the rate at which photon momentum is transferred to
the shell (in other words, the force on the shell) is

Frad(r) = L(r)

c
dτ = −L(r)

c
ρ(r)κ(r)dr. (15.18)

Setting equations (15.16) and (15.18) equal to each other, we have an equation that
relates the temperature, luminosity, and opacity of a star:

−16π

3
ar2T (r)3dT = −ρ(r)κ(r)L(r)dr

c
. (15.19)

With a bit of rearrangement, this becomes the equation of radiative energy transport:

dT

dr
= −3ρ(r)κ(r)L(r)

16πacT (r)3r2
. (15.20)

This equation can be written in alternate forms. For instance, we can take advantage
of the equality a = 4σSB/c, where σSB is the Stefan–Boltzmann constant, to write the
equation of radiative energy transport in the form

dT

dr
= − 3ρ(r)κ(r)L(r)

64πσSBT (r)3r2
. (15.21)

Equation (15.21) links the luminosity to the temperature gradient of the star, in much
the same way that the equation of hydrostatic equilibrium (eq. 15.1) links the mass to
the pressure gradient of the star. A perfectly transparent star (κ = 0) would have no
temperature gradient, since it wouldn’t absorb any of the gamma rays generated by fusion
reactions in the star’s central core. The actual temperature gradient in the Sun, between
the center and the photosphere, averages to

�T

�r
≈ Tphot − Tc

R� − 0
≈ 5800 K − 1.47 × 107 K

6.96 × 105 km
≈ −20 K km−1. (15.22)

For every kilometer you move outward in the Sun, on average, you cool down by 20
degrees.

Since the Sun’s temperature is not uniform, we may ask whether the assumption of
local thermodynamic equilibrium applies. We recall, from Section 5.6, that a necessary
condition for LTE is that the mean free path of the photons is small compared to
the distance over which the temperature T varies significantly. The mean free path
of a photon (that is, the average distance it travels between interactions with massive
particles), is

〈�〉 = 1

nσ
= 1

κρ
. (15.23)
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In a fully ionized gas, the source of opacity is Thomson (or electron) scattering, for
which the cross-section is

σe = 8π

3

(
e2

4πε0mec
2

)2

= 6.65 × 10−29 m2. (15.24)

To total up the electron density, we consider (as we did in Section 14.1) how many
particles are contributed by various elements. The number density of hydrogen atoms
is Xρ/mp, and each of these contributes one electron. The number density of helium
atoms is Yρ/4mp, and each of these contributes two electrons. Metals have number
density Zρ/Amp, and each of these contributes ∼ A/2 electrons. Thus, the total electron
density can be written as

ne = Xρ

mp

+ 2
Yρ

4mp

+ A

2

Zρ

Amp

= ρ

mp

[
X + 1

2
Y + 1

2
Z

]

= ρ

2mp

(1 + X) , (15.25)

where in the last step we used (Y + Z)/2 = (1− X)/2. The mean free path of a photon
in the Sun is thus

〈�〉 = 1

neσe

= 2mp

σeρ(1 + X)
≈ 0.02 m, (15.26)

assuming ρ = ρ� = 1400 kg m−3 and X = 0.73. From equation (15.22), we see that
over this small distance, the temperature change will typically amount to only �T ∼
4 × 10−4 K. So while the temperature gradient in the Sun causes energy to flow outward,
it is so small that local thermodynamic equilibrium (see Section 5.6) is a very good
approximation in the solar interior.

The equation of radiative energy transport (eq. 15.21) can be used to make a crude
estimate of the Sun’s luminosity:

�T

�r
≈ −Tc

R�
≈ − 3〈κ〉ρ�L�

64πσSB(Tc/2)3(R�/2)2
, (15.27)

and so

L� ≈ 2πσSBT 4
c
R�

3〈κ〉ρ�
, (15.28)

where 〈κ〉 is the typical opacity inside the Sun. With Tc = 1.47 × 107 K, R� = 6.96 ×
108 m, and ρ� = 1400 kg m−3, we find

L� ≈ 3 × 1027 W

(
〈κ〉

1 m2 kg−1

)−1

. (15.29)
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If we assumed that the opacity throughout the Sun had the same value as in the pho-
tosphere, κ ≈ 3 m2 kg−1, we would compute a solar luminosity of L� ∼ 1027 W, about
2.5 times the actual value of L� = 3.90 × 1026 W. This implies that the average opacity
inside the Sun is actually

〈κ〉 ≈ 8 m2 kg−1. (15.30)

Since opacity depends on temperature and density, its value varies with radius in the Sun;
however, κ ≈ 8 m2 kg−1 is not absurd as an average value for the Sun as a whole.

It is also useful to ask at this point how long it takes photons to diffuse outward from
the center of the Sun to the bottom of the convective zone at ∼ 0.7R� (discussed in
Section 15.1.3) keeping in mind, of course, that radiative transport involves repeated
absorption and re-emission processes rather than scattering of photons whose identity
is preserved as they wander through the solar interior. We have already seen that the
mean free path for a photon in the completely ionized solar interior is � ≈ 2 cm (equa-
tion 15.26). So a typical photon travels about 2 cm though the solar interior until it is
absorbed and another photon is emitted to replace it; since the second photon retains no
“memory” of the direction in which the original photon was headed, photons essentially
“random walk” their way out of the solar interior by diffusion. A three-dimensional ran-
dom walk (see the appendix to this chapter) requires N = 3(0.7R�/�)2 individual steps
of size � to diffuse out to a distance of 0.7R� from the starting point, so

N = 3(0.7R�)2

�2
= 3(0.7 × 6.96 × 108 m)2

(2 × 10−2 m)2
≈ 1.8 × 1021 (15.31)

individual absorptions and re-emissions. The total distance traveled is d = N� ≈ 3.6 ×
1019 m, and with photons traveling at the speed of light, the time for photons to escape
is the diffusion time

tdif = d

c
≈ 1.2 × 1011 s ≈ 3.8 × 103 yr. (15.32)

Thus, even if there were changes in the energy-generation rates in the center of the Sun on
timescales of 1000 years or less, the photon diffusion would smooth over these variations.

15.1.3 Convective Transport

Suppose, as a thought experiment, you inserted a layer into the Sun that was perfectly
opaque, with κ = ∞. Equation (15.21) seems to imply that an infinite temperature
gradient would occur across that layer, with the photons absorbed at the bottom of the
layer driving the temperature at the bottom arbitrarily high. In reality, this would not
happen; as the bottom of the layer absorbed energy, the hot gas would become buoyant
and rise upward. Energy would then be transported across the opaque layer by hot, rising
blobs of gas, rather than by photons. Generally, in stars with high opacity, energy is
transported outward by convection, with hot gas rising and cooler gas sinking to take its
place.
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Pb, ρb

Pb + dPb, ρb + dρb P + dP, ρ + dρ

P, ρ

dr

FIGURE 15.1 A blob of gas is moved upward by a small distance dr .

Convection is a chaotic, turbulent process, as you can verify by watching a pot of
simmering soup on a stove, so the detailed physics tends to be messy. Nevertheless, we
can derive, in a fairly straightforward calculation, the physical conditions under which
a gas becomes unstable against the onset of convection. We will do this by perturbing a
small blob of gas in the upward direction and then determining whether this perturbed
gas element will sink back down to its initial position (that is, the gas is stable against
convection) or if the element will continue to rise; convection will occur if a small
displacement of a gas element triggers a runaway process of vertical motion.

Consider a small blob of gas in a star, as shown in Figure 15.1. The pressure and
density within the blob are Pb and ρb. The pressure and density in the gas immediately
outside the blob are P and ρ. Initially, the blob is in hydrostatic equilibrium with its
surroundings, requiring Pb = P . Now, let’s consider what happens when we move the
gas blob upward by a short distance dr , to a region of the star where the pressure
is P + dP (with dP < 0, since we’re moving upward) and the density is ρ + dρ.
As the blob is moved upward, it expands until it is again in hydrostatic equilibrium
with its surroundings; at its new position, the internal pressure in the blob will be
Pb + dPb = P + dP . If, in its new position, the blob has a density ρb + dρb > ρ + dρ

(that is, if it’s denser than its surroundings), it will sink back down, and the gas is stable
to convection. On the other hand, if ρb + dρb < ρ + dρ, the blob is buoyant and will
continue to rise; this marks the onset of convection. Thus, the condition for stability
against convection is ρb + dρb > ρ + dρ, or since ρb = ρ initially,

dρb > dρ. (15.33)

Thus, to find whether a star of known pressure P(r) and density ρ(r) is stable against
convection, we need to compute the value of dρb when a blob of gas is moved upward
through a distance dr .

If the blob is moved upward rapidly, it will not have time to exchange heat with its
surroundings. Such a process, in which heat is not gained or lost, is called an adiabatic
process; in an adiabatic process, entropy is conserved. For a blob of gas undergoing an
adiabatic process,

PV γ = constant, (15.34)
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where V is the volume of the blob and γ is the adiabatic index.2 Since for a blob of
fixed mass, V ∝ 1/ρ, we may write equation (15.34) as Pbρ

−γ

b = constant, or

ln ρb = 1

γ
ln Pb + constant. (15.35)

Taking the derivative of equation (15.35), we find that an adiabatic process that changes
the pressure of a gas blob by an amount dPb will change its density by an amount dρb,
given by the relation

dρb

ρb

= 1

γ

dPb

Pb

. (15.36)

Given the initial conditions for the blob (ρb = ρ, Pb = P ) and the requirement that it end
in hydrostatic equilibrium with its surroundings (dPb = dP ), this means that the change
in the blob’s density as it moves upward adiabatically will be

dρb = ρb

γ

dPb

Pb

= ρ

γ

dP

P
= ρ

γP

dP

dr
dr. (15.37)

The change in the external density can be written as

dρ = dρ

dr
dr. (15.38)

Given equations (15.37) and (15.38), the criterion for stability against convection, dρb >

dρ, can be rewritten in the form

ρ

γP

dP

dr
>

dρ

dr
, (15.39)

or

1

γP

dP

dr
>

1

ρ

dρ

dr
. (15.40)

It is often more useful to state the stability criterion in terms of the temperature
gradient dT /dr of a star, rather than its density gradient dρ/dr . For an ideal gas,
P = ρkT /μmp, and thus, if the mean molecular mass is constant,

dP

dr
= ρk

μmp

dT

dr
+ kT

μmp

dρ

dr

= P

T

dT

dr
+ P

ρ

dρ

dr
, (15.41)

2 The adiabatic index has a value γ = 5/3 for simple atomic gases and fully ionized gases. For a gas of diatomic
molecules, such as H2, N2, and O2, the adiabatic index is γ = 7/5.
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which can be rearranged to

1

ρ

dρ

dr
= 1

P

dP

dr
− 1

T

dT

dr
. (15.42)

The stability equation then becomes

1

γP

dP

dr
>

1

P

dP

dr
− 1

T

dT

dr
. (15.43)

Collecting terms and multiplying by T yields the final form of the stability equation:

−
(

1 − 1

γ

)
T

P

dP

dr
> −dT

dr
. (15.44)

Here we leave in the minus sign since both the pressure and the temperature decrease
with radius in a star. The left-hand side of this equation is the adiabatic temperature
gradient. The right-hand side of the equation is the actual temperature gradient in
the star. Both of these quantities are evaluated at every point in the stellar structure
calculation; as long as equation (15.44) is satisfied, energy transport will be radiative.
However, if equation (15.44) is not satisfied, then convection ensues. In this condition,
the temperature gradient then approaches the adiabatic temperature gradient, which is
the largest realizable value. Thus, the equation of convective energy transport is

dT

dr
=

(
1 − 1

γ

)
T (r)

P (r)

dP

dr
. (15.45)

When energy is transported by convection, the temperature gradient is proportional to
the pressure gradient.

In general, energy is carried outward in a star either by radiation or by convection,
whichever is more efficient at shuttling joules toward the photosphere. The more efficient
process is the one that leads to the smaller temperature gradient (equations 15.21 and
15.45). Within a single star, energy can be carried by radiation in one region and by
convection in another. In the Sun, for example, radiation is the more efficient process
out to r = 0.7R� (Figure 15.2). In the outer 30% of the Sun (by radius), convection is
the dominant means of energy transport.

15.2 ENERGY GENERATION IN STARS

So far, we’ve talked about how energy is carried to the photosphere of the star, but not
about how it is generated in the star’s interior. The energy that a star tosses away into
space must come from some source inside the star. The generation of energy within a
star is described by the last of the equations of stellar structure, the equation of energy
generation. Consider the usual thin spherical shell of inner radius r and outer radius
r + dr , centered on the star’s center. A luminosity L flows outward through the inner
surface, and a luminosity L + dL flows outward through the outer surface. Where does
the extra bit of power dL come from? Even if we don’t know from a physics standpoint,
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FIGURE 15.2 Radiative and convective energy transport within the Sun.

we can still express it mathematically in terms of the rate of energy production ε (the
units of ε are watts per kilogram). The equation of energy generation can be written as

dL = (4πr2dr)ρε, (15.46)

or

dL

dr
= 4πr2ρ(r)ε(r). (15.47)

All we need to do now is find the physical process by which energy is generated, and
determine how ε depends on the temperature, density, and chemical composition within
a star.

The answer to the question Why do stars shine? is Stars shine because they are
hot. The obvious follow-up question is Why don’t they cool down? There are several
possible answers to this question. One possible source of energy for stars is gravitational
potential energy. The current gravitational potential energy of the Sun is

U� = −q
GM2

�
R�

, (15.48)

where q is a factor of order unity. For a sphere of uniform density, as we computed in
equation (10.24), the factor is q = 3/5. Stars, however, are centrally concentrated and
have q ≈ 1.5. For the Sun, then,

U� = −1.5
GM2

�
R�

≈ −5.7 × 1041 J. (15.49)
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Since the Sun started as a gas cloud with r 
 R�, in collapsing to its present size, it lost
5.7 × 1041 J of gravitational potential energy. If all this energy were converted to photons,
it would keep the Sun at its present luminosity for a time equal to the Kelvin–Helmholtz
time:

tKH ≡ |U�|
L�

= 5.7 × 1041 J

3.9 × 1026 J s−1
≈ 1.5 × 1015 s ≈ 50 Myr. (15.50)

In the 1850s, Helmholtz proposed that the Sun was powered by gravitational potential
energy, and computed its age as being tKH ∼ 20 million years. (With no knowledge of
the interior structure of the Sun, Helmholtz assumed it was of uniform density, thus
underestimating |U�| and tKH.) Slightly later, Kelvin, taking into account the nonuniform
density of the Sun, calculated a value of tKH ∼ 60 million years. Nineteenth-century
geologists were dubious of the results of Helmholtz and Kelvin. They pointed out, quite
rightly, that the fossil record implies that the Sun has been shining at a roughly constant
luminosity for a time much longer than 60 million years.3

It was not until the 1930s that astrophysicists had the grand realization that nuclear
fusion provides the necessary energy to keep the stars hot. The Sun, like other main
sequence stars, fuses hydrogen into helium:

. Mass of 4 hydrogen nuclei = 6.6905 × 10−27 kg

. Mass of 1 helium nucleus = 6.6447 × 10−27 kg

. Mass difference = 0.0458 × 10−27 kg

When four hydrogen atoms fuse to form one helium atom, the lost mass, �m = 4.58 ×
10−29 kg, is converted to energy. The conversion rate is given by Einstein’s formula:

�E = (�m)c2 = 4.1 × 10−12 J. (15.51)

Fusing together four hydrogen atoms doesn’t create a lot of energy: 4.1× 10−12 J is about
enough to lift a nickel through a height of 1 Å against the Earth’s gravity at sea level.4

However, there are a whole lot of hydrogen atoms inside a star. If the Sun had started
out made entirely of hydrogen, it would have contained NH hydrogen atoms, where

NH = M�
mp

≈ 1.99 × 1030 kg

1.67 × 10−27 kg
≈ 1.2 × 1057. (15.52)

Fusing all the hydrogen atoms into NH/4 helium atoms would release an amount of
energy

Efus = NH

4
�E = 1.2 × 1057

4
(4.1 × 10−12 J) = 1.2 × 1045 J. (15.53)

3 The Kelvin–Helmholtz time for brown dwarfs and Jovian planets is hundreds of times longer than the Sun’s
Kelvin–Helmholtz time. Thus, the dim light from these objects is powered by gravitational potential energy.
4 A nickel has the same mass as a British 20-pence coin and is slightly less massive than a euro 20-cent piece.
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This is about 2000 times the magnitude of the Sun’s gravitational potential energy. Thus,
fusion can keep the Sun shining at a constant rate for a time

tfus = Efus

L�
≈ 3.3 × 1018 s ≈ 100 Gyr. (15.54)

In truth, the Sun wasn’t pure hydrogen when it started out, and the conversion of
hydrogen to helium in the Sun isn’t total; only the central ∼ 10% of the Sun’s mass
is at temperatures high enough for fusion to take place. The lifetime of the Sun, as a
consequence, is only ∼ 10 gigayears instead of ∼ 100 gigayears. It is still comfortably
longer than the Kelvin–Helmholtz time, though.

All main sequence stars are powered by the fusion of hydrogen into helium in their
central regions. The Sun’s main sequence lifetime is τ� ≈ 10 Gyr. Since the main
sequence lifetime is τ ∝ M/L and since the approximate mass-luminosity relation is
L ∝ M4 for stars with M > 0.7M� (Section 13.6), the main sequence lifetime of a
massive star is

τ ≈ 10 Gyr

(
M

1M�

)−3

. (15.55)

The lifetime of a 20M� star (with spectral type 09) will be only 1 Myr. The lifetime of a
0.5M� star (spectral type M0) will be 80 Gyr, longer than the age of our galaxy. Every
M dwarf ever made is still fusing hydrogen into helium; they aren’t going to run out of
fuel any time soon.

15.3 NUCLEAR FUSION REACTIONS

The fundamental source of energy in stars over most of their lifetime is fusion of light
elements into heavier elements. The first of these reactions is the fusion of two protons
into a deuteron. This can happen only if the protons can approach close enough that
the very short-range but powerful strong nuclear force can overcome the long-range
electronic Coulomb repulsion between the two protons, as illustrated in Figure 15.3.
The potential energy of two protons separated by a distance r is

U = e2

4πε0

1

r
. (15.56)

The strong nuclear force has a range of only 10−15 m, and the electrostatic potential
energy of two protons at this separation is

U ≈ (1.60 × 10−19 C)2

4π(8.8 × 10−12 C2 J−1 m−1)(1.60 × 10−19 J eV−1)(10−15 m)

≈ 1.4 × 106 eV ≈ 1.4 MeV. (15.57)

To overcome the repulsion, the kinetic energy of a proton must exceed this potential
energy; this is possible in a high-temperature gas, so the fusion processes in such
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FIGURE 15.3 Potential energy of two protons as a function of their separation (in
units of 10−15 m = 1 fm). At large separations, the Coulomb repulsion dominates;
at small separations, the strong nuclear force overcomes the electronic repulsion
between the protons.

environments are often called thermonuclear reactions. The typical kinetic energy of
a proton at the center of the Sun is (see equation 5.46)

〈E〉 = 3kTc

2
≈ 3(1.38 × 10−23 J K−1)(1.47 × 107 K)

2(1.60 × 10−19 J eV−1)

≈ 2 × 103 eV ≈ 2 keV. (15.58)

It thus seems that even at the Sun’s center, protons have insufficient energy to overcome
their mutual Coulomb repulsion.5 The nuclear reactions can occur nevertheless because
of quantum mechanical tunneling. An elementary particle like a proton can’t be treated
like a macroscopic object such as a tennis ball, which must be on one side or the other
of a barrier such as a net. A typical proton near the Sun’s center has a kinetic energy
E ≈ 2 keV and a speed v = (2E/mp)1/2 ≈ 0.002c. The proton is thus nonrelativistic and
has a momentum p = mpv ≈ 1× 10−21 kg m s−1. This leads to a de Broglie wavelength

5 The astronomer Arthur Eddington was among the first scientists to propose that the Sun is powered by nuclear
fusion. When critics pointed to the relatively low kinetic energy of protons in the Sun, Eddington’s response
was, “The critics lay themselves open to an obvious retort; we tell them to go and find a hotter place.”
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for the proton of λdB ≡ h/p ≈ 7 × 10−13 m, much larger than the range of the strong
nuclear force. Thus, when discussing fusion reactions in the Sun, we can’t treat protons
like classical tennis balls; their wavelike quantum nature must be taken into account.

Tunneling is a quantum mechanical process; for a proton to have any significant
chance of tunneling through the Coulomb barrier around another proton, two criteria
must be satisfied. First, the proton–proton separation must be comparable to the de
Broglie wavelength, λdB = h/p = h(2mpE)−1/2. Second, the kinetic energy E of the
proton must be comparable to the electrostatic potential energy U at that separation.
These two criteria require that

U = e2

4πε0

1

λdB
= e2

4πε0

(2mpE)1/2

h
≈ E. (15.59)

Solving for E, we find that the minimum kinetic energy at which tunneling has a
significant probability is

E ≈
(

e2

4πε0

)2 2mp

h2
≈ 1

2π2
α2mpc2 ≈ 3 keV. (15.60)

This energy is comparable to the average kinetic energy, 〈E〉 ∼ 2 keV, in the Sun’s core.
Thus, we expect tunneling to be possible in the Sun.

To do a slightly more sophisticated calculation of fusion rates in the Sun’s central
regions, start by considering a single proton with kinetic energy E and de Broglie
wavelength λdB = h(2mpE)−1/2. If the number density of protons at the Sun’s center
is np, then the mean free path of our proton before it undergoes fusion with another
proton is

�pp = 1

npσpp
, (15.61)

where σpp is the cross-section for the fusion of two protons.6 Since a proton must come
within a de Broglie wavelength of another proton before fusing, we might expect a cross-
section σpp ∼ πλ2

dB ∝ 1/E. However, coming within a de Broglie wavelength doesn’t
guarantee a successful quantum tunneling event. The probability of tunneling, given a
separation of λdB or less, is given by the Gamow factor

PG ∼ exp

(
−

√
EG

E

)
, (15.62)

where the Gamow energy for proton–proton encounters is EG = π2α2mpc2 =
490 keV.7 Second, quantum tunneling doesn’t guarantee a successful fusion event.

6 Compare equation (15.61) with equation (5.62), which gives the mean free path of a photon through a medium
filled with absorbers of number density n and cross-section σ .
7 The Gamow factor and Gamow energy are named after the Ukrainian American physicist George Gamow,
who first investigated quantum mechanical tunneling.
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Proton–proton fusion is mediated by the weak nuclear force and has a tiny cross-
section. The probability Pfus that fusion occurs, given that quantum tunneling through
the Coulomb barrier has already taken place, is a small number—but one that is only
weakly dependent on the proton speed. The cross-section for proton–proton fusion can
thus be written in the form

σpp = πλ2
dBPGPfus ≈ πh2

2mpE
exp

(
−

√
EG

E

)
Pfus. (15.63)

Since our proton is traveling along with a speed v = (2E/mp)1/2, its average time spent
before fusing with another proton is

tpp = �pp

v
= 1

npσppv
. (15.64)

If all protons in the Sun had the same speed v, then the total number of proton–proton
fusions per unit volume per unit time would be

Npp = 1

2

np

tpp
= 1

2
n2

p
σppv. (15.65)

(The factor of 1/2 enters because it takes two protons to perform one fusion.) Expressed
as a function of proton kinetic energy E, the proton–proton fusion rate is

Npp(E) = n2
p

2
σpp

√
2E/mp ≈ π

2
√

2

h2n2
p
Pfus

m
3/2
p

1

E1/2
exp

(
−

√
EG

E

)
. (15.66)

Of course, real protons at the Sun’s center don’t all have the same kinetic energy
E; instead, they have a range of kinetic energies, given by a Maxwell–Boltzmann
distribution (equation 5.46):

F(E) ∝ E1/2 exp(−E/kT ). (15.67)

The proton–proton fusion rate, averaged over all proton kinetic energies at a given
temperature T , is

〈Npp〉 =
∫ ∞

0
Npp(E)F (E)dE. (15.68)

Using equation (15.66) for the fusion rate at energy E, and equation (15.67) for the
distribution of E, we find, after a bit of algebra,

〈Npp〉 ∝ n2
p
Pfus

(kT )3/2

∫ ∞

0
exp

[
−

√
EG

E
− E

kT

]
dE. (15.69)

Here we have taken the liberty of ignoring the mild dependence of the fusion probability
Pfus on proton kinetic energy and have taken it outside the integral.

The integrand in equation (15.69) is the product of the Gamow factor (which goes to
zero at energies much smaller than the Gamow energy EG) and a Boltzmann exponential
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FIGURE 15.4 The Gamow factor (dashed line), which gives the probability of
tunneling as a function of E, and the Boltzmann exponential exp(−E/kT ) (dotted
line). The solid line shows the product of the two functions.

(which goes to zero at energies much greater than the thermal energy kT ). The Gamow
factor, and also the Boltzmann exponential for the Sun’s central temperature Tc =
1.47 × 107 K, are shown in Figure 15.4. The solid line in the figure represents the
integrand in equation (15.69) and graphically shows us the proton energy at which
fusion is most likely to occur. At low energies, the protons are more numerous, but
the tunneling probability is smaller. At high energies, the tunneling probability is higher,
but the number of protons is dropping steeply. The maximum reaction rate is expected at
E ∼ 6 keV, roughly three times the average proton energy. The relatively narrow energy
range between ∼ 3 keV and ∼ 11 keV, where the reaction rate is highest, is called the
Gamow window.

Fusion of hydrogen into helium occurs by a series of two-body collisions, instead
of a single, grand four-body collision. For stars with central temperatures less than 18
million Kelvin (this includes the Sun), helium is created from hydrogen via the PP chain,
illustrated in Figure 15.5. In the first step of the chain, two protons (p) fuse together to
form a deuteron (2H). A deuteron is the nucleus of a deuterium (or “heavy hydrogen”)
atom, and consists of a proton and neutron held together by the strong nuclear force.
When one of the protons is converted to a neutron, a positron (e+) is emitted to conserve
charge, and an electron neutrino (νe) is emitted to conserve electron quantum number.
Because Pfus is so small for proton–proton fusion, the first step of the PP chain is the
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     p  +  p  → 2H + e+ + ve (twice)
         2H + p → 3He + γ (twice)
3He + 3He →  4He  + p + p

FIGURE 15.5 The PP chain, the dominant form of hydrogen fusion at Tc <

1.8 × 107 K.

slowest one. During the past 4.6 billion years, only half the protons in the Sun’s core
have undergone fusion. In the second step of the PP chain, the deuteron (2H) fuses with
a proton to form light helium (3He), which contains two protons and only one neutron.
The excess energy from the fusion is carried away by a gamma-ray photon (γ ). In the
final step of the PP chain, two light helium nuclei fuse together to form ordinary helium
(4He), which contains two protons and two neutrons. The excess protons are spat out,
ready to begin a new PP chain.

The net result of the PP chain is

4p → 4He + 2e+ + 2νe + 2γ. (15.70)

The positrons quickly annihilate with electrons to form additional gamma rays. The
neutrinos carry away only 2% of the energy released in the PP chain; gamma rays
take away the rest. The neutrinos, because of their extremely tiny cross-sections for
interactions, stream freely through the Sun. In other words, although the Sun is opaque
to photons, it is transparent to neutrinos. The Sun emits about 2 × 1038 neutrinos per
second (of which roughly 1015 are destined to pass through your body, which is also
transparent to neutrinos).

In main sequence stars with central temperatures greater than 18 million Kelvin (this
includes O, B, A, and F stars), hydrogen is fused into helium via the CNO cycle,
illustrated in Figure 15.6. In the CNO cycle, carbon (C), nitrogen (N), and oxygen (O)
act as catalysts to speed the fusion of hydrogen. The net result of the CNO cycle is

4p → 4He + 2e+ + 2νe + 3γ. (15.71)

Again, the positrons annihilate with electrons to form additional gamma rays.
Fusion of hydrogen into helium is a reasonably efficient form of energy; about 0.7% of

the hydrogen’s mass is converted into energy in the process. However, still more energy
can be squeezed out of a star if the helium is fused into heavier and heavier elements,
until iron is reached. Iron has the lowest mass per nucleon of any element, so it is the
end of the line as far as fusion is concerned.8 The process by which stars convert helium

8 Elements more massive than iron can release energy by fission, splitting into lower-mass nuclei.
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12C  +  p  → 13N + γ

         13N → 13N + e+ + ve

 13C +  p  → 14N + γ

 14N +  p  → 15O + γ

         15O → 15N + e+ + ve

 15N +  p  →  12C  +  4He

FIGURE 15.6 The CNO cycle, the dominant form of hydrogen fusion at
Tc > 1.8 × 107 K.

to carbon is the triple alpha process. In the first step of the triple alpha process, two
helium nuclei fuse to form a beryllium nucleus:

4He + 4He → 8Be + γ. (15.72)

The 8Be nucleus is extremely unstable; it decays back into a pair of helium nuclei with
a half-life of only t1/2 ∼ 2 × 10−16 s.9 However, if the 8Be nucleus encounters a 4He
nucleus during the brief period before it decays, the two nuclei can fuse to form a stable
12C nucleus:

4He + 8Be → 12C + γ. (15.73)

Thus, the net result of the triple alpha process is the conversion of three 4He nuclei into a
single 12C nucleus.10 Because the beryllium nucleus has such a brief life, it will encounter
a helium nucleus and fuse only if the surroundings are very dense (which increases the
number density of helium nuclei) and very hot (which increases the average speed of
the helium nuclei). In practice, the triple alpha process occurs at a significant rate only
when Tc > 108 K. The Sun isn’t currently fusing helium into carbon, because it’s not hot
enough.

9 The stable isotope of beryllium—the kind found in emeralds—is 9Be.
10 In nuclear physics, a 4He nucleus is also called an “alpha particle,” which helps to explain the odd terminology
“triple alpha process.” Electrons are “beta particles,” and high-energy photons are “gamma particles,” or
“gamma rays.”
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15.4 MODELING STELLAR INTERIORS

We now have the basic equations that govern the structure of stellar interiors. In par-
ticular, there are four differential equations that astronomers refer to collectively as the
equations of stellar structure. First, the equation of hydrostatic equilibrium is

dP

dr
= −GM(r)ρ(r)

r2
. (15.74)

Second, the equation of mass continuity is

dM

dr
= 4πr2ρ(r). (15.75)

Third, the equation of energy transport is

dT

dr
= − 3κ(r)ρ(r)L(r)

64πσSBr2T (r)3
[for radiative transport] (15.76)

or

dT

dr
=

(
1 − 1

γ

)
T (r)

P (r)

dP

dr
[for convective transport] (15.77)

with the energy transport mechanism, radiative or convective, determined by which gives
the smaller temperature gradient. Fourth, the equation of energy generation is

dL

dr
= 4πr2ρ(r)ε(r). (15.78)

To solve this set of equations, we need boundary conditions at the photosphere. We also
need to know the equation of state; the ideal gas law usually works just fine within stars:

P(r) = kρ(r)T (r)

μ(r)mp

. (15.79)

In adddition, however, we need to know how the mean molecular mass μ(ρ, T ), opacity
κ(ρ, T ), and energy generation rate ε(ρ, T ) depend on density and temperature within
the star. The energy generation rate ε, in particular, is extremely sensitive to temperature.
For the PP chain, ε ∝ T 4, and for the CNO cycle, ε ∝ T 20.

Given all this information, models of stellar interiors can be built up by numerically
solving the five equations of stellar structure. In the mid-twentieth century, back in
the time of slide rules and mechanical calculating machines, you could earn a PhD
by modeling a single star. Nowadays, computers can crank out stellar models on an
assembly line. The result of a model of the Sun’s interior is shown in Figure 15.7. Note
in particular that most of the Sun’s luminosity comes from r < 0.2R�. Because of the
strong dependence of ε on temperature, as the temperature T gradually drops with r , the
energy generation rate ε plummets. It is also interesting to note that the Sun’s central
density is roughly 150 times the density of water. The high temperatures in the core keep
the material in ionized gaseous form, despite its high density.
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FIGURE 15.7 (a)–(c) Enclosed luminosity, temperature, and mass density as a
function of radius within the Sun.

How do we know that our models of the solar interior are correct? The boundary
conditions are determined by the well-observed properties of the photosphere. The
equations of stellar structure (eqs. 15.74–15.78) are based on well-understood physics.
Nevertheless, it is a good thing to verify our models by comparison with observations.
Although we cannot see directly into the Sun’s interior, there are indirect methods by
which we can deduce the Sun’s interior structure. For instance, helioseismology (the
study of seismic waves in the Sun’s interior) can tell us the sound speed inside the Sun.
In the interior of the Earth, as mentioned in Section 9.1, both S-waves (shear waves)
and P-waves (pressure waves) can propagate. In the interior of the Sun, S-waves, which
can only propagate through solids, are not found. However, P-waves, which are sound
waves, are free to move throughout the Sun’s interior. Because the sound speed in a gas
is cs ∝ T 1/2, it increases as you go farther into the Sun’s interior. This causes P-waves
(sound waves) to be refracted upward.
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FIGURE 15.8 Dopplergram of the Sun’s surface.

Although it is impractical to put a seismometer in the Sun’s photosphere, we can see
the vertical motions of the photosphere in a “dopplergram” (Figure 15.8), which shows
the Doppler shift as a function of position on the visible hemisphere of the Sun. The
rotation of the Sun can be seen in Figure 15.8, as well as the upward and downward
motions due to P-waves reaching the photosphere. The sound oscillations in the Sun can
be decomposed into different modes using spherical harmonics (in much the same way
that the sound from a piano can be decomposed into different frequencies using Fourier
transforms). The observed modes of oscillation can be used to determine the sound speed
as a function of radius within the Sun. The sound speeds measured in this way agree with
those predicted by the best solar models with errors of < 0.1%.

Another source of information about the Sun’s interior is solar neutrinos. The PP
chain that provides most of the fusion energy in the Sun’s core produces two electron
neutrinos for every helium nucleus created. These electron neutrinos fly straight through
the Sun with a very tiny chance of interaction. Thus, if we could manage to capture a
few of the neutrinos, we would have a direct window on the fusion reactions at the Sun’s
center. Although neutrinos have small cross-sections for interaction with “ordinary”
matter, they are capable of undergoing reactions such as

νe + 37Cl → 37Ar + e− (15.80)

and

νe + 71Ga → 71Ge + e−. (15.81)
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Over the past three or four decades, typical solar neutrino experiments have involved
filling large tanks with carbon tetrachloride or gallium and waiting for the infrequent
neutrino reactions. Numerous hunts for solar neutrinos all found that only a third the
expected number of electron neutrinos were detected. Astronomers and physicists scram-
bled to solve the “solar neutrino problem,” as it was called. One suggested solution was
that the solar interior was slightly cooler than the standard solar models suggested; this
would drive down the rate of energy generation, since ε ∝ T 4. However, helioseismology
confirmed that the temperatures predicted by the standard solar model were correct.

The ultimate resolution of the solar neutrino problem came from particle physics.
There are three types, or flavors, of neutrinos. In addition to the electron neutrinos,
νe, there are also muon neutrinos, νμ, and tau neutrinos, ντ . Although nuclear fusion
produces only electron neutrinos, if neutrinos have mass and if the masses of the
three types differ, then electron neutrinos can spontaneously convert into muon or tau
neutrinos. Recent neutrino experiments indicate that the three types of neutrino really
do have (small) masses. In addition, the Sudbury Neutrino Observatory, located in a
former nickel mine in Ontario, has searched for neutrinos of all three types. The heart
of the Sudbury detector is a large tank filled with heavy water (D2O). The deuterium (or
“heavy hydrogen”) has a small probability of being split by a neutrino:

ν + D → p + n + ν. (15.82)

This reaction occurs for any kind of neutrino and thus doesn’t distinguish among νe,
νμ, and ντ . The total number of all neutrinos detected by Sudbury is consistent with the
number predicted by the standard solar model. This indicates that some of the electron
neutrinos have been converted to muon and tau neutrinos during their flight from the Sun
to Ontario.

APPENDIX: RANDOM WALK PROCESSES

We suppose that a test particle moves away from an initial point in a series of “steps”; in
our particular case of interest, the particles are photons and a step is the mean free path
that a photon travels before it is absorbed. The premise of random walk processes is that
the direction of each step is completely uncorrelated with the direction of the previous
step. Again, in our particular case, it means that the direction of each re-emitted photon
is independent of the direction in which its absorbed predecessor was traveling.

Consider a large ensemble of photons generated at the origin and constrained to move
in either positive or negative x direction in steps of length �. Their average position after
zero steps (that is, their starting position) is obviously 〈x0〉 = 0. In the first step, about
half of the photons will move a distance � in the +x direction, and the other half will
move a distance � in the −x direction. The average position of all the photons after one
step will be 〈x1〉 ≈ 0.

Things get more interesting in the second step: of the half of the original photons at
position +�, about half of these will move another step in the same direction to position
+2�, and the remainder will move back to the origin. Similarly, about half of those
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photons at position −� will move to position −2�, and the rest will return to the origin.
After only two steps, one-quarter are at position +2�, one-quarter are at position −2�,
and half are back at the origin. Again, their average position remains 〈x2〉 ≈ 0, but what
is clear is that the distribution in x is becoming broader. Their average position after
N steps will remain 〈xN〉 ≈ 0, but it is clear that their root-mean-square displacement
〈x2

N
〉1/2 after N steps is a good characterization of the increasing width of the distribution.

We can compute this by induction.
For any photon, its position at step N will be one step removed from its position at

the previous step,

xN = xN−1 ± �. (15.83)

Thus,

x2
N

= (xN−1 ± �)2 = x2
N−1 + �2 ± 2�xN−1. (15.84)

Averaging over a large number of photons, the mean square position becomes

〈x2
N
〉 = 〈x2

N−1〉 + �2 ± 2�〈xN−1〉, (15.85)

and the last term is zero because 〈xN−1〉 = 0. Similarly,

〈x2
N−1〉 = 〈x2

N−2〉 + �2. (15.86)

Putting this in equation (15.85), we have

〈x2
N
〉 = 〈x2

N−2〉 + 2�2. (15.87)

By induction, we conclude that

〈x2
N
〉 = 〈x2

N−N
〉 + N�2, (15.88)

and since N − N = 0 and x0 = 0, we have the general result that

〈x2
N
〉 = N�2, (15.89)

or

〈x2
N
〉1/2 = √

N�. (15.90)

The root-mean-square (rms) displacement of photons from the origin after N steps
is simply

√
N�. Although, for simplicity, we have computed the result for a one-

dimensional random walk, the same result holds true in two or three dimensions: rms
displacement equals

√
N�, where � is the length of a single step.

If we took a direct route from the center of the Sun to the bottom of the convective
layer at 0.7R�, the number of steps it would take would be n = 0.7R�/�. Comparing
this to equation (15.90) and taking 〈x2

N
〉1/2 = 0.7R�, we see that

√
N = n, so N = n2.

This is the easiest way to remember the random walk: if the direct path requires n steps, a
random walk of n2 steps is typically required to reach the same distance from the origin.
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PROBLEMS

15.1 What is the rate (in kilograms per second) at which the Sun is currently converting
hydrogen into helium?

15.2 How much energy, in MeV, is produced per proton in the PP chain?

15.3 Approximately half the original hydrogen in the Sun’s core has now been converted
to helium. Compute the mean molecular mass μ (a) at the surface of the Sun, given
standard abundances (X� = 0.734, Y� = 0.250, Z� = 0.016), and (b) at the center
of the Sun.

15.4 If a star has M = 100M� and L = 106L�, how long can it shine at that luminosity
if it started as pure hydrogen and is able to convert all its H to He? If a star has
M = 0.5M� and L = 0.1L�, how long can it shine under the same conditions?

15.5 Consider the Sun to be a sphere of uniform density that derives its luminosity from
steady contraction. What fractional decrease in the Sun’s radius, δR/R, would be
required over historical times (say, the last 6000 years) to account for the Sun’s
constant luminosity over that period of time?

15.6 Suppose that the Sun is 100% carbon (coal, for instance) and that burning this can
extract 3 eV per carbon nucleus. How long, assuming an inexhaustible supply of
oxygen from outside, could burning carbon maintain the Sun’s current luminosity?

15.7 On a clear day, Mount Fuji can be seen from central Tokyo, 100 km away. Under these
conditions, what is the maximum possible opacity κ of the atmosphere, in m2 kg−1?
(Assume that the density of air along the line of sight is ρ ≈ 1 kg m−3.)

15.8 Under ideal conditions, scuba divers in clear tropical waters can see objects as far as
50 m away. What is the opacity of the water?

15.9 In low-mass main sequence stars, the opacity is due primarily to photoionization of
heavy elements. For this case, the opacity can be approximated by Kramers’ law,
which is written as

κ ∝ ρT −3.5.

Use the equations of stellar structure to show that this implies

L ∝ M5.5R−0.5.
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15.10 Suppose the mass density of a star as a function of radius is

ρ(r) = ρ0

[
1 −

(
r

R

)2
]

,

where R is the radius of the star.

(a) Find the mass M of the star in terms of ρ0 and R.
(b) Find the mean density of the star in terms of ρ0.
(c) Show that the central pressure of the star is

Pc = 15

16π

GM2

R4
.



16 The Interstellar Medium

Stars are formed by gravitational compression of the interstellar medium, that is, the
low-density mix of dust and gas that lies in the space between stars. In this chapter, we
introduce the basic characteristics and physical properties of the interstellar medium as
a prelude to a discussion of star formation and evolution.

16.1 INTERSTELLAR DUST

16.1.1 Evidence for Interstellar Dust

We first noted in Section 13.3 that interstellar dust affects the light of distant stars by
extinction,1 or the diminution of light, and reddening, as the shorter-wavelength light
is more highly extinguished than longer-wavelength light. Observations of the effects of
dust yield clues that help us to determine the size, shape, and composition of dust grains.

Clue one. Dust causes reddening at both visible and ultraviolet wavelengths. Fig-
ure 16.1 shows the extinction Aλ plotted as a function of λ. At all wavelengths
λ > 2.2 μm = 2200 Å, the amount of extinction decreases with increasing wave-
length. This differential extinction can happen only if the individual dust grains
are smaller than the wavelength of light that they are scattering (d ≤ λ, where d is
the length of a dust grain). If interstellar matter were made of pebbles or boulders
rather than dust grains, it would absorb all wavelengths of visible and near ultra-
violet light equally. Detailed studies of the extinction as a function of wavelength
give an estimate of d ≈ 50 → 2000 Å for the size of the dust particles. These mi-
nuscule grains are much smaller than the dust particles that you sweep from under
the bed; they are more like the particles in cigarette smoke.

Clue two. Starlight is polarized by dust grains. A Polaroid filter polarizes light
because it contains long polymer molecules that are aligned preferentially in one
direction. Dust grains polarize light because they are nonspherical and are aligned

1 When “extinction” occurs, light is “extinguished,” not “extincted.” Beware of committing this particular gaffe
in the presence of professional astronomers.

376
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FIGURE 16.1 Dust extinction as a function of wavelength, normalized so
that AV = 1 magnitudes. The dotted vertical lines indicate the range of visible
wavelengths.

preferentially in one direction.2 If dust grains were perfect spheres, they wouldn’t
cause polarization of light.

Clue three. The plot of extinction versus wavelength (see Figure 16.1) has a “bump”
at λ ∼ 0.22 μm. What causes the excess extinction at this wavelength? It is known
experimentally that in graphite the bonds between carbon atoms absorb and emit
light at wavelengths λ ∼ 0.22 μm. In the laboratory, an excellent fit to the extinc-
tion bump is given by graphite grains with d ∼ 0.02 μm ∼ 200 Å. (On Earth, you
find such tiny graphite particles in soot.)

Clue four. If you look at the infrared spectrum from isolated dusty clouds, you
find that at long wavelengths (λ > 100 μm), it’s a blackbody spectrum with a
typical temperature of T ∼ 20 K. At shorter wavelengths (Figure 16.2), there are
absorption bands at λ ∼ 4 → 7 μm due to ices (frozen water, carbon dioxide,
carbon monoxide, and so forth), and at λ ∼ 10 μm due to silicates (a.k.a. “rock”).
Thus, dust seems to contain a mix of volatile material, like ices, and refractory
material, like silicates and graphite.

2 Dust grains tend to line up perpendicular to the interstellar magnetic field.
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FIGURE 16.2 Infrared emission from a luminous, dust-rich galaxy.

Models of dust featuring ice-covered flecks of silicate, mixed with small graphite
grains, provide a good match with observations. Where does the dust come from? Cool
supergiant stars, like Betelgeuse, have very strong stellar winds, with mass loss rates
a million times greater than that of the solar wind. As the wind expands, it cools,
and refractory material like graphite and silicates can condense out into tiny grains. A
thin layer of frost can later form on these grains in the coolest, densest regions of the
interstellar medium.

16.1.2 Observable Effects of Dust on Starlight

Here we consider from an observational point of view how light from distant stars is
attenuated by interstellar dust. Absorption and scattering of starlight in the interstellar
medium is a radiative transfer problem that we addressed for the general case in Sec-
tion 5.4. Specifically, the flux received by an observer is

F = F0e
−τ = F0e

−nσr, (16.1)

where F0 is the flux in the absence of absorption; τ is the optical depth; n is the number
density of absorbers, σ is the cross-section of an absorbing particle; and r is the path
length through the absorbing medium. Converting this equation to magnitudes, we have

mobs = C − 2.5 log F = C − 2.5 log F0 − 2.5 log(e−τ )

= m0 + 2.5τ log e

= m0 + 1.086τ, (16.2)

where C is an arbitrary constant (see equation 13.16), and m0 is the apparent magnitude
in the absence of extinction. We thus see that extinction appears as an additive term in
magnitudes and is linear with τ .



16.1 Interstellar Dust 379

Interstellar extinction is a function of wavelength,

mobs(λ) = m0(λ) + A(λ), (16.3)

where the extinction term is

A(λ) = 1.086τλ = 1.086nσλr. (16.4)

The extinction-corrected distance modulus is then

mobs − M = 5 log r − 5 + A. (16.5)

Extinction has the effect of increasing the apparent magnitude of a star and apparently
increasing the distance modulus, since extinguished objects appear to be farther away
than they actually are.

Consider now a color index such as B − V ; since the observed magnitudes are
V = V0 + AV and B = B0 + AB , the observed color will be

(B − V ) = (B − V )0 + (AB − AV ) = (B − V )0 + E(B − V ), (16.6)

where the final term, E(B − V ), is known as the color excess. We can explicitly calculate
the color excess in terms of the optical depth as

E(B − V ) = AB − AV = 1.086(τB − τV ) = 1.086τV

(
τB

τV

− 1

)
. (16.7)

The wavelength dependence of the extinction curve is often characterized by the ratio
of total to selective extinction R defined by

R ≡ AV

E(B − V )
= 1(

τB/τV

) − 1
. (16.8)

In general, τλ ∝ λ−n, where n > 0: in other words, extinction is larger at shorter wave-
lengths. Not only is light extinguished, it is also reddened. As noted in Section 9.2, scat-
tering by particles of sizes comparable to the wavelengths of light results in wavelength-
dependence of the optical depth of the form τ ∝ λ−1. In this case, the ratio of total to
selective absorption is

R = 1(
τB/τV

) − 1
= 1(

λeff,B/λeff,V
)−1 − 1

≈ 4.2, (16.9)

whereas in the last step we have understood the effective wavelengths to be λeff,V =
5500 Å and λeff,B = 4450 Å.

By comparing the observed colors of stars of the same spectral class (say, A0V stars),
one can determine observationally that in the solar neighborhood, R ≈ 3.1.
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FIGURE 16.3 Narrow absorption lines of Ca ii (labeled K and H) and of CH+,
due to interstellar gas between us and ζ Ophiuchi.

16.2 INTERSTELLAR GAS

At visible wavelengths, dust is a highly prominent component of the interstellar medium.
However, dust contributes only a minority of the material between stars. By mass, the
interstellar medium is just 1% dust; the remaining 99% is contributed by interstellar
gas.3 Although the bulk of the gas is low-density hydrogen and helium, which is not
necessarily easy to detect, there are many ways in which interstellar gas makes its
presence known.

Method 1 of gas detection. Interstellar gas can be detected when it creates ab-
sorption lines in a star’s spectrum. Kirchhoff’s laws (Section 5.3) tell us that a
relatively cool gas cloud seen against a hotter source of continuum emission (such
as a star) will produce an absorption line spectrum. Figure 16.3 shows a small
portion of spectrum of the star Zeta Ophiuchi, an O9 main sequence star that has
AV ∼ 1.5 mag from intervening dust. The narrow absorption lines are due to cool
interstellar gas between us and the star. How do we know the absorption lines are
from interstellar gas and not from the outer layers of Zeta Ophiuchi itself?

The lines are narrow, with little thermal or pressure broadening. (Note how
broad the Balmer ε line is in Figure 16.3; this line comes from the star’s
photosphere, which has both high temperature and high pressure, since Zeta
Ophiuchi has a spectral type O9V.)
The lines are either of atoms in a low-ionization state or of molecules, which
indicates a lower temperature than you would find in the star’s atmosphere.
The lines show a different Doppler shift from the star’s absorption lines.
In general, interstellar absorption lines can be multiple if there happen to be
many individual gas clouds, with slightly differing radial velocities, along the
line of sight to the star.

The study of absorption lines from gas clouds indicates that interstellar clouds,
like stellar photospheres, are mostly hydrogen and helium.

3 Parenthetic aside: the processes that cause gas to curdle up into stars are not ultraefficient; in our galaxy, the
total mass of interstellar gas is equal to 10–20% of the total stellar mass.
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Method 2 of gas detection. Interstellar gas can be detected when it produces an
emission spectrum. Kirchhoff’s laws tell us that a relatively warm gas cloud seen
against a dark background will produce an emission line spectrum. An interstellar
gas cloud that is hot enough to emit light at visible wavelengths is called an
emission nebula. The Orion Nebula, shown in Color Figure 15, is a famous
example of an emission nebula. To produce emission lines, electrons have to be
lifted above the ground state (the n = 1 orbit) of their atom. Since interstellar gas
is low in density, excitation of electrons is unlikely to occur by collisions between
atoms. Instead, it occurs by the absorption of photons. In general, nebular gas
absorbs ultraviolet light from nearby hot stars, which ionizes some of its atoms.
Eventually, the ions and electrons recombine, but when they do, the recombination
of the electron is frequently to a high energy level. As the electron cascades down
to the lowest vacant energy level, it emits a photon with each downward quantum
leap it makes. Thus, emission nebulae are an example of fluorescence, in which
high-energy ultraviolet photons are converted to lower-energy visible photons. The
source of ultraviolet photons varies between different types of emission nebulae:

H ii region: an emission nebula in which the source of ultraviolet light is one
or more hot stars (spectral type O or B). The Orion Nebula and the Trifid
Nebula are examples of H ii regions.
Planetary nebula: an emission nebula in which the source of ultraviolet light
is the hot, exposed core of an AGB star, which is rapidly evolving into a white
dwarf. The Ring Nebula (Color Figure 16) and the Spirograph Nebula are
examples of planetary nebulae.4

The physics of these hot, ionized components of the interstellar medium is dis-
cussed further in Section 16.3.

Method 3 of gas detection. Interstellar gas can be detected when it produces con-
tinuum radio emission. When a hot gas is largely ionized, it can produce photons
by the process known as bremsstrahlung, a German term whose literal English
translation is “braking radiation.” Bremsstrahlung, also known as free–free emis-
sion, is produced when a free electron is accelerated by the electrostatic attraction
of a positively charged ion. The electron emits a photon as it is accelerated. The
initial kinetic energy of the electron, before it encounters the ion, will be compa-
rable to the thermal energy, kT . Since the electron can’t radiate away more energy
than it has originally, the energy of the photon that it emits must be hc/λ < kT ,
implying

λ >
hc

kT
∼ 0.1 mm

(
T

104 K

)−1

(16.10)

for bremsstrahlung emission from a hot, ionized gas. Bremsstrahlung is thus of
interest mainly to radio astronomers. If the ionized gas is in the presence of a

4 “Planetary nebulae” received their odd and inappropriate name from William Herschel in the eighteenth
century. Seen through a small telescope, they look like a fuzzy disk, just as the planet Uranus did when Herschel
discovered it.
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magnetic field, it can also produce continuum radio emission via synchrotron
radiation, as the electrons are accelerated along helical paths following the mag-
netic field lines. Synchrotron emission is produced copiously by young supernova
remnants, in which ionized gas surrounds a highly magnetized neutron star.

Method 4 of gas detection. Interstellar gas can be detected when hydrogen atoms
produce 21 centimeter line emission. When a neutral hydrogen atom has its
electron in the n = 1 energy level, the spin of the electron can be either parallel or
antiparallel to the spin of the central proton. When the spins are antiparallel, the
energy of the atom is slightly smaller than when the spins are parallel. Because the
antiparallel state is lower in energy, an electron in a parallel state can undergo a
spontaneous “spin-flip” transition that inverts its spin. Since this transition violates
a quantum mechanical selection rule, it is a forbidden transition. (Remember from
Section 5.1 that a “forbidden” transition is not absolutely forbidden; it is merely
far less probable than a “permitted” transition that doesn’t violate any selection
rules.) The half-life of the higher energy parallel state is roughly 10 million years.
Thus, if you have a population of ∼ 3 × 1014 hydrogen atoms in the parallel state,
1 atom per second will undergo the spontaneous spin-flip transition. As it does
so, the small amount of energy lost is carried away by a photon with λ = 21 cm.
An individual hydrogen atom will undergo a spin-flip transition only rarely, and
the density of hydrogen atoms in interstellar space is low. However, space is big.
Along a sufficiently long line of sight, the spin-flip transitions of hydrogen will
produce a detectable signal at λ = 21 cm.

Method 5 of gas detection. Interstellar gas can be detected when molecules produce
radio line emission. In the denser regions of interstellar space, individual atoms
can join together to form molecules. When a small molecule such as CH or CO
spins about one of its axes, it can undergo quantum transitions from one spin
state to another. If the transition is from a rapidly rotating state to a less rapidly
rotating state, the lost kinetic energy of rotation is carried away by a photon.
For instance, when a carbon monoxide (CO) molecule makes a transition from
the J = 1 rotational state to the J = 0 ground rotational state, it emits a photon
with λ = 2.6 mm, a wavelength at which the Earth’s atmosphere is conveniently
transparent. A map of the Milky Way’s emission at 2.6 mm (Color Figure 17)
reveals that the CO—and by inference, the other molecular gas—in our galaxy is
confined to a thin layer near the midplane of the galaxy. At higher resolution, it is
found that most of the molecules are in relatively small, dense, and cold molecular
clouds.

The interstellar medium is by no means homogeneous. Some consists of very hot
ionized gas, while some consists of much cooler gas containing H2 and other molecules.
Astronomers have labeled different components of the interstellar gas:

. Cold Molecular Clouds: T ∼ 10 K, n > 109 m−3

. Cold Neutral Medium (H i regions): T ∼ 100 K, n ∼ 108 m−3

. Warm Neutral Medium (intercloud medium): T ∼ 7000 K, n ∼ 4 × 105 m−3



16.2 Interstellar Gas 383

Ophiuchus

Galactic center

Lupus

South Coalsack

Chameleon

Tunnel toward
superbubble

GSH 238+00

Pleiades Bubble

Taurus Dark Cloud

Auriga-Perseus Cloud

Local
Orion Arm

Sun

500 parsecs
(1630 light years)

FIGURE 16.4 Density of gas in the vicinity of the Sun. White areas represent
low density “Local Bubble”; black areas represent higher-density gas.

. Warm Ionized Medium (H ii regions): T ∼ 104 K, n ∼ 106 m−3

. Hot Ionized Medium (coronal gas): T ∼ 106 K, n < 104 m−3

Which component is the most common? That depends on how you do the accounting:
coronal gas comprises >∼ 50% of the volume of the interstellar medium but only a tiny
fraction of the mass. The coronal gas takes the form of “bubbles” blown by supernovae.5

The Sun is within such a bubble of hot, low-density gas, about 100 parsecs across, shown
in Figure 16.4. When most of the gas was cleared from this “Local Bubble,” most of the
dust was cleared as well. Thus, stars less than ∼ 50 pc from us suffer little extinction from
dust. Although a coronal bubble contains gas at a very high temperature, it contains very
little thermal energy, thanks to its low density. If you were tossed out the airlock of your
spaceship without a spacesuit, you wouldn’t have to worry about roasting or freezing
to death. Heat transfer by convection and conduction would be negligible, and it would
take about 5 minutes for your temperature to drop by 1◦ Celsius due to radiative heat
losses. By that time, you would have asphyxiated.6

5 Supernovae are exploding stars, discussed in Section 18.4.
6 Other unpleasant things happen when you undergo explosive decompression. You rapidly dehydrate as your
water content evaporates into the near vacuum of space. Any gas trapped within your body expands rapidly,
so you’re likely to burst your eardrums and experience excruciating sinus pains (not to mention the fact that
your intestinal tract contains about a liter of gas at any given time). However, it will be the lack of oxygen that
kills you.
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16.3 THE PHYSICS OF NON-LTE GASES

Luminous H ii regions around stars of spectral type O and B constitute a conspicuous
component of the interstellar medium. Main sequence stars of type O and B are the
hottest, most luminous, and shortest-lived stars on the main sequence. Because of their
short main sequence lifetimes, O and B stars never stray far from the site where they
formed, and hence they are surrounded by the relatively high-density gas (n >∼ 107 m−3)
characteristic of star formation regions. The copious ultraviolet radiation emitted by these
hot stars ionizes the gas surrounding them, creating a bright H ii region.

16.3.1 Ionization Balance

The ionized gas of an H ii region is optically thin at most wavelengths; thus the photons
in the H ii region are not in local thermodynamic equilibrium with the electrons and ions
(Section 5.6). The fact that H ii regions are non-LTE systems should not intimidate us.
We can still characterize the light emitted by the central star as having a temperature T∗
equal to the effective surface temperature of the star (T∗ >∼ 20,000 K for O and B stars),
and we can still characterize the free electrons in the ionized gas as having a temperature
Te, even though we don’t expect Te to equal T∗.

Let us assume, for simplicity, that the gas around a hot star consists of pure hydrogen.
In this case, provided that the column density of hydrogen is large enough, the gas will
be optically thick at wavelengths λ < 912 Å; this corresponds to photon energies hν >

13.6 eV, sufficient to ionize hydrogen. Each photon with λ < 912 Å will ionize a single
atom of hydrogen. Photons with λ > 912 Å will be absorbed only if they correspond
to a Lyman transition, arising from the ground state of hydrogen (see page 116). At
all wavelengths longer than 1216 Å, corresponding to the Lyα transition from n = 1 to
n = 2, the nebula is optically thin. The odds of a Balmer transition occurring, for instance,
are negligible, since a hydrogen atom with an electron in the n = 2 level will undergo
spontaneous radiative decay to the n = 1 level long before it is likely to absorb a Balmer-
series photon. It is a good approximation to assume that nearly all the hydrogen in the
H ii region is ionized; of the small fraction of hydrogen that is neutral, nearly all is in the
ground state.

In a gas of ionized hydrogen, emission lines are produced when free electrons re-
combine with protons to form neutral hydrogen. Often, the electron recombines to an
excited state; this results in the emission of one or more photons with hν < 13.6 eV, as
the electron cascades down through the lower energy levels. For instance, Figure 16.5
shows the possible downward transitions of an electron that has recombined to the n = 3
state. The decay from the n = 3 state can produce either a Lyβ photon, as shown in Fig-
ure 16.5a, or an Hα photon followed by a Lyα photon, as shown in Figure 16.5b. If the
H ii region is optically thick in the ionizing continuum (λ < 912 Å) and in the Lyman
lines, but optically thin elsewhere, then the Hα photon will escape freely.7 However, the

7 In fact, it is the λ = 6563 Å photons of Hα that give H ii regions their characteristic reddish color, as seen in
Color Figure 15.
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FIGURE 16.5 Possible outcomes of a recombination to the n = 3 level in
hydrogen. (a) Spontaneous decay to the n = 1 level, yielding a Lyβ photon. (b)
Decay to the n = 2 level, producing an Hα photon, followed by a decay to the n = 1
level, producing a Lyα photon.

emitted Lyman photons will be rapidly reabsorbed by neutral hydrogen atoms in their
ground state. Eventually (sometimes only after multiple absorptions and re-emissions),
each Lyβ photon (hν = 12.1 eV) will be converted to an Hα photon (1.9 eV) plus a Lyα

photon (10.2 eV). Thus, each electron that recombines to the n = 3 level will end by
producing an Hα photon plus a Lyα photon. Similarly, an electron that recombines to
the n = 4 level will produce a combination of Balmer and/or Paschen photons plus a
Lyα photon. An electron that recombines to the n = 5 level will produce a combination
of Balmer, Paschen, and/or Brackett photons plus a Lyα photon, and so forth for higher
values of n. In short, every recombination into an excited state eventually results in a
single Lyα photon that random-walks its way out of the H ii region.8

If the hot star is embedded in a region of uniform density gas, then it will be
surrounded by a sphere of almost completely ionized hydrogen. This sphere is known as
the Strömgren sphere, named after the Danish astronomer Bengt Strömgren, who did
pioneering theoretical work on ionized nebulae. At the surface of the sphere, within a
layer whose thickness is comparable to one photon mean free path, the ionized fraction
of hydrogen drops from nearly 1 to nearly zero. The transition between the inner ionized
zone, or H ii region, and outer neutral zone, or H i region, occurs at the Strömgren

8 To be technically correct, the more likely path out of an emission nebula for a Lyα photon is by diffusion in
velocity. As the photon is absorbed and re-emitted by atoms with different random velocities, it is randomly
Doppler shifted to shorter or longer wavelengths; eventually, it is shifted far enough into the line wings that
the optical depth is less than 1, and the photon can escape.
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radius. The Strömgren radius can be calculated by noting that if the ionized and neutral
populations are in statistical equilibrium, the number of ionizations per second within
the Strömgren sphere must equal the number of recombinations per second. The total
number of ionizations per second equals the rate Q∗ at which the central star is producing
hydrogen-ionizing photons with hν > 13.6 eV. If the specific luminosity of a star at
frequency ν is Lν, the number of photons produced per second at that frequency is given
by dividing the specific luminosity by the energy per photon hν. Thus, the rate at which
ionizing photons are produced by the star is

Q∗ =
∫ ∞

ν0

Lν

hν
dν, (16.11)

where hν0 = 13.6 eV is the minimum photon energy required to ionize hydrogen.
To calculate the number of recombinations, we start with the realization that a free

electron can recombine to form a neutral hydrogen atom only if it encounters a proton.
Thus, the mean free path for an electron (that is, the average distance it travels before
recombining) can be written as

�rec = 1

npσrec
, (16.12)

where np is the number of protons per unit volume and σrec is the cross-section for
recombination of an electron with a proton. The average time an electron spends in its
free state before recombining is simply

trec = �rec

ve

= 1

npσrecve

, (16.13)

where ve is the electron’s speed. If there are ne free electrons per unit volume, and their
average lifetime before recombining is trec, then the total number of recombinations per
unit volume per unit time will be

Nrec = ne

trec
= nenpσrecve. (16.14)

The cross-section for recombination, σrec, is a function of electron speed: low-speed
electrons recombine much more readily than do high-speed electrons, in part because
they spend more time loitering near each proton they pass. The mathematical dependence
of the cross-section on electron speed is σrec ∝ v−2

e
. At a temperature Te, electron speeds

are distributed according to a Maxwell–Boltzmann distribution (equation 5.40). Thus,
to find the recombination rate at a given temperature Te, we must take into account both
the dependence of the cross-section on electron speed and the dependence of electron
speed on temperature. It is customary to express the average recombination rate in terms
of a temperature-dependent recombination coefficient α, defined as

α(Te) ≡ 〈σrecve〉 =
∫ ∞

0
σrec(ve)veF (ve) dve, (16.15)
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where F(ve) is the Maxwell–Boltzmann distribution. Since σrec ∝ v−2
e

, and since typical
electron speeds are ve ∝ T 1/2

e
, we see that

α(Te) ∝ v−2
e

ve ∝ v−1
e

∝ T −1/2
e

. (16.16)

The recombination rate per unit volume will then be (from equation 16.14)

Nrec = nenpα(Te) ∝ T −1/2
e

. (16.17)

We can now compute the total number of recombinations per second in the nebula by
multiplying the recombination rate per unit volume (equation 16.17) by the volume of
the nebula, taken to be a sphere of radius RS. We set the recombination rate equal to the
ionization rate (equation 16.11) to find

Q∗ = nenpα(Te)
4π

3
R3

S, (16.18)

where RS is the Strömgren radius. Thus, noting that np = ne for ionized hydrogen,

RS =
[

3

4π

Q∗
α(Te)n

2
e

]1/3

. (16.19)

A typical nebular temperature is Te ≈ 104 K; at that temperature, the recombination

coefficient9 has a value α ≈ 2.6 × 10−19 m3 s
−1

. An O6V star produces ionizing photons
at the rate Q∗ ≈ 5 × 1048 s−1. Taking as a typical nebular density ne ≈ 107 m−3, the size
of the Strömgren sphere around an O6V star is

RS =
(

3

4π

5 × 1048 s−1

(2.6 × 10−19 m3 s
−1

)(107 m−3)2

)1/3

≈ 3.4 × 1017 m ≈ 10 pc. (16.20)

16.3.2 Thermal Balance

The temperature of the free electrons in an H ii region, as mentioned above, is gen-
erally Te ≈ 10,000 K, corresponding to a mean kinetic energy E = (3/2)kTe ≈ 1.3 eV.
This electron temperature is remarkably independent of the temperature of the central star
in the H ii region. The favored temperature of 10,000 K must be the result of a balance
between heating processes, which drive the mean kinetic energy of electrons upward,
and cooling processes, which drive the energy downward.

9 A subtlety to note is that this recombination coefficient counts recombinations to every state of hydrogen
except the ground state: ground-state recombinations produce photons with hν > 13.6 eV, which almost
immediately reionize another hydrogen atom. In nebular physics, this is called the “on-the-spot approximation”
as it assumes that ionizing photons produced in the nebula itself are immediately reabsorbed.
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When free electrons are freshly liberated from hydrogen atoms by photoionization,
their average kinetic energy will be

〈E〉 = 〈hν〉 − χ, (16.21)

where 〈hν〉 is the mean energy of an ionizing photon, and χ = 13.6 eV is the ionization
potential of hydrogen. In computing the mean energy 〈hν〉 of ionizing photons, we must
weight the photon energy hν by the number of photons at frequency ν above the ionizing
threshold ν0 = χ/h. This weighting factor is proportional to the mean intensity of light
divided by the energy per photon; for blackbody radiation (equation 5.86), this is

Jν

hν
∝ ν3

hν

1

ehν/kT∗ − 1
. (16.22)

For a central star with T∗ < χ/k ≈ 160,000 K, the photoionizing photons are all on the
high-energy Wien tail of the Planck function, which permits the approximation

Jν

hν
∝ ν2e−hν/kT∗. (16.23)

We must also weight the photon energy by the cross-section for photoionization by a
photon with frequency ν. For hydrogen above the ionizing threshold ν0, the cross-section
σion has the frequency dependence σion = σ0(ν/ν0)

−3.
Thus, the average energy per ionizing photon can be computed as

〈hν〉 =
[∫ ∞

ν0

(
Jν

hν

)
(hν) σion(ν) dν

] [∫ ∞

ν0

(
Jν

hν

)
σion(ν) dν

]−1

. (16.24)

Canceling constants and inserting frequency dependence explicitly, we have

〈hν〉 =
[
h

∫ ∞

ν0

(
ν2e−hν/kT∗

)
ν(ν−3) dν

]

×
[∫ ∞

ν0

(
ν2e−hν/kT∗

)
ν−3 dν

]−1

. (16.25)

We make the useful substitution x = hν/kT∗ (and define x0 ≡ hν0/kT∗), so this simpli-
fies to

〈hν〉 = kT∗

[∫ ∞

x0

e−x dx

] [∫ ∞

x0

e−xx−1 dx

]−1

. (16.26)

The integral in the numerator is trivial and has value e−x0. The integral in the denominator
is known as the first exponential integral E1(x0) and for x0 
 1 (or hν 
 kT∗) can be
expanded as

E1(x0) ≡
∫ ∞

x0

e−x

x
dx ≈ e−x0

x0

(
1 − 1

x0
+ 2

x2
0

+ . . .

)
. (16.27)
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If we keep only the first two terms, a little algebra then gives

〈hν〉 ≈ hν0 + kT∗, (16.28)

where the first term on the right-hand side is the ionization potential χ and the second
term kT∗ is thus the mean kinetic energy per liberated electron:

〈E〉 = 〈hν〉 − χ ≈ kT∗. (16.29)

In other words, if the central star in an H ii region is an O star with T∗ ≈ 50,000 K, the
newly liberated electrons will have an average kinetic energy of 〈E〉 ≈ kT∗ ≈ 4.3 eV.
There must therefore be a cooling mechanism that reduces the average kinetic energy of
the free electrons to its observed value of E ≈ 1.3 eV.

In H ii regions, the most effective cooling mechanism is the collisional excitation of
atoms and ions in the gas, followed by spontaneous de-excitation. To see how collisional
excitation can reduce the average kinetic energy of free electrons, let’s consider the
simple two-level atom illustrated in Figure 5.3, which has a ground state (n = 1) and
an excited state (n = 2), separated by an energy �E. If an electron with kinetic energy
E > �E collides with the atom, it can lift a bound electron from the ground state
to the excited state. However, the energy gained by the bound electron is lost by the
free electron, whose kinetic energy drops from E to E − �E. Thus, if we wanted to
cool an H ii region, we could sprinkle it with two-level atoms that have �E <∼ kT∗. (If
the atoms had a level spacing �E 
 kT∗, then very few of the electrons produced by
photoionization would have enough energy to collisionally excite the atoms.)

If the H ii region is heated by photoionization and cooled by collisional excitation,
then the equilibrium temperature is the temperature at which the heating rate equals the
cooling rate. The heating rate (or “gain”) G, in units of watts per cubic meter, is found by
multiplying the number of photoionizations per second per cubic meter by the average
energy, in joules, of the free electron produced. In equilibrium, the photoionization rate
equals the recombination rate Nrec, and we have already determined that the average
energy of a newly freed electron is 〈E〉 = kT∗. Therefore,

G = Nrec〈E〉 = nenpα(Te)kT∗, (16.30)

where we have used equation (16.17) for the recombination rate. Since α(Te) ∝ T −1/2
e

,
and the other quantities entering equation (16.30) are independent of the electron tem-
perature, we find that G ∝ T −1/2

e
; the higher the electron temperature, the less effective

the heating by photoionization.
To compute the collisional cooling rate (or “loss”) L, we start by exploiting some of

the similarities between collisional excitation and radiative recombination. For recom-
bination to occur, a free electron must interact with a proton; the cross-section for the
interaction leading to recombination is σrec. As we saw in equation (16.17), the recom-
bination rate is

Nrec = nenp〈σrecve〉 = nenpα(Te). (16.31)

For collisional excitation of our two-level atom to occur, a free electron must interact
with the atom in its ground state; the cross-section for this collisional interaction is σ12,
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which in general is a function of the electron speed. By analogy with the recombination
rate (equation 16.31), we can write the collisional excitation rate as

N12 = nen1〈σ12ve〉, (16.32)

where n1 is the number density of two-level atoms in the ground state. Mathemati-
cally, the recombination rate (equation 16.31) and the collisional excitation rate (equa-
tion 16.32) look similar. There is one important physical difference between them, how-
ever. A free electron with an arbitrarily small speed ve can undergo recombination; by
contrast, a free electron with mev

2
e
/2 < �E will be unable to trigger a collisional exci-

tation. The velocity-weighted cross-section for collisional excitation will therefore have
a form

〈σ12ve〉 ∝ T −1/2
e

exp

(
−�E

kTe

)
. (16.33)

The Boltzmann factor, exp(−�E/kTe), results from the fact that at temperatures Te <

�E/k, very few of the electrons will be energetic enough to collisionally excite the
upper level.

Since the energy lost by the free electron during a collisional excitation is �E, the
collisional cooling rate can be written as

L = nen1〈σ12ve〉�E ∝ T −1/2
e

(
−�E

kTe

)
. (16.34)

For fixed ne and n1, the cooling rate L has a maximum at a temperature kTe = 2�E.
Thus, for effective cooling in the temperature range Te = 104 → 5 × 104 K, we need to
have collisional excitations with energies in the range �E = 0.4 → 2 eV. This implies
that collisional excitation of hydrogen will be relatively unimportant for cooling H ii
regions. Within an H ii region, most of the neutral hydrogen is in the ground state (n = 1);
collisional excitation to the next higher state requires �E = 10.2 eV, far more energy
than is possessed by a typical free electron in an H ii region.

Most of the cooling of electrons in H ii regions is done by collisional excitation of
“metals” such as oxygen and nitrogen, which have excited states with �E equal to a few
electron volts. In Figure 16.6, we show the heating rate and the sum of all cooling rates
for realistic nebular conditions, with a typical mix of metals. The electron temperature
is determined by where the heating and cooling rate lines cross; it is important to notice
that the cooling curve is very steep around 104 K, so fairly large differences in heating
rates (due to hot stars with different temperatures) will have little effect on the electron
temperatures, which are thus typically ∼ 10,000 K.
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FIGURE 16.6 Heating and cooling functions for an O star with T∗ = 40,000 K.
The principal cooling mechanisms in various regimes are indicated. The locus where
the heating and cooling functions cross is the equilibrium temperature for the nebula.

PROBLEMS

16.1 Compute R = AV/E(B − V ), the ratio of total to selective absorption, for the case of
Rayleigh scattering, τ ∝ λ−4. (This would be appropriate if interstellar dust particles
were very small compared to the wavelength of visible light, like aerosols in the
Earth’s atmosphere.)

16.2 The Sun emits 5 × 1023 photons per second with hν > 13.6 eV. If the density of
hydrogen atoms in interplanetary space is n = 109 m−3, what is the size of the Sun’s
Strömgren sphere? Assume a recombination coefficient α = 2.6 × 10−19 m3 s−1.

16.3 An A0 V star is observed to have mV = 14.0 and B − V = 1.5. What is the distance
to the star?
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16.4 Dust grains made of graphite will sublime (that is, turn from solid to gas) at a
temperature T ≈ 1500 K. The albedo of graphite is A ≈ 0.04.

(a) How close to an O5 V star (Teff = 42,000 K, R = 12R�) can graphite grains
survive?

(b) How close to an M2 III star (Teff = 3540 K, R = 0.5R�) can graphite grains
survive?

16.5 Demonstrate that equation (16.28) follows from equations (16.26) and (16.27).

16.6 Suppose that two cold (T = 100 K) interstellar clouds of 1M� each collide with a
relative velocity v = 10 km s−1, with all the kinetic energy of the collision being
converted into heat. What is the temperature of the merged cloud after the collision?
You may assume the clouds consist of 100% hydrogen.

16.7 In general, an F0 main sequence star has absolute magnitude MV = 2.7 and intrinsic
color (B − V )0 = 0.30. A specific F0 main sequence star is observed to have
mV = 12.00 and mB = 12.56.

(a) What is the color excess E(B − V ) for this star?
(b) What is the extinction AV for this star? (Assume R = 3.1).
(c) What is the distance to this star?
(d) What distance would you have computed if you had ignored extinction?

16.8 Consider the H ii region surrounding an O6 V star, as described at the end of
Section 16.3.1.

(a) What is the recombination time in this H ii region?
(b) What is the light travel time across the H ii region?

16.9 We observe an interstellar cloud, with temperature T = 80 K and neutral hydrogen
density nH = 108 m−3, at a distance d = 100 pc. Suppose that the cloud is spherical
and that the column density of neutral hydrogen atoms through its middle is
NH = 1.5 × 1024 m−2.

(a) What is the diameter of the cloud?
(b) How many neutral hydrogen atoms are in the cloud?
(c) What is the mass of the cloud (in units of M�)?
(d) If 75% of the atoms are in the higher-energy parallel state, how many 21 cm

photons are emitted per second by the cloud?
(e) What is the luminosity of the cloud in 21 cm photons (in units of L�)?
(f ) What is the flux in 21 cm photons as seen from Earth?

16.10 When observing a star behind the interstellar cloud described in Problem (16.9), we
detect absorption in the Na I λ = 5889.973 Å line. What is the thermal broadening,
�λ/λ0, of this absorption line? What is the thermal broadening of the same line in
the solar spectrum?



17 Formation and Evolution
of Stars

The equations of stellar structure (eqs. 15.74–15.78) do not contain any explicit time
dependence. However, though the properties of stars usually change slowly, they must
necessarily change. Stars have a nonzero luminosity and a finite fuel supply. This implies
that they began nuclear fusion at some time in the past and will exhaust their fuel supply
at some time in the future. In this chapter, we will address some of the issues of stellar
evolution, starting with the interstellar medium that supplies the raw material of star
formation, and ending when a star wrings the last possible joule from nuclear fusion. In
Chapter 18, we discuss stellar remnants—the dense “corpses” left over when a star no
longer is powered by fusion.

17.1 STAR FORMATION

Stars form by the gravitational collapse of the densest, coolest regions of the interstellar
medium. These regions are the relatively dense cores of molecular clouds, which have
densities as high as

nmc ∼ 1012 molecules/ m3. (17.1)

To put things in perspective, the Earth’s atmosphere at sea level has n ∼ 1025 molecules
per cubic meter; even the densest part of the interstellar medium would qualify as a high-
grade vacuum in a terrestrial laboratory. If the gas is pure molecular hydrogen, its mass
density will be

ρmc ≈ 2mpnmc ≈ 3 × 10−15 kg m−3 ≈ 5 × 10−12M� AU−3. (17.2)

Mixing in heavier particles, like He atoms and CO molecules, will raise the mass density,
but this is an adequate order-of-magnitude estimate.

In order to become a star, even the densest regions of the interstellar gas must
obviously be greatly compressed. The average density of the Sun is ρ� ≈ 1400 kg m−3.
For a spherical molecular cloud core of radius Rmc to become as dense as the Sun, the
ratio of its final to initial radius must be

R�
Rmc

=
(

ρmc

ρ�

)1/3

≈
(

3 × 10−15 kg m−3

1400 kg m−3

)1/3

≈ 10−6. (17.3)

393
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If a star ends with a radius of 1R�, it must have started with a radius R ∼ 106R� ∼
4000 AU ∼ 0.02 pc.

The compression required to create a star from interstellar gas is provided by gravity,
the universal trash compactor. Consider a spherical gas cloud with an initial radius
r0 ≈ 4000 AU and mass M ≈ 1M�. If the cloud is not rotating, and is very cold, the
molecules of which it is made will fall inward on radial orbits, with eccentricity e ≈ 1.
An orbiting molecule must satisfy Kepler’s third law:

P 2 = 4π2

G

a3

M
, (17.4)

where P is the orbital period of the molecule, a is the semimajor axis of its highly
eccentric orbit, and M is the mass contained in a sphere whose radius is equal to the
molecule’s distance from the cloud’s center. As the molecule plummets inward, M should
be constant, since the molecules closer to the cloud’s center will fall inward with an
equal or shorter period. If the molecule starts at a radius r0 and falls on a radial orbit, the
semimajor axis will be a = r0/2. The freefall time tff is defined as the time it takes the
molecule to reach the center; thus, tff = P/2. From Kepler’s third law,

4t2
ff = 4π2

G

r3
0

8M
= 4π2

G

r3
0

8

3

4πr3
0ρ0

, (17.5)

where ρ0 is the initial average density of the cloud. Thus,

tff =
(

3π

32Gρ0

)1/2

≈ 4 × 104 yr

(
3 × 10−15 kg m−3

ρ0

)1/2

, (17.6)

scaling to the typical density of a molecular cloud core. Note that the freefall collapse
time depends only on the average density ρ0 of a cloud, and not on its initial radius r0.

It takes a mere 40 millennia for a dense molecular cloud core to collapse under its
own gravity. Nevertheless, our galaxy, which has been around for 10 million millennia,
is still cluttered with molecular cloud cores that have not collapsed. This is because the
clouds are in hydrostatic equilibrium; the inward force due to gravity is balanced by
the outward force provided by a pressure gradient. However, not every equilibrium is a
stable equilibrium.1 Consider a spherical gas cloud of radius r0 and mass M , initially
in hydrostatic equilibrium. We give it a slight squeeze, so that its radius goes from r0
to r0(1 − ε). The gravitational force at its surface increases, and the pressure gradient
between its center and surface must therefore increase if hydrostatic equilibrium is to be
maintained. Consider what happens at the molecular level as the cloud is squeezed:

. Molecules near the surface are shoved closer together, increasing their density and
pressure.

. These molecules jostle against molecules a littler farther into the cloud, increasing
their density and pressure.

1 Think of a pencil balanced on its point; it’s in equilibrium, but a tiny disturbance will topple it.
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. These in turn jostle against molecules still farther in, and so on, until the center of
the cloud is reached.

In short, the pressure within the sphere is altered by a pressure wave—otherwise known
as a sound wave—traveling through the cloud. The change in pressure required to restore
hydrostatic equilibrium thus travels at the speed of sound. If the inward-traveling sound
wave reaches the center in a time less than the freefall time, the cloud is saved. If not,
the cloud collapses.

If you’re a fan of science fiction, you may be familiar with the tag line of the movie
Alien: “In space, no one can hear you scream.” If this is true, the concept of sound
in outer space may seem absurd. However, sound waves can travel through space if
their wavelength is long enough. The propagation of sound depends on molecules and
atoms bumping into each other. In the low density of an interstellar cloud, a molecule
will travel ∼ 104 km before bumping into another molecule. As a consequence, only
sound waves with λ >∼ 104 km can travel through a molecular cloud. If you had vocal
cords ∼ 104 km long, someone could hear you scream in space—if their eardrums were
sensitive to frequencies of ∼ 10−5 Hz.

The collapse time for a cloud is (equation 17.6)

tff =
(

3π

32Gρ0

)1/2

. (17.7)

The time required to build up a pressure gradient within a cloud is

tpress = r0

cs

, (17.8)

where cs is the sound speed within the cloud:

cs =
(

γ kT

μmp

)1/2

. (17.9)

In equation (17.9), γ is the adiabatic index, T is the gas temperature, and μ is the mean
molecular mass. The cloud is unstable if

tff < tpress, (17.10)

or (
3π

32Gρ0

)1/2

< r0

(
μmp

γ kT

)1/2

. (17.11)

The freefall collapse time tff is independent of the cloud’s initial radius r0 and the sound
travel time is linearly proportional to r0. This implies that, for a given density ρ0 and
temperature T , there is a maximum radius rJ for which a cloud is stable against collapse.
The critical radius rJ is known as the Jeans length, after the astronomer James Jeans,
who first realized its importance.
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From equation (17.11), the Jeans length is

rJ =
(

3πγ kT

32Gρ0μmp

)1/2

. (17.12)

For pure molecular hydrogen, with μ = 2 and γ = 7/5, the numerical value of the Jeans
length is

rJ ≈ 2000 AU

(
T

10 K

)1/2 (
ρ0

3 × 10−15 kg m−3

)−1/2

. (17.13)

The mass within a sphere of radius rJ is called the Jeans mass:

MJ ≈ 0.2M�
(

T

10 K

)3/2 (
ρ0

3 × 10−15 kg m−3

)−1/2

. (17.14)

This hints at why stars form only in the coolest, densest regions of the interstellar gas.
In hotter, lower-density regions, the Jeans mass is much bigger than a star’s mass.

If a dense core inside a molecular cloud is bigger than its Jeans length, then squeezing
it (with a supernova shock wave, for instance) will trigger a gravitational collapse.
What stops the collapse? Usually, the collapse is stopped by conservation of angular
momentum. When we look at dense interstellar clouds, they are usually rotating slowly.
Consider, for instance, the Horsehead Nebula, a dusty, dense cloud, ∼ 500 pc away from
us in the constellation Orion (Figure 17.1). From the Doppler shift of radio emission on
different sides of the nebula, it’s known that the Horsehead Nebula is rotating with a
speed ∼ 1 km s−1. The Horsehead Nebula itself is too large to collapse into a single star:
it’s ∼ 1 pc from one end of its “mane” to the other, and the total mass of the nebula
is ∼ 1000 M�. However, smaller dense cores—small enough to form a single star—are
also found to be rotating, with a typical rotation speed ∼ 0.1 km s−1. If a cloud starts with

FIGURE 17.1 The Horsehead Nebula, an opaque dusty cloud seen in projection
against a bright emission nebula.



17.1 Star Formation 397

rotation speed v0 and radius r0, then when it collapses to a final radius rf , its rotation
speed will be given by the law of conservation of angular momentum: v0r0 = vf rf , or

vf =
(

r0

rf

)
v0. (17.15)

If the radius of a molecular cloud core decreases by a factor ∼ 10−6, as suggested
earlier, its final rotation velocity will be vf ∼ 106v0. For an initial rotation speed of
v0 ∼ 0.1 km s−1, the final rotation speed will be vf ∼ 100,000 km s−1. However, no
young stars have been seen to rotate with these relativistic speeds.

In fact, if angular momentum is conserved, the cloud will stop falling inward when
it forms a rotationally supported disk, in which the gravitational acceleration is just
sufficient to keep material on a circular orbit:

GM

r2
f

= v2
f

rf
. (17.16)

Combining equations (17.15) and (17.16), we find that the disk’s radius will be

rf = v2
0r

2
0

GM
≈ 200 AU

(
v0

0.1 km s−1

)2 (
r0

4000 AU

)2
(

M

1M�

)−1

. (17.17)

Even when the initial rotation speed is small, the cloud will collapse to a disk much larger
than a star. Such protoplanetary disks can be seen, for instance, in the denser regions of
the Orion Nebula (see Figure 8.3).

A protoplanetary disk contains far more angular momentum than a star does. In order
to create a star from a rotationally supported planetary disk, some of the material must
lose angular momentum and fall to the center, where it forms a protostar. (A protostar
is the slowly rotating ball of gas that will eventually become a star but which has not yet
started fusion in its center.) One hint of where a protostar dumps its angular momentum
is provided by the present solar system. The orbital angular momentum of Jupiter is

LJup ≈ 2 × 1043 kg m2 s−1. (17.18)

The rotational angular momentum of the Sun is only

L� ≈ 1 × 1042 kg m2 s−1. (17.19)

Although the Sun contains more than 99.8% of the mass of the solar system, it contains
less than 5% of the angular momentum. A relatively small amount of mass on a very
large orbit can act as a “scapegoat” for angular momentum, carrying most of the initial
angular momentum of the collapsing cloud. Part of the proto-Sun’s angular momentum
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was carried by viscous torques to the outer part of the protoplanetary disk.2 Another part
of the proto-Sun’s angular momentum is carried away by a magnetized protosolar wind;
this is the same mechanism described in Section 7.3.

The main steps in the formation of a star can be summarized as follows:

. The dense core of a molecular cloud is perturbed by a shock wave and starts to
collapse.

. The core collapses to form a rotationally supported disk. The gas in the disk
is threaded by magnetic field lines. The central dense region of the disk is the
protostar.

. Hot gas from the disk moves out along the magnetic field lines, forming a strong
stellar wind. Since the magnetic field lines rotate along with the disk, the gas
traveling along the field lines carries much angular momentum.

. Within the disk, dust clumps to form planetesimals; planetesimals collide to form
planets. The remaining gas and dust in the disk is blown away by the stellar wind.

The protostar contracts on the Kelvin–Helmholtz timescale, tKH ∝ M2/(RL), as it
radiates away its gravitational potential energy. When its central regions become hot
and dense enough for hydrogen fusion to ignite, the protostar becomes a star.

17.2 EVOLUTION OF SUN-LIKE STARS

Once the Sun started fusing hydrogen in its core, its time evolution became very gradual.
Solving the time-dependent equations of stellar evolution indicates that the Sun’s fusion-
powered life began 4.6 billion years ago. Since the Sun’s main sequence lifetime is 10
billion years, the Sun has exhausted nearly half the hydrogen in its core. During the
Sun’s 10 billion years on the main sequence, there have been few changes in its global
structure. The most significant differences are due to the changing composition of the
Sun’s core. Fusing hydrogen into helium increases the mean molecular mass μ of the
gas. (As shown in Section 14.1, fully ionized hydrogen has μ = 1/2, while fully ionized
helium has μ = 4/3.) In order to maintain the central pressure Pc required for the Sun to
remain in hydrostatic equilibrium, either the central temperature Tc or the central mass
density ρc, or both, will have to increase. This in turn increases the energy generation
rate ε and drives up the luminosity of the Sun. When the Sun began fusion, 4.6 billion
years ago, its luminosity was ∼ 0.7L�; about 6 billion years from now, right before it
runs out of hydrogen in its core, the Sun’s luminosity will be ∼ 2.2L�.3 A minor side
effect of the Sun’s luminosity increase is that ∼ 3.5 Gyr from now, the increased flux
at the Earth’s location will trigger a runaway greenhouse effect; the Earth’s oceans will
evaporate, and the Earth’s climate will resemble that of Venus today.

2 To visualize viscous torques, think of a disk made of extremely sticky, syrupy material. If the inner regions are
moving more rapidly than the outer regions, they will tend to drag the outer regions along with them, speeding
up the outer regions and increasing their angular momentum.
3 Tripling the Sun’s luminosity sounds impressive, but when it occurs over the course of 10 billion years, it
requires an increase of only 0.01% every million years.
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FIGURE 17.2 Climbing the red giant branch.

What happens when the Sun (or a Sun-like main sequence star) runs out of hydrogen
in its core? When the central hydrogen is depleted, the Sun is still losing energy from its
surface. The photosphere doesn’t have a “gas gauge” to monitor and thus is unaware that
the core has run out of fuel; it just keeps on radiating because it keeps on being hotter
than its surroundings. The energy lost to interstellar space has to come from somewhere;
the source on which the star falls back is the old standby, gravitational potential energy.
The helium core of the Sun slowly contracts inward, converting its gravitational potential
energy into thermal energy.

The layer above the core is heated to the point at which it starts fusing its hydrogen into
helium. During this phase of the Sun’s life, the main energy source is much closer to the
surface than it was before. The outer layers of the Sun absorb the energy emitted by the
hydrogen-fusing shell; their temperature and pressure increase, and they expand outward.
The radius of the photosphere increases from ∼ 1.6R� to ∼ 170R�.4 The swollen
photosphere drops in temperature from 6000 K to 3000 K, but the large increase in
surface area means that the Sun’s luminosity climbs from 2.2L� to 2300L�. During this
stage of the Sun’s evolution, its location on a Hertzsprung–Russell diagram (Figure 17.2)
moves upward and to the right. When the Sun fuses hydrogen into helium in a shell
outside its core, it is very big and very red. Hence it is called a red giant, and its evolution
away from the main sequence is referred to as “climbing the red giant branch.”

As the hydrogen-fusing shell eats its way outward through the Sun, a larger and
larger sphere of helium is left behind in the center. As the core of ionized helium
becomes more massive, it is squeezed together by its own gravity until the free electrons
become degenerate. (The term “degenerate” is not a value judgment about the electrons’
lifestyle; to a physicist, electrons are degenerate when they are sufficiently close together

4 Since 170R� ≈ 0.8 AU, at this point, we can kiss Mercury and Venus goodbye.
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that the Pauli exclusion principle comes into play and prevents any two electrons from
occupying the same state.) The degenerate electrons produce a pressure that is entirely
independent of the temperature of the helium nuclei. We defer an in-depth discussion of
degeneracy to Section 18.1.1.

As the helium core continues to grow, it is supported by degenerate electron pressure
even as the temperature of the helium nuclei increases. When the temperature of the
helium nuclei reaches 108 K, fusion of helium into carbon by the triple alpha process
begins (as detailed in Section 15.3). As the energy released by fusion is dumped into
the core, the temperature of the helium nuclei, and hence the rate of the triple alpha
process, shoots up rapidly. Since the core pressure is provided by degenerate electrons,
the pressure initially remains constant despite the rapid temperature rise. This means that
the mass density of the core remains constant while the temperature increases—just the
conditions needed for runaway fusion. The initiation of helium fusion in a degenerate
core is called the helium flash. The fusion runaway continues until the temperature rises
to 3.5 × 108 K. At this temperature, the electrons finally become nondegenerate, and the
dominant source of pressure is ordinary thermal motions.

After the helium flash, the Sun settles into a steady state; helium is fused into carbon
(and a little oxygen) in the core, while hydrogen is fused into helium in a shell outside the
core. At this stage of the evolution, the Sun is “on the horizontal branch” (Figure 17.3).
This odd name is given because all stars have nearly the same luminosity—about
100L�—when they are at this stage of their evolution. Thus, they fall along a horizontal
line in the H–R diagram. As a horizontal branch star, the Sun is smaller (R ∼ 10R�) and
hotter (T ∼ 5000 K) than during its red giant phase.

There’s enough helium in the core to fuel the star by the triple alpha process for 100
million years. When helium is depleted, the core contracts, the released gravitational
potential energy heats the shell above, and fusion of helium into carbon begins in the
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FIGURE 17.3 On the horizontal branch.



17.2 Evolution of Sun-like Stars 401

40,000

106

104

102

1

10–2

10–4

20,000 10,000

Temperature (K)

Main sequence

H-core
exhaustion

Red giant branch
Horizontal branch

Asymptotic
giant branch

L
um

in
os

ity
 (

L
Su

n)

5000 2500

FIGURE 17.4 Climbing the asymptotic giant branch.

shell above the carbon core. During this phase, the Sun is a red giant again, only with
two fusion shells; the inner converts helium to carbon (and a little oxygen), and the outer
converts hydrogen to helium. At this stage, the Sun is an “asymptotic giant branch” star,
or AGB star.

This name is given because the star’s path on the H–R diagram (Figure 17.4) is
asymptotic to the path it followed on its first climb up the giant branch.

The “layered look” of an AGB star is shown schematically in Figure 17.5. The relative
sizes of the different layers are not shown to scale; the outer cool envelope is actually
much larger than the central fusion shells and the carbon/oxygen core. The life of the
Sun as an AGB star is relatively brief; this is the most luminous stage of the Sun’s
existence, with a predicted maximum luminosity of ∼ 3000L�. An AGB star is unstable
and pulsates in and out. The outward pulsations eject the outer layers of the star in huge
gusts of stellar wind. The final pulses blow away the hydrogen-fusing and helium-fusing
shells. Only the inert carbon/oxygen core remains.

The naked core is extremely hot, and emits copious ultraviolet light. It ionizes the
surrounding gas and produces a planetary nebula (Color Figure 16). The carbon/oxygen
core is small, dense, and supported by degenerate electron pressure; it is the type of
stellar remnant that we call a “white dwarf.” It is expected that the Sun will be able to
blow away ∼ 40% of its mass, leaving behind a white dwarf with mass Mwd ∼ 0.6M�.
The white dwarf is too cool to fuse its carbon and oxygen to heavier elements, and too stiff
to collapse to a smaller volume and decrease its gravitational potential. With no energy
source available other than thermal energy, the white dwarf gradually cools down, until
it becomes a “black dwarf” in the distant future.5

5 This may be disappointing to you, but the Sun will never become a supernova or a black hole. Sorry.



402 Chapter 17 Formation and Evolution of Stars

Inert
C/O
core

H-fusing
shell

He-fusing
shell

Cool, extended
envelope

FIGURE 17.5 Layers of an asymptotic giant branch star.

The life of the Sun is a play in five acts, plus a prologue and epilogue:
Prologue: Protostar (t ∼ 50 Myr)

No fusion; powered by gravity.
Act I: Main sequence (t ∼ 10 Gyr)

Fusion of H to He in core.
Act II: Red giant branch (t ∼ 1 Gyr)

Fusion of H to He in shell.
Act III: Horizontal branch (t ∼ 100 Myr)

Fusion of H to He in shell, He to C in core.
Act IV: Asymptotic giant branch (t ∼ 20 Myr)

Fusion of H to He in outer shell, He to C in inner shell.
Act V: Planetary nebula (t ∼ 50 kyr)

No fusion; hot core emits UV radiation, and gas shell fluoresces.
Epilogue: White dwarf (t → ∞)

No fusion; white dwarf cools down.

17.3 PULSATING VARIABLE STARS

During the Sun’s main sequence lifetime, its properties change slowly. However, there
do exist stars whose luminosities, and other properties, vary periodically on timescales
of less than a year. These stars are known as pulsating variable stars. We’ll focus on
the two most celebrated types: Cepheid stars (sometimes called “classical Cepheids”)
and RR Lyrae stars. Each of these classes is named after its archetype, that is, the first
star of that class to be recognized. This was δ Cephei in the case of the Cepheids, and
RR Lyrae itself in the case of the RR Lyrae stars.
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TABLE 17.1 Pulsating Variable Stars Compared

Property Cepheid RR Lyrae

MV (average) −0.5–−6 0.5–1

Spectral Type F, G, K A, F

Pulsation Period 1–50 days 1.5–24 hours

Mass 3–18 M� 0.5–0.7 M�
Evolutionary Stage supergiant horizontal branch

Metallicity high low
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FIGURE 17.6 Location of Cepheids and RR Lyrae stars on a Hertzsprung–Russell
diagram.

Table 17.1 shows the difference between Cepheids and RR Lyrae stars by comparing
some of their properties.

Cepheid and RR Lyrae variables differ in many properties. However, if you plot their
locations on an H–R diagram (Figure 17.6), you find they are adjacent to each other, on a
diagonal stripe called the instability strip. Unlike the Sun and other stable main sequence
stars, Cepheid and RR Lyrae stars pulsate in and out: they actually grow substantially
larger and smaller in radius.

As an example of a pulsating variable star, consider δ Cephei. Over a period of P =
5.366 days, its apparent magnitude varies by �mV ≈ 1; this corresponds to Fmax/Fmin ≈
100.4 ≈ 2.5. A steep rise in flux (Figure 17.7) is followed by a slow decline. The radial
velocity of the star δ Cephei, relative to the Sun, is approximately −15 km s−1. Because
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FIGURE 17.7 Time-variable properties of δ Cephei. (a) V -band apparent
magnitude. (b) B − V color index. (c) Radial velocity of photosphere.

of the expansion and contraction of the photosphere, the observed radial velocity varies
from vr ≈ −35 km s−1 when the photosphere is expanding to vr ≈ +5 km s−1 when
the photosphere is contracting. The effective temperature changes from Teff ≈ 5600 K
when the star is near its minimum luminosity to Teff ≈ 6600 K when the star is near its
maximum luminosity. The variations in radius can be deduced from the star’s changes in
luminosity and effective temperature: R ∝ L1/2/T 2

eff . The radius of δ Cephei varies by
nearly 15% over the course of one cycle; this means that the maximum volume is 50%
greater than the minimum volume.

To see why pulsating variable stars pulsate, while the Sun is content to be stable, start
by taking a star of radius R and squeezing slightly, so that its radius decreases to R − dR.
As we saw in Section 17.1, squeezing a gas sphere makes a sound wave travel toward its
center. Since a star in hydrostatic equilibrium is smaller than its Jeans length, the sound
wave will reach the center in a time less than the collapse time. When the sound wave
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reaches the center, it expands back to the surface; when it reaches the surface, it reflects
back to the center. Thus, squeezing a star in a spherically symmetric manner results in a
standing sound wave, or acoustic oscillation.

The period P of the acoustic oscillation is the time required for a sound wave to make
a round trip from photosphere to center back to photosphere. This time is

P = 2tpress = 2R

cs

= 2R

(
μmp

γ k〈T 〉
)1/2

, (17.20)

where cs is the average sound speed in the star; the relation between cs and the average
temperature 〈T 〉 is taken from equation (17.9). If we take the average temperature to
be roughly half the central temperature (as approximated in equation 15.9), we find a
period of

P ≈ 2R

(
2μmp

γ kTc

)1/2

≈ 2R

(
R

γGM

)1/2

. (17.21)

Note that the period for acoustic oscillations is

P ≈
(

4R3

γGM

)1/2

≈
(

3

πγG〈ρ〉
)1/2

, (17.22)

so stars of greater density have shorter periods for acoustic oscillations. This tells us that
the short-period RR Lyrae stars are higher in density than the longer-period Cepheids.
Notice also that the sound travel time from surface to center, P/2, and the freefall
time tff (equation 17.6) are both proportional to 〈ρ〉−1/2. However, the ratio of the two
timescales is

P/2

tff
≈ 2

π

(
2

γ

)1/2

≈ 0.7, (17.23)

assuming an adiabatic index of γ = 5/3, appropriate for an ionized gas. Thus, a star in
hydrostatic equilibrium is stable, but not extravagantly so; the laws of stellar structure
ensure that the sound travel time is only 30% shorter than the freefall time.

Any star will undergo acoustic oscillations when it is squeezed or otherwise perturbed.
In the Sun, helioseismology reveals that the oscillations are of small amplitude; this is
true in most other stars as well. The acoustic oscillations are damped by the viscosity of
the gas. Cepheids and RR Lyraes have high-amplitude pulsations because their acoustic
oscillations are driven. Like a little girl on a swing who gets repeated pushes from Mom
at the same point of her swing, a pulsating variable star is driven by a periodic force that
has the same period P as the acoustic oscillations.

The driving force behind the pulsations of Cepheids and RR Lyrae stars is related to
changes in opacity. To see how opacity changes can drive oscillations, let’s consider the
process step by step.

1. A layer near the surface is heated to a temperature of T ∼ 40,000 K. At this
temperature, He+ is ionized to He++.

2. The opacity shoots upward, due to scattering by the newly freed electrons.
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3. Light is absorbed at the bottom of the opaque layer, increasing the temperature and
pressure gradient across the layer.

4. Driven by the increased pressure gradient, the opaque layer expands outward and
cools.

5. He++ recombines with free electrons to form He+.

6. The opacity plummets, and previously trapped photons rush outward through the
newly transparent layer.

7. The layer contracts and reheats to 40,000 K, where the whole cycle begins again.

A layer with T ∼ 40,000 K is near the photosphere of the star. The central regions,
where the fusion reactions occur at much higher temperatures, are unaffected by the
opacity changes far above them. The fusion generates energy at a steady rate; however,
the changes in opacity cause the energy to be released in periodic outbursts.6

Stars in the instability strip (see Figure 17.6) have a helium ionization layer in which
the natural period for the transition from opaque to transparent to opaque just matches
the period P for acoustic oscillations in the star. The Sun is too low in mass ever to
evolve into a Cepheid variable, but it might lose enough mass as a red giant to become
an RR Lyrae star when it’s on the horizontal branch. Within the instability strip, the
most luminous stars are large, low-density supergiants. Since their density ρ is low, their
acoustic oscillation period, P ∝ ρ−1/2, is long. As a result, there is a period–luminosity
relation for Cepheid stars, with the more luminous stars having longer periods.

In fact, the period–luminosity relation for Cepheids was discovered empirically long
before anyone knew the precise mechanism driving their luminosity fluctuations. In
1912, Henrietta Swan Leavitt was studying variable stars in the Large and Small Magel-
lanic Clouds. When she plotted the apparent magnitude of each Cepheid as a function of
its oscillation period P , she found m ∝ log P . Since the Clouds are small compared to
their distance from us, the stars in each Cloud are all at roughly the same distance from
us, implying

M ∝ log P. (17.24)

To calibrate the period–luminosity relation, and find exactly which absolute magnitude
M corresponds to a given period P , we need to know the distance d to at least some of the
Cepheids out there. Unfortunately, Cepheid variables, like all highly luminous stars, are
rare; only the closest Cepheids have had their parallax measured accurately.7 A widely
used form of the Cepheid period–luminosity relationship is

MV = −2.76 log(P/10 days) − 4.16, (17.25)

6 Think of a pot of boiling water with a heavy lid. The water evaporates at a steady rate; however, the water
vapor escapes only in periodic “puffs” when the pressure grows high enough to lift the lid.
7 The nearest Cepheid is Polaris, at d = 130 ± 10 pc. The next nearest is δ Cephei, at d = 270 ± 10 pc.
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where MV is the absolute magnitude in the V band, averaged over a complete period.
The scatter in absolute magnitude at a given period is about 0.3 magnitudes.

If you measure the period P of a Cepheid, you can compute its absolute magnitude
from equation (17.25). After measuring its average apparent magnitude mV , you can
then compute its distance using the relation

log(d/10 pc) = 0.2(mV − MV ), (17.26)

assuming there’s no extinction. Thus, Cepheids make excellent standard candles; this
is the term used by astronomers for an object whose luminosity is known, and whose
distance can thus be calculated once its flux is measured. Cepheids are bright enough to
be seen in the Virgo Cluster of galaxies, whose distance (as measured using Cepheids) is
approximately 18 million parsecs. RR Lyrae stars can also be used as standard candles,
but since they are less luminous, they can’t be seen as far away as Cepheids and be seen.

PROBLEMS

17.1 A protostellar cloud starts as a sphere of radius R = 4000 AU and temperature
T = 15 K. If it emits blackbody radiation, what is its total luminosity? What is the
wavelength λp at which it emits the most radiation?

17.2 A Cepheid star in the Large Magellanic Cloud is observed to have an average apparent
magnitude mV = 11.80 and a period P = 95 days. Compute the distance to the Large
Magellanic Cloud, ignoring any effects due to dust.

17.3 Consider two clouds in the interstellar medium. A molecular (H2) cloud has T = 10 K
and n = 1012 m−3; a neutral atomic (H) cloud has T = 120 K and n = 107 m−3.

(a) What is the Jeans mass for each of the two clouds?
(b) What is the minimum radius each cloud must have to collapse?
(c) What is the timescale for the gravitational collapse of each cloud?

17.4 In this problem, you will estimate the duration of the horizontal branch phase in a
1M� star.

(a) Compute the energy released in the net triple alpha reaction 34He → 12C. The
masses of 4He and 12C are 4.0026 amu and 12.0000 amu, respectively, where 1
amu (atomic mass unit) = 1.6606 × 10−27 kg.

(b) Assume that at the beginning of the horizontal branch phase, 10% of the original
mass of the star is in the form of 4He in the stellar core. Estimate the total energy
released by fusing this amount of helium into carbon via the triple alpha process.
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(c) Assume that during the horizontal branch phase, L = 100L�. If all this luminosity
is provided by fusion of helium to carbon in the core, how long will the horizontal
branch phase last?

17.5 Make an order-of-magnitude estimate of the length of the protostar phase for the Sun.

17.6 What is the thermal energy density, in joules per cubic meter, of a typical giant
molecular cloud? What is the thermal energy density of the Earth’s atmosphere at sea
level?



18 Stellar Remnants

The life history of a star is determined primarily by its mass; if you know a star’s initial
mass, you know (at least in broad outline) how it will evolve. Other factors, like the star’s
initial chemical composition and initial angular momentum, have a smaller effect.1 For
instance, the fusion history of a star depends on its initial mass (all mass limits below
are approximate):

. M < 0.08M�: No fusion. The center of a low-mass ball of gas never becomes hot
enough for hydrogen fusion. This mass range represents not stars but brown dwarfs
of spectral type L and T.

. 0.08M� < M < 0.5M�: Fusion of 1H to 4He. The center of the star never becomes
hot enough to fuse 4He to 12C and 16O. Stars in this mass range are M stars on the
main sequence and will eventually end up as white dwarfs made of helium.

. 0.5M� < M < 5M�: Fusion of 1H to 4He and 4He to 12C and 16O. The center of
the star never becomes hot enough to fuse 12C and 16O to heavier elements. Stars
in this mass range are A, F, G, and K stars on the main sequence and end up as
white dwarfs made of carbon and oxygen.

. 5M� < M < 7M�: Fusion of 1H to 4He, 4He to 12C and 16O, and 12C and 16O to
20Ne and 24Mg. Stars in this mass range are B stars on the main sequence.

. M > 7M�: Fusion of 1H to 4He, 4He to 12C and 16O, 12C and 16O to 20Ne and
24Mg, 20Ne and 24Mg to 28Si, and 28Si to 52Fe and 56Ni. Stars in this mass range
are O stars on the main sequence. (Note that the elements produced have atomic
masses that are multiples of 4; this is because the heavier elements are built up by
fusing on additional 4He nuclei.)

The initial mass of a star also determines what its “corpse,” or stellar remnant, will be.
The lowest-mass stars become dense white dwarfs, supported by electron degeneracy
pressure. Higher-mass stars leave behind even denser neutron stars, and the most massive

1 The statement “A star’s properties are determined primarily by its mass” is known as the Russell–Vogt
theorem, after the ubiquitous Henry Norris Russell and the German astronomer Heinrich Vogt, who were
the first to realize its truth.

409
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stars of all end up as black holes, representing the ultimate in density. We will examine
in turn the evolutionary roads that lead to white dwarfs, neutron stars, and black holes.

18.1 WHITE DWARFS

A white dwarf is a stellar remnant supported by electron degeneracy pressure. The
name “white dwarf,” as it turns out, is something of a misnomer. Nobody objects to
the “dwarf” part; white dwarfs really are small compared to main sequence stars of
comparable mass. As we computed in Section 13.5, the radius of the white dwarf Sirius
B is Rwd = 0.0084R�, and its mass is Mwd = 0.96M�. However, not all white dwarfs are
white-hot. Although the first discovered white dwarfs, such as Sirius B, have high surface
temperatures (Sirius B has T ≈ 25,000 K), some white dwarfs have surface temperatures
as low as T ≈ 4000 K.

White dwarfs are high in density compared to main sequence stars. The average
density of Sirius B is

ρwd = Mwd

M�

(
R�
Rwd

)3

ρ� = 0.96(0.0084)−3ρ� (18.1)

≈ 2 × 106ρ� ≈ 2 × 109 kg m−3, (18.2)

about 200,000 times the density of lead.2 Supporting such a dense object in hydrostatic
equilibrium requires a high internal pressure. In Section 15.1, we computed the approx-
imate central pressure for a sphere in hydrostatic equilibrium:

Pc ∼ 2GM〈ρ〉
R

∼ 3GM2

2πR4
. (18.3)

The central pressure in a white dwarf must then be

Pc ∼
(

Mwd

M�

)2 (
R�
Rwd

)4

Pc,� ∼ (0.96)2(0.0084)−4Pc,� (18.4)

∼ 2 × 108Pc,� ∼ 1018 atm. (18.5)

If this pressure were provided by ordinary thermal motions, the temperature at the center
of Sirius B would have to be Tc ∼ 6 × 109 K. However, the pressure inside a white
dwarf is not due primarily to thermal motions. Instead, it is provided by the degenerate
electrons.

18.1.1 Degeneracy Pressure

As noted in Section 17.2, electrons become degenerate when they are packed closely
enough that the Pauli exclusion principle produces an additional form of pressure to keep

2 This might seem more impressive if we point out that 2 × 109 kg m−3 is equivalent to 10 tons per teaspoon.
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them apart.3 The electron degeneracy pressure is a consequence of the Heisenberg
uncertainty principle, which states that you can’t simultaneously specify the position x

and momentum p of a particle to arbitrary accuracy. There is always an uncertainty in
each such that

�x�p ≥ �, (18.6)

where � is the reduced Planck constant introduced in Section 5.1. Suppose that the
degenerate electrons have a number density ne. In their cramped conditions, each electron
is confined to a volume V ∼ n−1

e
. Thus, the location of each electron is determined

with an uncertainty �x ∼ V 1/3 ∼ n−1/3
e

. From the uncertainty principle, the minimum
uncertainty in the electron momentum is

�p ∼ �

�x
∼ �n1/3

e
. (18.7)

If the electrons are nonrelativistic,

�v = �p

me

∼ �n1/3
e

me

, (18.8)

where me is the mass of the electron.
Thanks to the uncertainty principle, degenerate electrons are zipping around with a

speed ve ∝ n1/3
e

regardless of how low the temperature drops. These “Heisenberg speeds”
contribute to the pressure, just as the thermal speeds do. For ordinary thermal motions,
the electron speeds are

vth ∼
(

kT

me

)1/2

, (18.9)

and the pressure contributed by thermal motions of electrons is

Pth = nekT ∼ nemev
2
th. (18.10)

By analogy, the “Heisenberg speeds” contribute a pressure

Pdegen ∼ neme(�v)2 ∼ neme

(
�n1/3

e

me

)2

∼ �
2 n5/3

e

me

. (18.11)

We label a population of electrons as “degenerate” when Pdegen > Pth.

3 Electrons, neutrons, and protons are all fermions, particles with half-integral spin, to which the Pauli exclusion
principle applies. Photons are examples of bosons, particles with integral spin, to which the exclusion principle
does not apply.
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18.1.2 Mass–Radius Relationship

Because white dwarfs are supported by electron degeneracy pressure, we can derive a
simple mass–radius relation for white dwarfs. (Warning for the faint-hearted: since we
want only the correct proportionality between radius and mass, and are not concerned
with exact numbers, we’ll be omitting numerical factors like π and 2 from the following
analysis.) Since a white dwarf is in hydrostatic equilibrium (equation 18.3), its central
pressure must be

Pc ∼ GM2

R4
. (18.12)

This is true for all spheres in hydrostatic equilibrium, regardless of the pressure source.
If the pressure is provided by degenerate electrons, then from equation (18.11),

Pc ∼ �
2 n5/3

e

me

∼ �
2 ρ5/3

m
5/3
p me

∼ �
2

m
5/3
p me

M5/3

R5
. (18.13)

(Since a carbon/oxygen white dwarf is made of ionized “metals,” its mean molecular
mass is μ ≈ 2. In keeping with our policy of ignoring small numerical factors, we have
set 2 ≈ 1.) Equating the pressure required for hydrostatic equilibrium (equation 18.12)
with the pressure provided by degenerate electrons (equation 18.13), we find that

G
M2

R4
∼ �

2

m
5/3
p me

M5/3

R5
, (18.14)

or

R ∼ �
2

Gmem
2
p

(
M

mp

)−1/3

. (18.15)

Notice the counterintuitive result that more massive white dwarfs have a smaller
radius. We don’t expect 40 pounds of cow manure to fit in a smaller bag than 20 pounds
of cow manure, but we do expect a 1M� white dwarf to fit in a smaller volume than
a 0.5M� white dwarf. Since larger masses correspond to smaller radii, we expect the
average density to increase rapidly with mass:

〈ρ〉 ∼ M

R3
∼ G3m3

e
m5

p

�6
M2. (18.16)

The exact value of the radius for a white dwarf of a given mass depends slightly on the
chemical composition of the dwarf. However, a good empirical fit is found to be

R ≈ 0.01R�

(
M

0.7M�

)−1/3

. (18.17)
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FIGURE 18.1 Observed masses and radii for nearby white dwarfs. The solid and
dashed lines represent models for different chemical compositions.

The measured masses and radii of some nearby white dwarfs are plotted in Figure 18.1.
The best-determined masses and radii are for Sirius B, Procyon B, and 40 Eri B, all part
of visual binary systems.

As the pressure P drops with distance from the center of the white dwarf, so does the
density ρ ∝ P 3/5 (equation 18.13). The outermost layers of a white dwarf are thus low
enough in density for ordinary thermal pressure to be the dominant pressure source.
The nondegenerate atmosphere of the white dwarf is different in some ways from
the atmospheres of ordinary stars. The gravitational acceleration in the white dwarf’s
atmosphere is large:

gwd = GMwd

R2
wd

≈ 7000g�

(
M

0.7M�

)5/3

≈ 2 × 106 m s−2

(
M

0.7M�

)5/3

.(18.18)

Thus, a white dwarf’s atmosphere will have a small scale height, despite the high
photospheric temperature (T ∼ 105 K ∼ 20T�) of a newly unveiled white dwarf:

Hwd = kTwd

gwdμwdmp

∼ 0.4 km

(
Twd

105 K

) (
Mwd

0.7M�

)−5/3

. (18.19)

Because of the high gravitational acceleration in the photosphere, the spectra of white
dwarfs typically show extreme pressure broadening of absorption lines (Figure 18.2).
Thus, white dwarfs can be distinguished from hot main sequence stars by their spectra
alone.
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FIGURE 18.2 Spectrum of the white dwarf Sirius B; note the pressure-broadened
Balmer lines.

Sirius B, with a mass equal to that of the Sun, is the most massive white dwarf in
our immediate neighborhood (see Figure 18.1). White dwarfs cannot have an arbitrarily
high mass. As additional mass is piled on to a white dwarf, the density increases, and
the “Heisenberg speed” of the electrons,

�v ∼ �
n1/3

e

me

, (18.20)

approaches the speed of light. When �v ∼ c, rearranging equation (18.20) gives

ne ∼
(

cme

�

)3

∼ 2 × 1037 m−3, (18.21)

so the degenerate electrons become relativistic at this density. Since a typical white dwarf
has one proton and one neutron for each electron, this corresponds to a mass density

ρ ∼ 2mpne ∼ 2c3m3
e
mp

�3
∼ 6 × 1010 kg m−3. (18.22)

When we compare this critical density to the mass–density relation for white dwarfs
(equation 18.16), we find that the degenerate electrons in a white dwarf become rela-
tivistic when

G3m3
e
m5

p

�6
M2 ∼ c3m3

e
mp

�3
, (18.23)
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or when the white dwarf’s mass is

M ∼
(

�
3c3

G3m4
p

)1/2

∼ 4 × 1030 kg, (18.24)

or about twice the mass of the Sun.
The transition of the degenerate electrons from nonrelativistic to relativistic has grave

consequences for the structure of the white dwarf. Highly relativistic electrons have
an energy much greater than their rest energy: Erel � mec

2. In practice, we can treat
them like massless particles (photons, for instance). For instance, photons have an
energy related to their momentum by the equation E = pc. Similarly, highly relativistic
degenerate electrons will each have an energy

Erel ∼ (�p)c ∼ �n1/3
e

c, (18.25)

providing a total electron energy density

urel ≡ Erelne ∼ �cn4/3
e

. (18.26)

By analogy, once again, with photons, which have a radiation pressure P = u/3, we can
compute the pressure contributed by the highly relativistic degenerate electrons:

Prel = 1

3
urel ∼ �c

3
n4/3

e
. (18.27)

Note the different dependence on ne than that which held true for nonrelativistic elec-
trons, which had P ∝ n5/3

e
. The pressure in the relativistic case is less strongly dependent

on density.4

If the relativistic white dwarf is to remain in hydrostatic equilibrium (equation 18.3),
it must have

Pc ∼ G
M2

R4
. (18.28)

The pressure provided by the relativistic degenerate electrons is

Pc,rel ∼ �c

(
ρ

mp

)4/3

∼ �c

m
4/3
p

M4/3

R4
. (18.29)

Setting these two pressures equal, we find that a white dwarf supported by relativistic
degenerate electrons will be in equilibrium when

G
M2

R4
∼ �c

m
4/3
p

M4/3

R4
. (18.30)

4 In other words, the relativistic white dwarf isn’t as stiff; a stiff material is one in which a small change in
density produces a large change in pressure.
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Note that the factors of R−4 cancel on either side. This means that a relativistic white
dwarf is only in equilibrium for a specific mass,

M ∼
(

�
3c3

G3m4
p

)1/2

. (18.31)

But this is just the mass that we computed in equation (18.24) as the minimum mass re-
quired for the electrons to be relativistic! For any mass greater than this value, M ∼ 2M�,
the central pressure required for hydrostatic equilibrium is greater than the pressure that
relativistic degenerate electrons can supply, and the white dwarf collapses.

The maximum possible mass for a white dwarf, MCh ∼ 2M�, is called the Chan-
drasekhar mass, after the astrophysicist Subramanyan Chandrasekhar, who was the first
to calculate it. A more careful calculation of the Chandrasekhar mass for a carbon/oxygen
white dwarf yields

MCh = 1.4M�. (18.32)

Any star that can reduce its mass below the Chandrasekhar mass (generally by strong
stellar winds during a giant phase) will end as a white dwarf. It is estimated that
stars with M ≤ 7M� will be able to slim themselves down below the Chandrasekhar
mass. This calculation is uncertain, though, since mass loss during the giant phase is
irregular by nature and difficult to model. Stars with initial masses less than 0.5M�
will eventually become helium white dwarfs; stars with 0.5M� < M < 5M� initially
will leave behind carbon/oxygen white dwarfs; stars with 5M� < M < 7M� will leave
behind neon/magnesium white dwarfs.

18.2 NEUTRON STARS AND PULSARS

What happens to stars whose initial mass is greater than 7M�? There aren’t many stars
that massive, but they do exist. Very massive stars have short lives and die spectacularly,
leaving behind a badly crushed corpse. The main sequence lifetime of a massive star is
short:

τ ≈ 30 Myr

(
M

7M�

)−3

. (18.33)

Life after the main sequence, when the star becomes a supergiant, is even shorter. The
ultraluminous supergiant is relying on less efficient energy sources. Fusing hydrogen to
helium releases about 6.4 × 1014 J kg−1; thereafter, fusing helium all the way to iron
releases only 24% as much energy per kilogram. In its last moments as a star, a massive
supergiant has many concentric fusion layers over an iron core. A schematic diagram of
such a star is shown in Figure 18.3.

As we saw in Section 13.4, a supergiant star such as Betelgeuse can have a radius
> 1000R�; however, models of stellar evolution indicate that the dense central fusion
region of the supergiant has a radius < 1R�. The central iron core is very dense (thou-
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FIGURE 18.3 Fusion layers in a supergiant near the end of its life as a star.

sands of tons per cubic centimeter) and is supported by degenerate electron pressure.
The iron core continues to grow in size as the silicon-fusing shell eats its way outward
in the supergiant. When the iron core reaches the Chandrasekhar mass, it is no longer
adequately supported by the relativistic degenerate electrons, and it starts to collapse—
very rapidly. The collapse time tff at the high density of a degenerate core is less than
1/10 second.

As the density of the collapsing iron core rises, protons and free electrons start to
combine to form neutrons:

p + e− → n + νe. (18.34)

One side effect of the collapse is thus a huge burst of electron neutrinos (νe). A Chan-
drasekhar mass of iron contains ∼ 1057 protons, so ∼ 1057 neutrinos are created during
the collapse of the iron core. This burst of neutrinos escapes from the star, carrying away
a large amount of energy, about 1046 J. (For comparison, the Sun will radiate ∼ 1044 J
of energy during its main sequence lifetime.) The core is now a sphere of ∼ 2 × 1057

neutrons that are essentially in free fall. Can anything stop the headlong collapse of the
neutrons?

Yes! Core collapse can be stopped by neutron degeneracy pressure. Degenerate
nonrelativistic electrons have a pressure

Pe ∼ �
n5/3

e

me

. (18.35)

The Fermi exclusion principle applies to neutrons as well as to electrons. Degenerate
nonrelativistic neutrons thus have a pressure

Pn ∼ �
n5/3

n

mn

, (18.36)

where nn is the number density of neutrons and mn = 1839me is the mass of a neutron.
A sphere of neutrons supported by degenerate neutron pressure is called a neutron star.
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(It doesn’t satisfy our strict definition of a “star,” since a neutron star isn’t gaseous and
isn’t powered by fusion, but the name has stuck.)

A white dwarf—a sphere supported by electron degeneracy pressure—has a radius
(equation 18.15)

Rwd ∼ �
2

Gmem
2
p

(
M

mp

)−1/3

. (18.37)

By analogy, a neutron star—a sphere supported by neutron degeneracy pressure—should
have a radius

Rns ∼ �
2

Gmnm
2
p

(
M

mp

)−1/3

. (18.38)

A neutron star will thus be smaller than a white dwarf of comparable mass, by a ratio

Rns

Rwd
∼ me

mn

(
Mwd

Mns

)1/3

∼ 1

1839

(
Mwd

Mns

)1/3

. (18.39)

If a white dwarf with Mwd = 0.7M� has a radius Rwd = 0.01R�, then equation (18.39)
leads us to expect

Rns ∼ 3 km

(
Mns

1.4M�

)−1/3

. (18.40)

In truth, things are a little more complicated than we’ve been letting on. The density
within a neutron star is comparable to the density within an atomic nucleus. Thus,
the strong nuclear force between neutrons must be taken into account. Although the
strong nuclear force is attractive at distances d > 5 × 10−16 m (this attraction is what
keeps nuclei from flying apart), it is repulsive at shorter distances. Thus, the short-range
repulsion between neutrons stiffens the neutron star and keeps the neutrons from being
shoved arbitrarily close together.

For one plausible model of neutron star interiors, which takes the strong nuclear force
into account, the mass–radius relation is

Rns ≈ 11 km

(
Mns

1.4M�

)−1/3

. (18.41)

White dwarfs contain the mass of a star squashed into the volume of the Earth; neutron
stars contain the mass of a star squashed into the volume of a small asteroid. It is a
cliché for an astronomy text to show a neutron star juxtaposed with a city (Figure 18.4).
Nevertheless, there’s a reason why so many books include such a figure; it’s an effective
way of showing how tiny neutron stars are for their mass.

Understanding the structure of neutron stars is difficult for two reasons. Not only
must the strong nuclear force be taken into account, but also gravity must be treated
using general relativity rather than Newtonian gravity. The escape speed from a neutron
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FIGURE 18.4 Manhattan (a) compared with a neutron star (b).

star, using the Newtonian formula (equation 3.62), is

vesc =
(

2GMns

Rns

)1/2

≈ 2 × 108 m s−1

(
Mns

1.4M�

)2/3

. (18.42)

The escape speed from a neutron star is a significant fraction of the speed of light:

vesc/c ≈ 0.6

(
Mns

1.4M�

)2/3

. (18.43)

If we crave accuracy, we really should be using general relativity in the vicinity of a
neutron star, rather than classical Newtonian dynamics.

Since neutron stars are tiny, you might think they’d be difficult to detect in the vast
darkness of interstellar space. In fact, there’s more than one way to detect a neutron
star. When neutron stars are first formed, they have hot surfaces, with Tns ≈ 106 K ≈
170T�. The radius of the neutron star is small, with Rns ≈ 11 km ≈ 1.6 × 10−5R�. The
blackbody luminosity of the neutron star is then

Lns =
(

Rns

R�

)2 (
Tns

T�

)4

L� ≈ (1.6 × 10−5)2(170)4L� ≈ 0.2L�. (18.44)

A neutron star thus has a respectable luminosity. Its wavelength of maximum emission,
given Tns ≈ 106 K, is λp ≈ 30 Å, corresponding to a photon energy of E ∼ 400 eV in
the X-ray range of the spectrum. Thus, isolated neutron stars can be detected by X-ray
satellites. Figure 18.5 shows the spectrum of a relatively nearby neutron star (d ∼ 120 pc)
observed by the Chandra X-ray Observatory.

Neutron stars are capable of creating photons in ways other than simple blackbody
emission. Because angular momentum is conserved during core collapse, neutron stars
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FIGURE 18.5 X-ray spectrum of the neutron star RX J1856.5-3754. The
superimposed solid line represents the spectrum of a blackbody with kT = 63 eV.

rotate rapidly. Rotation speeds as great as v ∼ 0.1c are possible, with a corresponding
rotation period of

Pns ∼ 2πRns

0.1c
∼ 2 × 10−3 s. (18.45)

Because the magnetic flux threading through the core is also conserved during collapse,
neutron stars have strong magnetic fields. Compared to the magnetic field strength of
B� ≈ 10−4 Tesla at the Sun’s surface, a neutron star can have Bns ≈ 106 Tesla. Rapidly
rotating, highly magnetized neutron stars are pulsars. The name “pulsar” was given not
because they pulsate in and out like Cepheids (they don’t!) but because they produce
pulses of electromagnetic radiation as seen from Earth. Pulsars were first detected in
1967, during a radio survey of the sky. No one knew what they were at first.5 It was soon
realized, however, that they must be neutron stars. Some pulsars have periods as short
as a millisecond, but others have gradually spun down to periods of more than a second.

A neutron star has a surface gravitational acceleration of

gns = GMns

R2
ns

∼ 6 × 109g� ∼ 1.5 × 1012 m s−2. (18.46)

The atmosphere of the neutron star consists of ionized gas supported by ordinary thermal
pressure, with a scale height

Hns = kTns

gnsμmp

∼ 0.3 cm. (18.47)

5 The first pulsar discovered was given the half-joking name “LGM-1,” standing for Little Green Men.



18.2 Neutron Stars and Pulsars 421

Spin axis

Radiation beam

Magnetic field

FIGURE 18.6 “Lighthouse model” of a pulsar.

The rotating magnetic field of the neutron star creates a strong electric field. This
field is capable of ripping electrons and ions out of the neutron star’s atmosphere and
accelerating them along magnetic field lines, where they produce copious synchrotron
radiation. The synchrotron emission tends to be beamed along the two magnetic axes of
the neutron star (Figure 18.6). Since the magnetic axis isn’t aligned perfectly with the
rotation axis, the beams of synchrotron emission sweep around and around as the neutron
star rotates. Neutron stars whose beams of synchrotron emission happen to sweep across
the Earth’s location are labeled “pulsars” by Earthlings, since we detect periodic pulses
of synchrotron radiation from them. This is similar to the way in which we see pulses of
light from a lighthouse whenever its rotating beams of light sweep across our location.
There are about 500 pulsars known to us. However, since the synchrotron beams of
pulsars are fairly narrow, we expect the number of pulsars (as seen from Earth) to be
significantly smaller than the number of neutron stars.

Why are we sure that pulsars are rotating magnetized neutron stars? For one thing,
we don’t know of anything else that would produce strong pulses of light at such short
periods. If a pulsar were actually undergoing radial pulsations with a period P = 10−3 s,
its density would have to be (see Section 17.3)

〈ρ〉 ∼ 1

GP 2
∼ 1016 kg m−3, (18.48)

denser than any known white dwarf. If a pulsar were a rotating white dwarf, it would
have to rotate with a speed

v = 2πr

P
∼ 100c

(
M

0.7M�

)−1/3

. (18.49)
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A clinching piece of circumstantial evidence is that some pulsars are found within
supernova remnants. Both neutron stars and supernova remnants are created as the
consequence of core collapse in a massive star.

Let’s briefly review events during core collapse:

. The iron core of a massive star grows larger than the Chandrasekhar mass. No
longer supported by degenerate electron pressure, the core starts to collapse.

. Protons and electrons combine to form neutrons, and 1057 neutrinos are produced.
The collapsing neutron sphere is actually dense enough to be opaque to neutrinos,
so it takes them a while to work their way out in a random walk.

. The neutron sphere is compressed slightly beyond the point where degenerate
neutron pressure balances gravity, and bounces back.

. The “core bounce” sends a shock wave through the outer layers of the star. After 30
milliseconds or so, the amount of matter swept up by the shock wave is sufficient
to temporarily stall the shock’s outward motion.

. The neutrinos making their way out of the neutron star interact with the dense gas
in the shock wave, heating the gas and causing the shock wave to start moving
outward again.

. The outer layers are then ejected at high speed (up to ∼ 15,000 km s−1, or ∼
0.05c).

One interesting side effect of the shock wave is that it produces small amounts of
elements heavier than iron in the shock wave. (It takes energy to create these ultramassive
elements, but the supernova has energy to spare.) Another interesting side effect is that
the expanding gas becomes hot and emits lots of light.

The light emitted by the shock-heated gas is what we usually think of when we talk
about a supernova (discussed further in Section 18.4). However, photons carry only
a small amount of the energy associated with core collapse. Here’s a more complete
accounting:

. Neutrino energy ∼ 1046 J

. Kinetic energy of ejected gas ∼ 1044 J

. Photon energy ∼ 1042 J

This energy comes from the gravitational potential energy of the pre-collapse core. A
neutron star has gravitational potential energy

Uns ≈ −3

5

GM2
ns

Rns
≈ −3 × 1046 J. (18.50)

This is about 10% of the rest energy of a neutron star, Mnsc
2 ≈ 3 × 1047 J; thus, com-

pressing matter into a neutron star is a fairly efficient way of converting its mass into
energy.

At maximum luminosity, the supernova emits photons with a luminosity Lsn ∼
109L�. However, the supernova decreases in luminosity by a factor of 100 over a
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FIGURE 18.7 Wall painting in Chaco Canyon, New Mexico, thought to depict
the 1054 supernova next to the crescent Moon.

few months; supernovae are bright but brief-lived phenomena. An interesting tidbit of
information is that the nearest star with M > 7M� is Betelgeuse, at d ≈ 130 pc. When
it becomes a supernova (any millennium, now!), its flux as seen from Earth will be
comparable to that of the full Moon. There haven’t been any Betelgeuse-scale supernovae
during recorded history, but there have been some comparable in flux to Venus. On AD
1054 July 5 (in the Julian calendar), a supernova appeared in the constellation Taurus.
Chinese astronomical records report that the “guest star” had a flux corresponding to
m ∼ −4 in the system of Hipparchus. The supernova was also commemorated in an
Anasazi wall painting (Figure 18.7).

Today, nearly 1000 years later, when we turn our telescopes to the position recorded
by the Chinese astronomers, we see the Crab Nebula, a supernova remnant (Color
Figure 18). The Crab Nebula is 1.5 pc in radius, and its expansion speed, measured
from Doppler shifts, is 1500 km s−1. A little calculation soon shows that 1.5 pc ≈
(1500 km s−1)(1000 yr). The Crab Nebula shows all the signs of being the expand-
ing cloud of debris from an explosion about 1000 years earlier. In the center of the Crab
Nebula is a pulsar. The Crab pulsar has a period of 33 milliseconds and is seen to pulsate
at radio, visible, X-ray, and gamma-ray wavelengths.6 The pulsar is in the Crab Nebula,
just where you’d expect the neutron star; it’s a classic “smoking gun” piece of evidence.

18.3 BLACK HOLES

Neutron stars are not the ultimate in compression for stellar remnants. There exists an
upper limit to neutron star masses, the Oppenheimer–Volkov limit, that is analogous
to the Chandrasekhar mass for white dwarfs. The upper mass limit for neutron stars is

6 Curiously, astronomers had been observing the pulsar for years at visible wavelengths without noticing the
strobe effect—the pulses were too fast.
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difficult to calculate, because the strong nuclear force must be taken into account and
gravity must be treated using general relativity. Although there is still some debate among
neutron star mavens, an upper mass limit of

Mmax ≈ 3M� (18.51)

for neutron stars is generally accepted. Stars with initial mass M > 18M� or so will leave
behind remnants with M > Mmax. These ultramassive, ultraluminous, short-lived stars
will leave behind black holes as their remnants.

A black hole can be defined, quite simply, as an object whose escape speed is greater
than the speed of light. For a spherical body,

vesc =
(

2GM

r

)1/2

, (18.52)

so vesc = c when a body of mass M has a radius

r = 2GM

c2
≡ rSch. (18.53)

The critical radius at which a mass M has an escape speed equal to the speed of light is
called the Schwarzschild radius, rSch, after the physicist Karl Schwarzschild, who first
calculated it in a relativistically correct manner. (In general, you don’t expect Newtonian
calculations to give the correct results in the highly relativistic regime. In the case of
computing the Schwarzschild radius, however, it works out correctly.)

Any object will become a black hole if you squeeze it until it is smaller than its
Schwarzschild radius. An astronomer with M ≈ 70 kg will become a black hole if
he/she is squeezed to a radius rSch ≈ 10−25 m. While it’s not practical (nor in most cases
desirable) to squeeze an astronomer to this submicroscopic size, it is practical to squeeze
an extremely massive star down to its Schwarzschild radius. Just let gravity do the work.
For a massive stellar remnant,

rSch = 2GM

c2
= 3 km

(
M

M�

)
. (18.54)

Every black hole is surrounded by an event horizon: a spherical surface whose circum-
ference is equal to 2π times the Schwarzschild radius. It is possible to enter the event
horizon, but it is not possible to emerge again. Nothing, not even light, travels fast enough
to escape from inside the event horizon.

General relativity predicts the existence of singularities within event horizons. A
singularity is a point of infinite density and infinite spacetime curvature. However, to
test the predictions of general relativity, and see whether singularities really exist, you’d
have to enter the event horizon of a black hole. Presumably, once there, you’d be able to
discover the answer, but you wouldn’t be able to communicate your results to the outside
world. It would be the ultimate scientific tragedy: having a great result but being unable
to publish it.

Lurid sci-fi movies sometimes regard black holes as dangerous “vacuum cleaners,”
sucking up everything within reach. In fact, when you are far outside the Schwarzschild
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radius of a black hole, its gravitational pull is just the same as you’d feel from any other
object of the same mass. What makes black holes potentially dangerous is their extremely
compact nature; as you approach the central singularity of a black hole, you feel stronger
and stronger tidal forces, until you are eventually ripped apart. If you want to spare your
friends and relatives the gory sight of your demise, you should take care to dive toward a
high-mass black hole rather than a low-mass black hole. For a low-mass black hole, you
will be ripped apart before entering the event horizon; for a high-mass black hole, you
will be ripped apart after entering the event horizon. To see why this is so, let’s review
what happens as you drop (feet first) toward a black hole.

The tidal force pulling you apart will be, from Section 4.2,

�F ≈ GMm

r3

. (18.55)

Here m is your mass and 
 is your height; if you’re an average sort of person, m ∼ 70 kg
and 
 ∼ 1.8 m, respectively. The black hole’s mass is M , and your distance from the
black hole is r . You will be torn apart when the tidal force reaches a critical value Frip.
The classic studies of M. Python reveal that the force exerted by a 16-ton weight is
adequate to crush a human being.7 Since the human body is about as strong in extension
as in compression, let’s take Frip = 16 tons = 32,000 lb = 1.4 × 105 N. Thus, the radius
at which you’ll be ripped apart is

rrip =
(

GMm


Frip

)1/3

≈ 480 km

(
M

1M�

)1/3

. (18.56)

Since the Schwarzschild radius of a black hole is

rSch = 3 km

(
M

1M�

)
, (18.57)

the ratio of the “ripping radius” to the Schwarzschild radius is

rrip

rSch
≈ 160

(
M

1M�

)−2/3

. (18.58)

You will be ripped apart exactly at the Schwarzschild radius when M ≈ 2000M�. For
lower-mass black holes, rrip > rSch, so you will be torn apart before having a chance to
reach the event horizon. If you want to see what life is like inside an event horizon, be
sure to choose a black hole with M � 2000M�. (You can curl yourself into a sphere to
decrease 
, but this delays your tidal disruption by only a small amount.)

7 See, for example, Monty Python’s Flying Circus, Season 1, Episode 4, “Self-defence Against Men Armed
with Fruit” sketch. If more recent experiments on the compressional strength of the human body have been
performed, the authors would greatly appreciate not hearing about them.
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FIGURE 18.8 Artist’s impression of a black hole accreting gas from a stellar
companion.

If you want to dive into a black hole, you must first find a black hole. This can be
difficult, since (after all) a black hole is black.8 We can, however, detect black holes
indirectly, by their gravitational effects on nearby matter. Consider, for instance, a black
hole that is in a binary system with a normal star (Figure 18.8). If the normal star, as it
evolves, swells until it is larger than its Roche limit (see Section 4.3.1), the tidal force
exerted by the black hole will be great enough to strip away the outer layers of the star.
The stripped gas, as it falls toward the black hole, will be compressed and heated to
∼ 106 K or so. Since the falling gas will have some angular momentum, it will generally
form an accretion disk around the black hole, as shown in Figure 18.8. The disk of hot
gas will be detectable from the X-rays it emits.

One strong candidate for a binary system including a black hole is the X-ray source
V404 Cygni. At visible wavelengths, V404 Cygni is a spectroscopic binary, with a
relatively cool subgiant (spectral type K0 IV) orbiting a dark massive companion with
a period of P = 6.47 days. If we are looking at the orbit of the subgiant edge-on, the
orbital speed we deduce from its periodically varying Doppler shift is vc = 209 km s−1.
The minimum possible mass for the dark massive companion, given these observed
parameters, is Mbh = 6.1M�, far higher than the maximum permissible mass for a
neutron star. A more detailed model of the V404 Cygni system assigns a mass of
Mbh = 10M� to the black hole and of Mstar = 0.6M� to the subgiant star.

18.4 NOVAE AND SUPERNOVAE

On the evening of 1572 November 11, Tycho Brahe was contemplating the night sky
when he saw what he thought was a new star in the constellation Cassiopeia. Since this

8 The quantum effect known as Hawking radiation, which causes particles and antiparticles to be emitted from
the region near the event horizon, is significant only for small black hole masses. A black hole with M = 3M�
has a luminosity in Hawking radiation of only L = 3 × 10−22 W.
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(a) (b)

FIGURE 18.9 Nova V1500 Cygni, during its outburst (a) and after its outburst
(b), when it had dimmed to mv ∼ 15.

was a blow to the Aristotelian dogma that no new stars can appear in the heavens, Tycho
rushed into print with his new work De Nova Stella (“On the New Star”).9 Following
the lead of Tycho, astronomers applied the term “nova” to unresolved celestial objects
whose flux increases by a large amount over a short period of time, giving the impression
of a new star appearing in the sky.

When a nova produces an outburst of light, its luminosity can briefly increase by a
very large factor. For example, consider the nova V1500 Cygni, seen in the year 1975
(Figure 18.9). Before its outburst, V1500 Cygni was an inconspicuous object, with
mV ≈ 20. At the peak of its outburst, it had mV ≈ 2, making it the second brightest
source in Cygnus, after the star Deneb. At maximum, therefore, the flux of V1500 Cygni
had increased by a factor 100.4(20−2) ≈ 2 × 106. The sharp rise to maximum flux was
followed by a gradual decline over the course of months.

The modern definition of nova states that a nova is a type of cataclysmic variable
(as opposed to a pulsating variable like a Cepheid) in which a normal star dumps gas
onto a white dwarf. Thus, a nova is actually a close binary system in which a star and a
white dwarf orbit their mutual center of mass. Tossing material onto a compact object
such as a white dwarf or neutron star is an excellent way to convert gravitational potential
energy into thermal energy, and then into photons. However, we still need to explain why
pouring gas onto a white dwarf produces sudden cataclysmic outbursts of light, rather
than a steady glow.

Let’s look at what happens when a star expands past its Roche limit and pours gaseous
hydrogen onto its close companion, a white dwarf. (The outer layers of a star are actually

9 More fully, De Nova et Nullius Aevi Memoria Prius Visa Stella, or “On the New and Never Previously Seen
Star.”
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a mix of hydrogen and helium, with a smattering of heavier elements. For simplicity,
though, let’s assume it’s pure hydrogen). Because the surface gravity of the white dwarf
is high, the hydrogen is flattened into a layer with a short scale height (equation 18.19):

H = kT

gμmp

∼ 0.4 km

(
T

105 K

) (
Mwd

0.7M�

)−5/3

. (18.59)

As hydrogen is poured on, as long as the atmospheric temperature T is roughly constant,
the scale height H remains the same. Thus, as more and more hydrogen is poured into a
layer of constant scale height, the density at the base increases steadily, until it reaches
the point where the electrons become degenerate.

As the hydrogen relentlessly continues to pile on, the pressure and density at the
base of the degenerate hydrogen layer must continue to increase to maintain hydrostatic
equilibrium. When the density is sufficiently high, fusion of hydrogen to helium (via the
proton–proton chain) begins with a “hydrogen flash,” analogous to the helium flash with
which solar-mass stars begin helium fusion. The material on the white dwarf’s surface
becomes, in effect, a hydrogen fusion bomb. A bright nova is observed to release as much
as Enova ≈ 1038 J of energy.

The energy released by fusing hydrogen to helium is

ε = 6.4 × 1014 J kg−1. (18.60)

Thus, a bright nova requires a mass of hydrogen equal to

MH = Enova

ε
≈ 1038 J

6.4 × 1014 J kg−1
≈ 1023 kg. (18.61)

This is roughly the mass of the Moon, to give a comparison. The energy released by the
fusion of degenerate hydrogen is sufficient to blow the outer layers of nondegenerate
hydrogen into space. The nova GK Persei, for instance, had a major outburst in 1901
February; a century later, it was surrounded by an expanding gaseous nebula (Figure
18.10). Measurement of Doppler shifts tells us that the gas is expanding with a speed
v ≈ 1200 km s−1.

Since the white dwarf itself is unharmed by the nova explosion, novae tend to be
recurrent phenomena; the more energetic the outburst, the longer the time until the
next outburst. Dwarf novae have an interval between outbursts of 3 weeks to 2 years.
Recurrent novae have an outburst every few decades. Bright novae, like V1500 Cygni,
are probably recurrent phenomena as well, with outbursts every thousand to million
years.

Novae are energetic events; the brightest nova outburst can produce as much light
in a week as the Sun does in 10,000 years. However, novae pale in comparison with
supernovae, which have absolute magnitudes that are at least 7 magnitudes brighter
than the brightest novae. The term “super-nova” (the hyphen has since vanished) was
first proposed by Fritz Zwicky and Walter Baade in 1934, when they suggested that
outbursts of light much brighter than ordinary novae would be produced when the core of
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FIGURE 18.10 Expanding nebula around the nova GK Persei.

a massive star collapsed to form a neutron star.10 Astronomers, once they acknowledged
the existence of these extraordinarily luminous supernovae, classified them according
to their spectra. Simply enough, they distinguished between “type I” and “type II”
supernovae:

. Type I supernovae do not show hydrogen absorption lines, such as the Balmer
lines, in their spectra.

. Type II supernovae do show hydrogen absorption lines.

It turned out that type II supernovae are the “core-collapse” supernovae we discussed
in Section 18.2 when talking about the creation of neutron stars. They have hydrogen
absorption lines because the outer layers of a massive star are typically rich in hydrogen;
fusion destroys hydrogen only in the deeper, hotter layers.

Astronomers had difficulty understanding type I supernovae until they made a further
subdivision into “type Ia” and “type Ib”:

. Type Ia supernovae have neither hydrogen lines nor helium lines. After they
decline from their maximum luminosity, the strongest absorption lines are of iron.

. Type Ib supernovae have strong helium lines and no hydrogen lines.

Type Ib supernovae (aside from their lack of hydrogen absorption lines) are very sim-
ilar to type II supernovae. It is thought that type Ib supernovae are massive stars that

10 Zwicky and Baade also coined the term “neutron star.”
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completely lost their hydrogen-rich outer layers in a strong stellar wind and then under-
went core collapse. The difference between type Ib and type II supernovae is (literally)
superficial; they have the same physics at heart.

A type Ia supernova is something completely different. They produce ∼ 1044 J of
energy without detectable hydrogen or helium present and end up as a cloud of hot
gaseous iron. To see how a type Ia supernova could be created, consider a white dwarf
made of carbon that is just barely below the Chandrasekhar mass. Additional material
from a companion star is then poured onto the white dwarf. As the last straw is placed
on the camel’s back (or less figuratively, as the last hydrogen atom is placed on the white
dwarf ), the white dwarf is nudged over the Chandrasekhar mass and starts to collapse.
The density increases until runaway fusion of carbon begins. (Think of it as a “carbon
flash.”) The entire white dwarf—all 1.4M� of it—becomes a fusion bomb. Suppose the
initial mass of carbon is

MC = 1.4M� = 2.8 × 1030 kg. (18.62)

The energy released by fusing carbon into iron is

ε = 1.0 × 1014 J kg−1. (18.63)

This is only 16% as much energy per kilogram as you get by fusing hydrogen into helium,
but it’s still a substantial energy release. The total energy released by fusing the white
dwarf into iron is

E = εMC = 2.8 × 1044 J. (18.64)

This is larger than the magnitude of the white dwarf’s gravitational potential energy
before the collapse. Thus, the entire white dwarf is blown to smithereens, and 1.4M� of
iron is mixed into the interstellar medium. Type Ia supernovae are a major source of iron
in our galaxy. They don’t produce detectable amounts of elements more massive than
iron; these all come from core-collapse supernovae (types Ib and II).11

Tycho’s “nova stella” of 1572 turns out to have been a supernova, according to our
current scheme of nomenclature. When we turn our telescopes toward Cassiopeia, we
see a supernova remnant at the position recorded by Tycho. The spectrum of Tycho’s
Supernova Remnant is rich in iron; there is no evidence for a pulsar or a central dense
object of any kind. The evidence indicates that Tycho’s “nova stella” was a type Ia
supernova.

A brief summary of novae and supernovae:

. Nova: Energy source = fusion of H to He on the surface of a white dwarf. Energy
≤ 1038 J.

. Type Ia supernova: Energy source = fusion of C (and O) to Fe. Energy ≈ 1044 J.

. Type II (or Ib) supernova: Energy source = gravitational potential energy. Energy
≈ 1046 J, including neutrinos.

11 There are alternate schemes proposed for inching a white dwarf over its Chandrasekhar mass, including the
method of merging two white dwarfs.
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The photon luminosity is actually slightly greater for type Ia supernovae than for
type II supernovae. For type Ia supernovae, Lmax ≈ 4 × 109L� in the V band. Super-
novae are rare events: about one per century in our galaxy, with type II supernovae slightly
more common than type Ia. Unfortunately, supernovae within our galaxy are often hid-
den from us by dust. The most recent “naked eye” supernova was Supernova 1987a, in
the Large Magellanic Cloud.

PROBLEMS

18.1 What would be the rotation period of the Sun if it collapsed to a radius R = 6000 km
without losing angular momentum?

18.2 What is the radius of a 1.5M� neutron star, expressed as a fraction of its Schwarzschild
radius?

18.3 A star reaches “break-up” speed when it rotates so rapidly that the centrifugal
acceleration at its equator equals the surface gravity g. Estimate the rotation period
of a white dwarf rotating at break-up speed. (You may ignore any deformations of
the white dwarf from a spherical shape.)

18.4 What is the mean density of a 1.5M� neutron star? A carbon nucleus has a radius
r ≈ 3 × 10−15 m; what is its density? What is the ratio of the two densities?

18.5 Suppose that a supernova explosion results in the outer 4M� of the dying star being
ejected at a speed v = 5000 km s−1.

(a) What is the kinetic energy of the expanding ejecta?
(b) The ejecta are slowed by sweeping up the local interstellar gas. Assuming the

density of the interstellar gas is ρ = 2 × 10−19 kg m−3, how large a volume will
be swept up by the time the outflow velocity has decreased to 10 km s−1? (Hint:
you may assume that the kinetic energy of expansion is conserved.)

18.6 Photons leaving the surface of a compact stellar remnant are gravitationally redshifted
by an amount

�ν

ν0
≈ − rSch

2r
,

where rSch is the Schwarzschild radius of the remnant and r is its actual radius.
Calculate the gravitational redshift, in angstroms, for the Hβ λ4861 line of hydrogen
from a 1M� white dwarf. How can we distinguish this gravitational redshift from a
possible Doppler shift due to the motion of the white dwarf?

18.7 On a plot of log T versus log ρ, where T is temperature and ρ is mass density, plot
the line along which the thermal pressure of an ideal gas is equal to the pressure
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provided by nonrelativistic degenerate electrons. (You may assume that all factors of
order unity, including the mean molecular mass μ, are exactly equal to one.) Label
the “degenerate” and “nondegenerate” regimes. Which regime does the center of the
planet Jupiter (ρ ≈ 3000 kg m−3, T ≈ 40,000 K) fall into?

18.8 The speed of sound can generally be written as

cs =
(

γ
P

ρ

)1/2

,

where P is the pressure, ρ is the mass density, and γ is the adiabatic index (a number
of order unity). Show that within a white dwarf, the typical sound speed is

cs ∼
(

G2mem
3
p

�2

)1/2 (
M

mp

)2/3

and the sound crossing time is

t ∼ R
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∼ �
3
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e
m2

p

(
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mp

)1/2
1

M
.

What is the shortest possible sound crossing time for a white dwarf? How does this
timescale compare to the shortest known pulsar periods?



19 Our Galaxy

Our study of stars began with a definition of the word “star.” A sense of symmetry
compels us to begin our study of galaxies with a definition of the word “galaxy.” A galaxy
is a collection of stars (between a million and a trillion of them, in round numbers), plus
gas, dust, and dark matter, held together by gravity. A galaxy is bigger than a star cluster,
such as the Pleiades, and smaller than a cluster of galaxies, such as the Virgo Cluster.
Although there are hundreds of billions of galaxies within the volume accessible to our
telescopes, we will start by looking in depth at the galaxy in which we live: the Milky
Way Galaxy.

19.1 OVERVIEW: MORPHOLOGY OF OUR GALAXY

On a dark night, far from city lights, you can see a luminous band of light across the
sky, forming a great circle1 on the celestial sphere (Figure 19.1). In English, this band of
light is called the Milky Way because it looks, to the naked eye, like a luminous white
fluid. In ancient Greece, it was called the galaktikos kuklos, which translates literally as
“milky circle.” The Greek word galaktikos is the origin of the English word “galaxy.”

Although the Milky Way looks as if someone spilled glow-in-the-dark milk across the
celestial sphere, when Galileo examined it with his telescope, he found that it is actually
composed of a very large number of stars, each individually very faint (see Section 2.4).
A hypothesis that explains the existence of the Milky Way is that the Sun is embedded in
a relatively thin disk of stars. When we look perpendicular to the disk, we see few stars,
and the sky is dark. When we look in the plane of the disk, we see the many stars that
make up the Milky Way. This disk of stars is a major component of the galaxy in which
we live, which is therefore called the Milky Way Galaxy. It is also called the Galaxy
(with a capital “G”), or if we’re feeling particularly possessive, our galaxy.

The first method used to determine the size and shape of our galaxy was the method
of star counts. To demonstrate how star counts work, let’s start with some simplifying
assumptions:

1 The Milky Way is tilted by 60.2◦ relative to the ecliptic, and by 62.6◦ relative to the celestial equator.

433
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FIGURE 19.1 The Milky Way seen from Mount Graham, Arizona.

. All stars have the same absolute magnitude M . This is not true in general, but we
can choose to look only at main sequence stars of a particular spectral type.

. The number density of stars, n, is constant within our galaxy.

. There is no absorption due to dust. (This is perhaps our most dubious assumption.)

A star of absolute magnitude M will have an apparent magnitude m when it is at a distance

d = 100.2(m−M+5) pc. (19.1)

Every star closer than a distance d will be brighter than m. Thus, the total number of
stars brighter than m will be

N(< m) = 4π

3
d3n = 4π

3
100.6(m−M+5)n, (19.2)

or, taking the logarithm,

log10 N = 0.6m + constant. (19.3)

By going 1 magnitude fainter, you should increase the number of stars you see in a given
patch of sky by a factor 100.6 ≈ 4.

If the Galaxy were infinitely large, then as we counted stars as a function of their
apparent magnitude, we would find that log N just kept increasing to arbitrarily large
values of m. However, if there are no stars beyond a distance dmax, then there will be no
stars fainter than mmax, where

mmax = M + 5 log dmax − 5. (19.4)

Thus, if we find mmax for a particular patch of sky, we can find
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FIGURE 19.2 A cross-section through the Herschel’s “grindstone” model of our
galaxy. The large star slightly to right of center marks the Sun’s position.

dmax = 100.2(mmax−M+5) pc (19.5)

in that direction. For example, suppose you are counting G0V stars in a particular small
patch of sky. G0 main sequence stars have Mv = 4.4. The faintest G0V stars that you
can find have mv,max = 16.4. Thus, you compute that the most distant stars in the patch
are at a distance

dmax = 100.2(16.4−4.4+5) pc = 103.4 pc = 2500 pc, (19.6)

if you ignore the effects of dust.
The pioneers in using star counts to determine the shape of our galaxy were William

and Caroline Herschel, the great sibling act of astronomy. In the late eighteenth century,
they did star counts in various regions of the sky and came to the conclusion that
our galaxy is shaped like a grindstone (Figure 19.2). (For those of you who haven’t
recently sharpened any knives the old-fashioned way, a grindstone is a thick disk made
of coarse, abrasive stone.) Unfortunately, the Herschels were unaware of the existence
of interstellar dust and didn’t take into account extinction by dust. As a result, they came
to the erroneous conclusion that we are near the center of a relatively small galaxy. The
“notch” in the grindstone, shown on the left side of Figure 19.2, is actually the result of
a dust lane down the center of the Milky Way.

A more accurate determination of our place in the Milky Way Galaxy was provided by
Harlow Shapley in the early twentieth century. Shapley did it by looking away from the
dust-laden Milky Way and examining the distribution of globular clusters. A globular
cluster is a compact cluster of stars, containing as many as ∼ 106 stars within a spherical
region ∼ 30 pc in diameter. The Hertzsprung–Russel (H–R) diagrams of globular clusters
show an absence of hot main sequence stars, indicating that there are no young stars
present. Typical ages estimated for globular clusters are ∼ 12 Gyr. Our galaxy has
about 150 globular clusters associated with it. The nearest globular cluster is M4, about
∼ 2 kpc away from us (Figure 19.3); the most distant of our galaxy’s globular clusters is
∼ 100 kpc away. Shapley noted that the globular clusters are not uniformly distributed
across the sky. Instead, they are concentrated in one-half of the celestial sphere, centered
on the constellation Sagittarius.
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FIGURE 19.3 The globular cluster M4.

Shapley concluded that the globular clusters are all orbiting the center of our galaxy,
which lies in the direction of Sagittarius. In addition, he measured the distances to
globular clusters, using RR Lyrae variable stars (which all have MV ≈ 0.5) as standard
candles. Shapley’s distances were, as it turns out, too large; he thought that RR Lyrae
stars were more luminous than they actually are. However, he had the right order of
magnitude. Modern distance measurements tell us that the distance to the Galactic center
is R0 = 8 ± 1 kpc, or about 26,000 light years.

Shapley’s discovery that we are not at the center of our galaxy has been called an
extension of the Copernican Revolution. Copernicus said that Earth is not at the center
of the solar system. Shapley said that the solar system is not at the center of the Galaxy.
(And before you ask, the Galaxy is not at the center of the universe. In fact, as far as we
can tell, the universe doesn’t have a center.)

In describing the shape of our galaxy, it is useful to break it down into three different
components. The most luminous component of our galaxy is the disk. Defining the size
of the disk is a bit tricky, since it doesn’t have sharp edges. However, stars can be seen
out to R ∼ 15 kpc from the Galactic center; this places the Sun roughly halfway from
the Galactic center to the edge of the visible disk. However, the disk of the Galaxy,
when viewed in the 21 cm emission of atomic hydrogen, stretches farther, to R ∼ 25 kpc
from the Galactic center. The thickness of the disk is small compared to its radius.
The vast majority of disk stars are less than 0.5 kpc from the midplane of the disk.
A study of stellar properties as a function of z, the distance from the midplane, reveals
that the disk can be divided into two components: a thin disk, containing stars of all
ages (including stars that are just now forming), and a thick disk, made of stars older
than t ∼ 5 Gyr. In the vicinity of the Sun, the distribution of stars in both the thin disk
and the thick disk falls exponentially with distance z from the midplane. For the thin
disk, n(z) = nthin exp(−|z|/hthin), with a scale height hthin ≈ 0.3 kpc. For the thick disk,
n(z) = nthick exp(−|z|/hthick), with hthick ≈ 1 kpc. In the midplane, nthin ≈ 10nthick.

The second component of our galaxy is the bulge. If you look at the Milky Way at
infrared wavelengths, to minimize the effects of dust, you see a bulge in the direction of



19.1 Overview: Morphology of Our Galaxy 437

Sagittarius, near the Galactic center (Color Figure 19). The central bulge of our galaxy
is about 1 kpc in radius, so you can see it stick out “above” and “below” the disk. At the
very center of the bulge, there is a tiny nucleus, bright at radio wavelengths.

The third component of our galaxy is the halo. The halo is a roughly spherical
distribution of stars, about 100 kpc in radius; thus, it extends far beyond the disk.
The halo has the same luminosity as the bulge, but its stars are spread over a volume
∼ (100)3 ∼ 106 times larger. The three stellar components of our galaxy—disk, bulge,
and halo—differ in their stellar populations as well as in their size, shape, and kinematic
properties. The thin disk contains relatively young stars, for the most part, and is where
most star formation is occurring today. Thin disk stars tend to be rich in “metals,” with
a mass fraction in metals of Z ≥ 0.01. In the jargon of astronomers, stars that are young
and metal-rich are called population I stars. By contrast, the halo contains stars that
are relatively old and low in metals (Z ≤ 0.001). The astronomical term for old, metal-
poor stars is population II stars. The thick disk contains stars that are intermediate in
their properties between population I and population II; thus, it is described as having an
“intermediate population” of stars. The bulge contains a mixture of old and young stars,
so it is a place where population I and population II coexist.2

Making a complete census of the stars in our galaxy is difficult because of all the dust.
However, an estimate of the luminosity of different components can be made:

. Disk: LB = 19 × 109L�

. Bulge: LB = 2 × 109L�

. Halo: LB = 2 × 109L�

. Grand Total: LB = 23 × 109L�

Our galaxy’s total luminosity of 23 billion solar luminosities is fairly bright, as galaxies
go. If all the stars in the Milky Way Galaxy were identical to the Sun, then we’d conclude
that our galaxy contains 23 billion stars. However, most stars are dim little M dwarfs
that contribute little to the total luminosity (particularly in the B band). The best current
estimate is that our galaxy contains 200 billion stars.

If you could view the Milky Way Galaxy from outside, oriented so that the disk were
edge-on, it would probably look like the galaxy NGC 891 (Figure 19.4). Notice the
prominent dustlane running down the middle of the galaxy. It is generally true, for disk-
dominated galaxies like the Milky Way and NGC 891, that the gas and dust is confined
to a much thinner disk than the stars.

If you could view the Milky Way Galaxy oriented so that the disk were face-on, it
would probably look like the galaxy M83 (Figure 19.5). In this orientation, you can
clearly see the most striking feature of galaxies similar to the Milky Way Galaxy; their
spiral arms. Disk-dominated galaxies like M83 and the Milky Way Galaxy are thus

2 Exasperating fact of the day: core collapse supernovae occur in massive, short-lived (and thus, of necessity,
young) stars. This means that type II supernovae occur among population I stars. This is the sort of jargon
confusion that prompts astronomers to clutch at their hair in despair.
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FIGURE 19.4 NGC 891 (d = 9.8 Mpc), shown in the Large Binocular Telescope
“first light” image.

FIGURE 19.5 The spiral galaxy M83 (d = 4.5 Mpc).

referred to as spiral galaxies.3 Images taken at radio wavelengths indicate that the atomic
and molecular gas tend to be concentrated along spiral arms, with lower-density ionized
gas filling in the regions between arms. Images taken at ultraviolet and blue wavelengths
indicate that the luminous, hot, and short-lived O and B stars also tend to lie along spiral
arms. Thus, spiral arms are star-forming factories; they are where dense molecular clouds
are converted into stars. The Sun is located in a short stub of a spiral arm, usually called

3 The edge-on galaxy NGC 891 is part of the “spiral galaxy” class as well; we just can’t see its spiral arms
because it is edge-on with respect to us.
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FIGURE 19.6 Artist’s impression of spiral arms in our galaxy, along with its
central bar.

the Orion Spur, nestled inside the Perseus Arm (Figure 19.6). The Orion Nebula, the
local hotbed of star formation, is situated within the Orion Spur.

19.2 OVERVIEW: KINEMATICS AND DYNAMICS OF OUR GALAXY

An image of a spiral galaxy, like that of Figure 19.5, looks very dynamic, like a snapshot
of a hurricane. In fact, if we were to see the Galaxy from the viewpoint of Figure 19.6,
we would see the stars of the disk moving in a clockwise direction. That is, the disk
is rotating such that the spiral arms are trailing. Stars in the disk are on nearly circular
orbits, close to the midplane of the disk, all orbiting in the same direction around the
center of the Galaxy. By contrast, stars in the halo are on elongated orbits, at random
orientations relative to the disk, with some moving in the same sense as the disk stars and
others moving in the opposite sense. (On much different length scales, the disk of our
galaxy can be compared to the planets in the solar system, while the halo of our galaxy
can be compared to the Oort Cloud.)
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The Sun’s orbital speed4 around the Galactic center is estimated to be

v0 = 220 km s−1 = 225 kpc Gyr−1. (19.7)

Later on, we’ll discuss how the orbital speeds of the Sun and other stars are actually
determined. For now, let’s just consider the implications of this orbital motion. The
distance of the Sun from the Galactic center is

R0 = 8 kpc. (19.8)

If we make the approximation that the Sun is on a perfectly circular orbit, we find that
its orbital period is

P0 = 2πR0

v0
= 50.3 kpc

225 kpc Gyr−1
= 0.22 Gyr. (19.9)

During the Sun’s 4.6 Gyr lifetime, it has gone around the Galactic center just over 20
times.5

To find out how much mass is inside the Sun’s orbit, we may use Kepler’s third law:

M� + MG = a3

P 2
, (19.10)

where MG is the mass (measured in solar masses) inside a sphere of radius R0 = 8 kpc
centered on the Galactic center; a = 8 kpc = 1.65 × 109 AU; and P = 2.2 × 108 yr.
Strictly speaking, it must be confessed, we can only use Kepler’s third law if the two
bodies involved are spherical. Since the matter distribution of our galaxy is flattened, the
mass MG computed from equation (19.10) will be slightly inaccurate. Still, it will be
good enough for a first estimate. Since the mass of the Galaxy is much greater than the
mass of just one star, we may assume MG � M� and

MG ≈ a3

P 2
≈ (1.65 × 109)3

(2.2 × 108)2
M� ≈ 9.3 × 1010M�. (19.11)

Ninety-three billion solar masses is a lot of matter, especially when you consider that
the total luminosity of our galaxy is merely 23 billion solar luminosities. The material
of which our galaxy is made must have, on average, a higher mass-to-light ratio than the
Sun. Moreover, the mass MG = 9.3 × 1010M� contains only the mass inside the Sun’s
orbit. The mass outside the Sun’s orbit has no net effect on the Sun’s orbital motion
(assuming that it’s spherically distributed).

For stars and gas in the disk of our galaxy to be on stable circular orbits, we require

v(R)2

R
= GM(R)

R2
, (19.12)

4 Note the useful coincidence that 1 km s−1 ≈ 1 pc Myr−1 ≈ 1 kpc Gyr−1.
5 In some sense, the Sun is no longer a teenager.
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FIGURE 19.7 Rotation of our galaxy compared to a Keplerian system.

where v(R) is the orbital speed of a star on an orbit of radius R, and M(R) is the mass
inside a sphere of radius R centered on the Galactic center. We can thus determine the
mass M inside a star’s orbit from its orbital speed v:

M(R) = v(R)2R

G
. (19.13)

Most of the Galaxy’s luminosity is provided by the disk, whose brightness falls off
exponentially with a scale length Rs ≈ 3 kpc. Thus, most of the Galaxy’s luminosity
lies inside the Sun’s orbit. If most of the mass lies inside the Sun’s orbit as well, we
would expect M ≈ constant for R > R0, and hence6 v ∝ R−1/2.

Observations of stars and gas clouds in our galaxy reveal that the orbital speed v in
the disk does not fall off with distance from the center (Figure 19.7). Instead, all the way
to the outer fringes of the disk, the orbital speed is constant, or even slowly rising with
radius. Thus, there is more mass outside the Sun’s radius than inside. If we estimate from
Figure 19.7 that v = 270 km s−1 at R = 2R0 = 16 kpc, we find that the mass inside that
radius is

M(2R0) ≈ (2.7 × 105 m s−1)2(4.94 × 1020 m)

6.67 × 10−11 m3 s−2 kg−1
(19.14)

≈ 5.4 × 1041 kg ≈ 2.7 × 1011M�. (19.15)

6 A system that has v ∝ R−1/2 is called a Keplerian system, because it obeys Kepler’s third law. The solar
system is a Keplerian system since nearly all its mass is concentrated in the Sun.
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Since v is roughly constant outside the Sun’s orbital radius, the mass must increase as
M ∝ R, implying an average mass density ρ ∝ R−2 in a region where the luminosity
density is plummeting exponentially.

The leading explanation is that there must be dark matter in the outer regions of
our galaxy. The phrase “dark matter” is the term used by astronomers to refer to matter
that is too dim to be detected using current technology.7 The obvious question to pose is
What’s the (dark) matter? It’s hard to determine what something is made of when you
can’t see it. In recent years, there have been three major candidates to play the role of
dark matter.

The first candidate is the neutrino. A neutrino can interact with other particles only
via gravity or the weak nuclear force. The weak nuclear force is weak indeed; the
overwhelming majority of solar neutrinos zip through the Sun as if it weren’t there. Since
neutrinos snub photons just as they snub other particles, they are a possible candidate
for the dark matter, if they have enough mass. As mentioned in Section 15.4, recent
experiments indicate that the three flavors of neutrino—electron, muon, and tau—have
masses that differ from each other. Although the exact mass of each flavor has not been
determined, there are fairly strict upper limits on their mass from various experiments.
Even though neutrinos are very common particles, their low masses mean that they
contribute at most a few percent of the dark matter present in the universe.

The second candidate is the WIMP. The term WIMP is an acronym for weakly
interacting massive particle. Supersymmetric extensions to the Standard Model of par-
ticle physics predict massive particles that interact only through the weak nuclear force
(and through gravity, of course). Think of them as the obese cousins of neutrinos. Parti-
cle physicists give these hypothetical particles names like photinos, gravitinos, axinos,
sneutrinos, and gluinos. However, since they are massive and weakly interacting, as-
tronomers lump them all together under the generic label of weakly interacting massive
particles.

Although WIMPs have been searched for in particle accelerator experiments, they
have not yet been found. Of course, since their predicted rest mass is quite large (typical
numbers are ∼ 100 times the mass of the proton), you wouldn’t expect to produce them
in the current generation of accelerators. However, the Large Hadron Collider at CERN
is expected to search for supersymmetric particles with thousands of times the mass of
the proton. Other experiments are searching for WIMPs in the same way you detect
neutrinos, by building a really big detector and waiting for those very rare interactions
mediated by the weak nuclear force. So far, there exist only upper limits on the WIMP
interaction rate. But the search goes on . . .

The third candidate is something completely different: the MACHO. The term MA-
CHO is a slightly strained acronym for massive compact halo object.8 MACHOs are
dim, dense objects with masses comparable to, or somewhat less than, the mass of the
Sun. Brown dwarfs, old cold white dwarfs, neutron stars, and black holes can all be
MACHOS if they are located in the halo of our galaxy.

7 Dark matter might also be called “invisible matter,” or maybe “transparent matter,” but dark matter is the
name that has stuck.
8 The term MACHO was first devised as a spoof of the term WIMP.
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FIGURE 19.8 (a) Gravitational lensing of a distant star by a MACHO. (b) The
resulting light curve of the star.

MACHOs, like any massive compact object, can act as gravitational lenses. One
of the predictions of the Theory of General Relativity is that massive objects can bend
the path of light. An early experimental support for General Relativity came in the year
1919, when observations of stellar positions during a solar eclipse revealed that the Sun
had bent the path of the starlight, by an angle consistent with the predictions of Einstein.

Because massive compact objects bend light, they can act as lenses, making distant
stars appear higher in flux than they ordinarily would. Suppose that a compact object (the
lens) moves directly between us and a distant star (the source), as shown in Figure 19.8a.
As the lens moves toward the source, as seen from our viewpoint, the flux of light we
receive from the source grows larger. As the lens moves away again, the flux decreases
to its original value. Thus, the light curve of the source, as shown in Figure 19.8b, shows
a characteristic rise and fall. If the lens is a stellar-mass MACHO, and the source is a
star in the Magellanic Clouds, for example, then the rise and fall typically occur over
the course of a few weeks.9 Research groups have carefully monitored the brightness of
stars in the Magellanic Clouds, hoping to catch MACHOs in the act of lensing. Although
lensing events have been seen, there turn out to be fewer MACHOs than are needed to
contribute all the dark matter. Only ∼ 20% of the dark matter in the halo can consist of
MACHOs. There’s still plenty of room for WIMPs in the Galaxy.

9 One scientifically exciting application of gravitational lensing is the search for exoplanets around lensing
objects. If a planet is orbiting the lensing object, then it’s possible, if the geometry is right, for the gravitational
influence of the planet to perceptibly change the shape of the light curve of the lensed source. Using this
technique, exoplanets less massive than Uranus and Neptune have been detected.
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FIGURE 19.9 Components of a star’s velocity relative to the Sun.

19.3 LOCAL STELLAR MOTIONS

Thus far, we have examined the global picture of our galaxy, outlining its general size,
shape, mass, and composition. In this section, however, we will be thinking locally rather
than globally, focusing on the motion of stars in the solar neighborhood, within 5 parsecs
of the Sun. The location of these stars, relative to the Sun, is fairly easy to determine,
since their parallaxes can be measured accurately. It is also relatively easy to determine
their velocity relative to the Sun. Consider, for instance, the radial velocity vr of a star
relative to the Sun—that’s just the rate at which the distance between the star and the
Sun is changing (Figure 19.9). The radial velocity relative to your telescope can be found
from the Doppler shift of the star’s absorption lines:

vr = �λ

λ
c. (19.16)

It is important to correct the measured radial velocity for the Earth’s orbital motion
around the Sun (vorb ≈ 30 km s−1). If you are striving for high accuracy, you must also
correct for the Earth’s rotation speed at the location of your telescope (vrot ≤ 0.5 km s−1).
If the star you are observing is part of a spectroscopic binary system, you can separate
the radial velocity of the star relative to the center of mass and the radial velocity of the
center of mass itself. This can be done by averaging the radial velocity of the star over
an entire orbital period.

The radial velocity of 40 stellar systems within 5 parsecs of the Sun is plotted in
Figure 19.10. Notice a few interesting results:

. The radial velocities show approximately equal numbers of blueshifts (vr < 0) and
redshifts (vr > 0).

. There is one notable outlier on the plot: Kapteyn’s star, at a distance d ≈ 3.9 pc,
which is moving away from the Sun with vr ≈ 250 km s−1.

. If Kapteyn’s star is left out of the sample, the root mean square radial velocity of
nearby stars (relative to the Sun) is vr ∼ 35 km s−1.
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FIGURE 19.10 Radial velocity of stars within 5 pc of the Sun.

Kapteyn’s star is distinctly different in its kinematic properties from the other neighbor-
hood stars because it belongs to the halo, not the disk. The Sun, and its neighbors in the
disk, are orbiting the Galactic center at ∼ 220 km s−1, passing by Kapteyn’s star, which
is on a nearly radial orbit. Halo stars can be recognized by their high velocity relative to
the Sun and by their low metallicity.10

The radial velocity vr gives you just one component of the star’s three-dimensional
velocity. To know completely the star’s velocity through space, you must also determine
the star’s tangential velocity vt , the component of the velocity perpendicular to the Sun—
star line (see Figure 19.9). In the nonrelativistic limit, the tangential velocity doesn’t
produce a Doppler shift. However, the tangential velocity can be determined indirectly
because it produces a proper motion μ, which is the rate of change of the star’s angular
position on the celestial sphere. In the small angle limit,

μ = vt

d
, (19.17)

where μ is in radians per year, vt is in parsecs per year, and d is in parsecs. In measuring
μ, you must correct for the elliptical motion due to parallax, and for the orbital motion

10 Kapteyn’s star is an M subdwarf with a metallicity 1/7 that of the Sun. Halo stars in the solar neighborhood
are often referred to as high-velocity stars because of their high speeds relative to most of the nearby stars,
which are participating in the rotation of the Galactic disk. In a reference frame that is not corotating with our
line-of-sight to the Galactic center, the halo stars are in fact low-velocity stars.
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of the star, if it’s in a binary system. For instance, Barnard’s star, an M dwarf with
mV = 9.6 mag, has the largest proper motion of any star in the night sky. Barnard’s
star has a parallax of π ′′ = 0.547 arcsec, implying a distance11 of only d = 1.83 pc. The
proper motion of Barnard’s star is μ = 10.358 arcsec yr−1. This is a huge proper motion
by stellar standards; it would take Barnard’s star less than two centuries to cross an
angular distance equal to the width of the full Moon.

Knowing the distance d and proper motion μ, we can compute the tangential velocity
from equation (19.17):

vt

pc yr−1
=

(
d

pc

) (
μ

rad yr−1

)
. (19.18)

Among astronomers, however, the preferred unit of speed is not the parsec per year but
the kilometer per second. The preferred unit of proper motion is not the radian per year
but the arcsecond per year. We can make the translation to astronomer-approved units
by noting that

1 rad yr−1 = 206,265 arcsec yr−1 (19.19)

and that

1 pc yr−1 = 3.086 × 1013 km

3.16 × 107 s
= 9.77 × 105 km s−1. (19.20)

Thus, (
1 pc yr−1

9.77 × 105 km s−1

) (
vt

pc yr−1

)
(19.21)

=
(

1 rad yr−1

2.063 × 105 arcsec yr−1

) (
μ

rad yr−1

) (
d

pc

)
.

This means that in the preferred units,

vt

km s−1
= 4.74

(
d

pc

) (
μ

arcsec yr−1

)
. (19.22)

If the parallax π ′′ is measured in arcseconds, and the proper motion μ′′ is measured in
arcseconds per year, the tangential velocity of a star is

vt = 4.74

(
μ′′

π ′′

)
km s−1. (19.23)

For Barnard’s star, as an example,

vt = 4.74

(
10.358

0.547

)
km s−1 = 89.8 km s−1. (19.24)

11 Barnard’s star is the fifth closest star to the Earth, after the Sun, Proxima Centauri, and Alpha Centauri A
and B.
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FIGURE 19.11 Tangential velocity of stars within 5 pc of the Sun. Stars above
the dashed line have μ′′ > 5 arcsec yr−1.

The tangential velocity of stellar systems within 5 parsecs of the Sun is shown in
Figure 19.11. The high proper motion of Barnard’s star is due both to the fact that it
is exceptionally close to us and to the fact that its tangential velocity is higher than the
average for nearby stars.

If the average tangential velocity vt doesn’t vary with distance from the Sun, then on
average, nearby stars will have a higher proper motion than more distant stars. One way
to search for nearby stars, if you don’t have the time or patience to measure parallaxes for
every star in the sky, is to start by looking at stars with high proper motion. The history
books state that in the year 1838, Friedrich Wilhelm Bessel measured the parallax of 61
Cygni. What they sometimes don’t tell you is why Bessel chose that star to observe: it is,
after all, a humble 5th magnitude star. Bessel, in fact, chose 61 Cygni because it has the
highest proper motion of any star visible to the naked eye,12 with μ′′ = 5.2 arcsec yr−1.

Of course, any star, no matter its distance, will have zero proper motion if it’s moving
straight toward us or straight away from us. An example of a nearby star with small
proper motion is Gliese 710, which has vr = −13.9 km s−1 and μ′′ = 0.014 arcsec yr−1.

12 The unusual nature of Kapteyn’s star was first recognized in the year 1897, when this otherwise unobtrusive
M dwarf was found to have a proper motion of nearly 9 arcseconds per year. At the time, this was the largest
stellar proper motion known, surpassed only when E. E. Barnard measured the proper motion of Barnard’s
star in 1916.
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FIGURE 19.12 Space motion of stars within 5 pc of the Sun. The outlier at
d ≈ 3.9 pc, v ≈ 300 km s−1 is Kapteyn’s star.

At the moment, Gliese 710 is over 19 pc away from us, and has mV = 9.7 mag. In 1.4
Myr, however, it will be a mere 0.34 pc away (about a fourth the present distance to
Proxima Centauri) and have mV = 0.9.

Putting it all together, the total speed relative to the Sun,

v = (v2
r
+ v2

t
)1/2, (19.25)

is called the space motion, or space velocity. A plot of the space motion for nearby stars
(Figure 19.12) reveals that Kapteyn’s star again stands out like the proverbial sore thumb.
Its space motion of v ≈ 300 km s−1 is twice that of Barnard’s star, the next speediest star
in the solar neighborhood. The average space motion of stars within 5 parsecs of the Sun
is v ∼ 50 km s−1 ∼ 50 pc Myr−1. This indicates that the list of stars within 5 parsecs of
us will be thoroughly revised on timescales t ∼ 5 pc/50 pc Myr−1 ∼ 0.1 Myr.

19.4 THE LOCAL STANDARD OF REST

If the disk of our galaxy were perfectly orderly, with all the stars on exactly circular orbits
in the same plane, it would be simple to compute the expected velocity of stars relative to
the Sun. However, the Sun and the other disk stars are not on perfectly circular orbits. A
typical orbit is neither circular nor elliptical, but forms a complicated “rosette” pattern,
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FIGURE 19.13 Orbit for a disk star in the solar neighborhood; the orbit has been
integrated for a time t = 2 Gyr.

as shown in Figure 19.13. Since the Sun is on a complicated noncircular orbit, using it as
the origin for our reference frame makes the mathematics unnecessarily complicated.13

It is mathematically convenient to use an idealized reference frame for our study of
motion within the Galaxy. This reference frame is called the Local Standard of Rest,
or LSR. The LSR has its origin at the Sun’s location (R0 = 8 kpc) and is moving in a
circular orbit with v0 = 220 km s−1. In other words, the LSR is doing what the Sun would
be doing if it were on a perfectly circular orbit.

The Sun is moving with respect to the LSR at a speed of ∼ 20 km s−1. How can we
tell? In the solar neighborhood, the circular speed

vc(R) ≡
(

GM(R)

R

)1/2

≈ 220 km s−1 (19.26)

doesn’t depend strongly on R, as shown in Figure 19.7. Thus, if the Sun were moving at
the same velocity as the LSR, the average radial velocity of nearby stars (d � R0) would
be zero in all directions.

13 Poor Ptolemy . . . since the Earth is on a noncircular orbit around the Sun, using it as the origin for his
reference frame made the Ptolemaic model for the solar system unnecessarily complicated. Think of all those
equants, epicycles, and deferents!
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Now suppose that the Sun is moving at a velocity ��v relative to the LSR. Stars in the
direction of the Sun’s motion will be blueshifted, with vr = −��v on average (the Sun will
be overtaking them). Stars opposite the direction of the Sun’s motion with be redshifted,
with vr = +��v on average (the Sun will be pulling away from them). The point toward
which the Sun is moving, relative to the LSR, is called the apex; the opposite point on
the celestial sphere is called the antapex. Statistical analysis of the radial velocity of
nearby stars reveals that the apex of the Sun’s motion is in the constellation Hercules,
and the antapex is in the constellation Columba.

In the disk of our galaxy, it’s convenient to use cylindrical coordinates, rather than
Cartesian or spherical (Figure 19.14). The cylindrical coordinates (R, θ, z) are chosen
such that R = 0 and z = 0 at the Galactic center. The azimuthal coordinate is θ = 0 at
the Sun’s location and increases in the direction of the LSR’s direction of motion. The
z coordinate increases as you go north.14 The location of the Sun in this cylindrical co-
ordinate system is (R0, θ0, z0) = (8 kpc, 0, 0 kpc). The velocities in the three directions
are as follows:

. � = speed in the R direction (positive away from the Galactic center)

. � = speed in the θ direction (positive in the direction of motion of the LSR)

. Z = speed in the z direction (positive toward the north galactic pole)

The velocity of the LSR is then

(�0, �0, Z0) = (0, 220 km s−1, 0). (19.27)

14 The Milky Way divides the celestial sphere into two hemispheres. The hemisphere that happens to contain
the north celestial pole is called the northern galactic hemisphere; its central point is the north galactic pole.
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The velocity of the Sun relative to the LSR is

(�� − �0, �� − �0, Z� − Z0) (19.28)

= (−10.4 km s−1, 14.8 km s−1, 7.3 km s−1).

The Sun is currently moving inward (toward the Galactic center). The Sun is moving
forward (faster than the LSR in the azimuthal direction). The Sun is moving northward
(toward the north galactic pole). The net motion is �v = 19.5 km s−1 in the direction of
Hercules, about 23◦ north of the Milky Way.

The motions of any arbitrary star relative to the LSR is referred to as the star’s peculiar
velocity,15 which has components

u∗ = �∗ − �0

v∗ = �∗ − �0 (19.29)

w∗ = Z∗ − Z0.

The LSR is itself moving at �0 = 220 km s−1 in the direction of Cygnus, 90◦ away
from the Galactic center in Sagittarius. Sometimes the Sun’s extra velocity �v, which
is < 9% of the speed of the LSR, is small enough to be ignored, and we can pretend the
Sun is on a circular orbit. At other times, it must be taken into account.16

19.5 DIFFERENTIAL ROTATION OF OUR GALAXY

Since we know the Sun’s velocity relative to the Local Standard of Rest, if we measure
the velocity of a star relative to the Sun, it is a straightforward piece of vector algebra to
convert it into a velocity relative to the LSR. This is useful because the analysis of stellar
velocities relative to the LSR tells us about the rotation of our galaxy. The orbital speed
of a star on a circular orbit is

�(R) =
(

GM(R)

R

)1/2

. (19.30)

The orbital speed � can be converted to an angular velocity ω:

ω(R) ≡ �(R)

R
. (19.31)

At the Sun’s location, the angular velocity is

ω0 = �0

R0
= 220 km s−1

8 kpc
= 27.5 km s−1 kpc−1. (19.32)

In other units, this becomes 0.028 rad Myr−1, or 5.8 × 10−3 arcsec yr−1.

15 The word “peculiar” is used in the archaic sense of the velocity belonging to that particular star.
16 Similarly, sometimes we can pretend the Earth’s orbit is circular; sometimes we must take its eccentricity
into account. It’s all a matter of how accurate you need to be for a given problem.
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There are different types of rotation, some of which we have already encountered:

. Keplerian rotation, in which all the mass is concentrated at the center of a system.
M = constant, � ∝ R−1/2, ω ∝ R−3/2.

. Constant orbital speed, a fair approximation for most of our galaxy. � =
constant, M ∝ R, ω ∝ R−1.

. Rigid-body rotation, seen, for instance, in a rotating wheel. ω = constant, � ∝ R,
M ∝ R3.

If the disk of our galaxy were in rigid-body rotation, then stars would have the same
orbital period, P = 2π/ω, regardless of distance from the Galactic center. However, the
disk is actually in differential rotation, with ω decreasing with radius. We expect stars
closer to the Galactic center to be passing us, while stars farther from the Galactic center
fall behind.

Let’s now reconstruct the analysis of the Galaxy’s differential rotation performed by
Jan Oort in the 1920s.17 This analysis is an exercise in trigonometry, so we should start by
examining the diagram in Figure 19.15. This diagram—let’s call it the Oort diagram—
is central to an understanding of Galactic rotation. The Sun’s location, which defines
the origin of the Local Standard of Rest, is at a distance R0 = 8 kpc from the Galactic
center. The LSR is moving on a circular orbit with speed �0 = 220 km s−1. We observe
a star in the disk of the Galaxy at a Galactic longitude �; the Galactic longitude is just
the angle between the star and the Galactic center, assuming that the star is at z = 0, in
the midplane of the disk.18 The star is at a distance d from us. The quantities � and d are
things that we can measure. The star is at a distance R from the Galactic center and is
moving on a circular orbit with speed �.19

How can we determine the orbital speed �(R) from observations of a star? One thing
we can determine from observations of the star is vr , its radial velocity relative to the
LSR. From the Oort diagram (see Figure 19.15), we see that

vr = � cos α − �0 cos(90◦ − �) = � cos α − �0 sin �, (19.33)

where α is the angle between the star’s velocity vector and the line from the star to
the Sun. We cannot measure α directly, so we must eliminate α from equation (19.33)
by using trigonometry. The lines from the Sun to the star to the Galactic center define a
triangle whose vertex angles equal � at the Sun, 90◦ + α at the star, and thus 90◦ − α − �

at the Galactic center. From the Law of Sines,

sin �

R
= sin(90◦ + α)

R0
, (19.34)

17 This is the same Oort after whom the Oort Cloud is named. The dynamics of stellar systems, such as the
Galaxy, aren’t that different from the dynamics of a swarm of comets, such as the Oort Cloud.
18 The value of � runs, by convention, from 0◦ to 360◦, with � = 90◦ in the direction of motion of the LSR.
19 In general, of course, stars in the disk aren’t on perfectly circular orbits. However, unless we goof up and
accidentally look at a halo star, the approximation of a circular orbit is close enough to give useful results.
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FIGURE 19.15 Oort diagram, giving the geometry of Galactic rotation.

and thus

sin �

R
= cos α

R0
. (19.35)

By substituting equation (19.35) into equation (19.33), we find

vr = �
R0

R
sin � − �0 sin � =

(
�

R
− �0

R0

)
R0 sin �, (19.36)

or

vr = (ω − ω0)R0 sin �. (19.37)

Equation (19.37) is the first Oort equation, which permits you to compute ω in terms
of the observables vr and � and the known values of ω0 and R0.20

Another thing we can determine from observations of the star is vt , its tangential
velocity relative to the LSR. From the Oort diagram (see Figure 19.15), we see that

vt = � sin α − �0 cos �. (19.38)

Once again, we need to eliminate the unmeasurable angle α. From inspection of the Oort
diagram, we can deduce that

R0 cos � = d + R sin α (19.39)

20 Sanity check: for rigid-body rotation, ω = ω0 and thus vr = 0. In other words, the distance between points
on a rigid wheel remains constant as the wheel spins.
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and thus

sin α = 1

R
(R0 cos � − d). (19.40)

By substituting equation (19.40) into equation (19.38), we find

vt = �

R
R0 cos � − �

R
d − �0 cos � =

(
�

R
− �0

R0

)
R0 cos � − �

R
d, (19.41)

or

vt = (ω − ω0)R0 cos � − ωd. (19.42)

Equation (19.42) is the second Oort equation, which permits you to compute ω in terms
of the observables vt , �, and d, and the known values of ω0 and R0.21

The Oort equations in their full glory (eqs. 19.37 and 19.42) can be applied to a disk
star at any distance. However, we can simplify them by considering only nearby stars,
with d � R0 (stars within 100 or 200 parsecs of us, for instance). For these nearby stars,
we can expand the angular velocity ω(R) in a Taylor series around R = R0:

ω(R) ≈ ω(R0) + dω

dR

∣∣∣
R=R0

(R − R0). (19.43)

Thus,

ω − ω0 ≈ dω

dR

∣∣∣
R=R0

(R − R0), (19.44)

and the first Oort equation becomes

vr ≈ R0

(
dω

dR

)
R=R0

(R − R0) sin �. (19.45)

For stars with d � R0, R − R0 ≈ −d cos �, meaning that we can write

vr ≈ −R0

(
dω

dR

)
R=R0

d cos � sin �. (19.46)

Using the trigonometric identity 2 cos � sin � = sin 2�, the first Oort equation can be
written in the simplified form

vr ≈ Ad sin 2�, (19.47)

21 Sanity check: for rigid-body rotation, ω = ω0 and thus vt = −ω0d. Imagine you are on a merry-go-round
rotating counterclockwise as seen from above; if you look at someone else standing on the merry-go-round
with you, he will appear to move right-to-left relative to distant background objects, with a proper motion
μ = ω0 and hence vt = dμ = dω0.
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where

A ≡ −R0

2

(
dω

dR

)
R=R0

. (19.48)

The Oort constant A is a measurement of the shear, that is, the degree to which the disk
of our galaxy does not rotate like a rigid body. Equation (19.47) implies that the radial
velocity of nearby stars on circular orbits will be zero when � = 0◦ and 180◦ (toward and
away from the Galactic center, respectively) but also when � = 90◦ and 270◦ (toward
and away from the LSR’s direction of motion, respectively).

A similar analysis (with details left to the reader) yields a similar simplification of the
second Oort equation when d � R0:

vt ≈ d(A cos 2� + B), (19.49)

where

B ≡ A − ω0 (19.50)

is the second Oort constant.
A plot of vr versus Galactic longitude � for stars all at the same distance d from

the Sun shows a sinusoidal pattern with amplitude Ad; see, for instance, the results
of Figure 19.16. One recent fit to the radial velocities of Cepheids yielded A = 14.8 ±
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FIGURE 19.17 Proper motion of Cepheid stars within 2 kpc of the Sun.

0.8 km s−1 kpc−1. A plot of proper motion (μ = vt/d) versus � also shows a sinusoidal
pattern, offset in the vertical direction by a value B (Figure 19.17). The best fit to the
proper motion of Cepheids yields B = −12.4 ± 0.6 km s−1 kpc−1. Incidentally, Oort’s
original value for the Oort constants, found in 1927, were A = 19 ± 3 km s−1 kpc−1 and
B = −24 ± 5 km s−1 kpc−1. His nonzero value for A was the first definitive evidence
that our galaxy is in differential rotation. Note that our best current values for the Oort
constants yield a local angular velocity

ω0 = A − B = 27.2 ± 1.0 km s−1 kpc−1 (19.51)

in agreement with the value of ω0 = 27.5 km s−1 kpc−1 that we have been assuming.

19.6 DETERMINING THE ROTATION CURVE

The Oort constants A and B tell us the value of the angular velocity ω and its radial
derivative dω/dR at the Sun’s location in the disk. This enables us to recreate the rotation
curve of the disk in the Sun’s immediate vicinity. To determine the full rotation curve
for the Galaxy, we must use the Oort equations in their complete form. Suppose we
observe a star at Galactic longitude � and measure its distance d and its radial velocity
vr relative to the Local Standard of Rest (see Figure 19.15). From the Law of Cosines,
we can determine the distance R of the star from the Galactic center:

R =
(
R2

0 + d2 − 2dR0 cos �
)1/2

. (19.52)

From the first Oort equation (eq. 19.37),

vr = (ω − ω0)R0 sin �, (19.53)
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we can determine the angular velocity at R:

ω(R) = ω0 + vr

R0 sin �
. (19.54)

We can then compute the orbital velocity �(R) = Rω(R).
The problem with this method of determining the Galactic rotation curve (� as a

function of R) is that if you want to find � for a wide range of R, you must observe
stars several kiloparsecs away, near the midplane of the disk where the dust is thickest.
Thus, the extinction corrections will be large, and the resulting errors in distance will be
sizable. One way to pierce through the dust is to look at radio emission from gas clouds
instead of visible light from stars. The 21 cm emission from atomic hydrogen and the
2.6 mm emission from carbon monoxide are largely unaffected by dust. The problem
with using gas clouds as your source of emission is that determining the distance to a
gas cloud is difficult. Measuring their parallax is impractical, since they are distant fuzzy
blobs instead of nearby unresolved sources.22

Despite the difficulty in determining the distance to gas clouds, you can still derive
some information from a gas cloud of known Galactic longitude � and radial velocity
vr (but unknown distance d). We can start by rewriting the Law of Cosines (equation
19.52) to give the distance d in terms of R, R0, and �.

d = R0 cos � ±
√

R2 − R2
0 sin2 �. (19.55)

Along a line of sight with fixed Galactic longitude �, every gas cloud will have R ≥ Rmin,
where Rmin ≡ R0 sin � (see Figure 19.15); this assumes, implicitly, that sin � ≥ 0, which
is true in the quadrants 0◦ < � < 90◦ and 270◦ < � < 360◦. The point along the line where
R = Rmin is called the tangent point.23 For values of R in the range R0 > R > Rmin,
a single value of R corresponds to two values of d, one on the near side of the tangent
point, as seen from the Sun, and the other on the far side. In general, even if we knew R

for a particular gas cloud, its distance d from the Sun is still ambiguous. Is it on the near
side of the tangent point, or the far side?

Cool atomic gas clouds and cold molecular clouds are sufficiently common in our
galaxy that a line of sight through the disk usually passes through several of them. Since
ω decreases with R in the disk, the gas cloud closest to the tangent point will have the
largest angular velocity ω, and hence the largest radial velocity,

vr = (ω − ω0)Rmin. (19.56)

This leads to the tangent point method for determining the rotation curve of the Galaxy.
Start by pointing your radio telescope at a given Galactic longitude � along the Milky
Way. Along the chosen line of sight, the tangent point lies at a distance Rmin = R0 sin �

22 If you knew the gas clouds’ physical size in AU, you could measure the cloud’s angular size in arcseconds,
and thus compute their distance. Unfortunately, gas clouds aren’t of uniform size.
23 The tangent point is where the line of sight is tangent to a circle of radius Rmin centered on the Galactic
center.
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FIGURE 19.18 Carbon monoxide emission at Galactic longitude � = 31.5◦.

from the Galactic center.24 In the molecular or atomic emission lines that you observe,
you will typically find several peaks; see, for instance, the CO emission line displayed
in Figure 19.18. Each peak in the emission line corresponds to a different gas cloud with
a different radial velocity vr . The peak with the highest radial velocity tells you vr,max,
the radial velocity of the most rapidly receding cloud along the line of sight. From the
first Oort equation (eq. 19.37), this radial velocity corresponds to an angular velocity for
the cloud of

ωmax = ω0 + vr,max

Rmin
. (19.57)

If we assume that the cloud is located exactly at the tangent point, then the angular
velocity at the tangent point is

ω(Rmin) = ωmax = ω0 + vr,max

Rmin
, (19.58)

and the orbital velocity at the tangent point is

�(Rmin) = Rminω(Rmin) = ω0Rmin + vr,max. (19.59)

Note the error built into this method; if the cloud isn’t exactly at the tangent point, both
R and � for the cloud will be larger than we have computed.

As an example, let’s use the data presented in Figure 19.18, the result of observing
CO emission at the Galactic longitude � = 31.5◦, in the constellation Aquila. Along
this line of sight, the tangent point is at a distance Rmin = (8 kpc) sin 31.5◦ = 4.18 kpc
from the Galactic center. The emission peak with the highest radial velocity is at vr =
+109.9 km s−1, corresponding to an angular velocity (equation 19.57)

24 Again, we are assuming that we are looking in the quadrants closest to the Galactic center, with 0◦ < � < 90◦,
and 270◦ < � < 360◦.
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FIGURE 19.19 Rotation curve of our galaxy.

ωmax = 27.5 km s−1 + 109.9 km s−1

4.18 kpc
= 53.8 km s−1 kpc−1. (19.60)

This angular velocity corresponds to an orbital velocity

�(Rmin) = ωmaxRmin = 225 km s−1, (19.61)

if the molecular cloud is exactly at the tangent point.
By looking along many lines of sight at different Galactic longitudes, we can build

up a plot of �(R) versus R; an example is shown in Figure 19.19. Note that the tangent
point method works only for gas clouds with R < R0. To find the rotation curve outside
R0, you really do need to observe objects whose distance is known unambiguously. Once
you have a more or less accurate idea of ω(R), you can compute ω for each gas cloud
along a line of sight and use the plot of ω versus R to determine the distance R of each
gas cloud from the Galactic center. Finding d, the distance from the Sun, is still fraught
with ambiguity. Often you can use the angular size of the gas cloud to guess whether
it’s at the nearer value of d or the farther value of d. Translating from ω to d makes it
possible to make maps of the gas distribution in our galaxy. For instance, Figure 19.20
shows the surface density of atomic hydrogen (H i) in the Galaxy, in units of hydrogen
atoms per square meter, projected onto the midplane of the Galaxy. Note the features in
the map that seem to point directly away from the Sun. This is because errors in d tend to
stretch out compact, nearly spherical structures into long smears along the line of sight.
In addition, structures near the Galactic center, in the middle of the figure, are muddled
and noisy. This is because there are strongly noncircular motions near the center of our
galaxy.

Plots of the surface density of gas as a function of R are less noisy, since they don’t
require dealing with the ambiguity in d for a particular gas cloud. Figure 19.21 shows
the surface density of molecular, atomic, and ionized gas within our galaxy. Outside
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FIGURE 19.22 A negative image of stars near the Galactic center. The region
shown is 13 arcsec on a side, corresponding to a physical length ∼ 0.5 pc. Note that
in this image, the effects of seeing are largely eliminated, and stars appear as Airy
disks surrounded by diffraction rings.

R ∼ R0 ∼ 8 kpc, most gas in the Galaxy is atomic; inside R ∼ R0, a large fraction of the
gas is molecular. The key difference is density. Molecules can form only in relatively
dense regions of interstellar space, where dust grains act as a catalyst for the formation
of molecules.25

19.7 THE NUCLEUS OF OUR GALAXY

At the distance of the Galactic center, an angle of 1 arcsecond corresponds to a length
d = 8000 AU = 0.039 pc. In the V band, there are AV = 28 magnitudes of extinction
between us and the Galactic center, which pretty well rules out observations at visible
wavelengths. However, at infrared wavelengths of λ ∼ 2 μ m, there are just 2 magnitudes
of extinction. Adaptive optics (mentioned in Section 6.7) permits viewing the Galactic
center at infrared wavelengths with a resolution of ∼ 0.1 arcsec, as shown in Figure 19.22.
This permits us to resolve structures as small as d ∼ 800 AU at the Galactic center.

The stars in the infrared image of Figure 19.22 are mostly cool giants. If we assume
that the ratio of giants to main sequence stars is the same at the Galactic center as in our
neighborhood, we deduce that the number density of stars within a parsec of the center
is n
 ∼ 107 pc−3. For comparison, the number density of stars in the solar neighborhood
is n ∼ 0.1 pc−3. If the Sun were half a parsec from the Galactic center:

25 Note, in Figure 19.21, that the molecular gas density deduced by Bronfman et al. differs by a factor of
∼ 2 from those of Clemens et al. This is an indication of the extreme difficulty of measuring the amount of
molecular hydrogen present in space.
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. The nearest star would be ∼ 1000 AU away.

. The night sky would contain ∼ 106 stars brighter than Sirius.

. The total starlight would be ∼ 200 times brighter than the full Moon.

. The probability of stars colliding would not be negligible.

The central regions of our galaxy would be a good place to study stars but a bad place
to study external galaxies, because of the high sky brightness.

At the center of our galaxy is a strong radio source called Sagittarius A. The total
region of radio emission, shown in Color Figure 20, is about 50 parsecs across. The
spectrum of the radio emission indicates that it is synchrotron emission, produced by
relativistic electrons accelerated by a magnetic field. The long prominences stretching
away from Sagittarius A resemble solar prominences (see Section 7.2) scaled up by a
factor of 1 billion.

The early radio observations that detected Sagittarius A were of low angular resolution
and merely revealed the presence of an unresolved blob of radio emission. More recent
observations have found detailed substructure in Sagittarius A. If we zoom in on the
highest surface brightness region of Sagittarius A, we find an interesting radio source
called Sagittarius A West, depicted in Color Figure 21. Sagittarius A West is a rotating
minispiral of partially ionized gas, about 5 parsecs across. Its radio spectrum looks much
like that of an H ii region, in which gas is excited by a central source of ultraviolet light.
In the case of Sagittarius A West, the central source must be very luminous; but what
is it?

If we zoom in on the center of Sagittarius A West, we find a highly compact radio
source called Sagittarius A*. (Don’t look for a footnote; the asterisk is part of the
name, which is pronounced “Sagittarius A Star.”) The angular size of Sagittarius A*
has been measured using radio interferometry. At a wavelength λ = 7 mm, the measured
diameter of Sagittarius A* is d ′′ ∼ 0.8 milliarcsec, corresponding to d ∼ 6 AU in physical
units.26 The high angular resolution provided by radio interferometry also enables a
measurement of the proper motion of Sagittarius A*. Recent measurements reveal
μ′′ = (6.38 ± 0.02) × 10−3 arcsec yr−1, directed almost entirely along the plane of the
Milky Way. If Sagittarius A* were perfectly stationary at the Galactic center, we’d expect
the Sun’s motion about the Galactic center to produce a proper motion of μ ≈ ω0 ≈
5.8 × 10−3 arcsec yr−1, as outlined in Section 19.5.

Observations by the Chandra X-ray Observatory reveal that Sagittarius A* is an X-
ray source as well as a radio source. The X-ray emission from Sagittarius A* varies
significantly on timescales of less than 1 hour, revealing that the majority of its X-ray
emission must come from a region less than 1 light-hour (∼ 7 AU) across. Let’s review
what we know about Sagittarius A*: it is a fairly luminous, but highly compact, source
of radio and X-ray emission located at the Galactic center. (The bolometric luminosity
of Sagittarius A* is not exactly known, due to the high extinction at many wavelengths,
but is estimated to be L ∼ 1000L�.) The leading hypothesis is that Sagittarius A* is a

26 Thus, Sagittarius A* would fit inside the orbit of Jupiter and is smaller than the star Betelgeuse.
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FIGURE 19.23 Observed orbits of bright stars near the Galactic center.

supermassive black hole that is accreting gas. A “supermassive” black hole is a black
hole larger than would result from a massive star collapse alone.

The black hole hypothesis is testable by looking at the motion of stars in the vicinity
of Sagittarius A*. If there’s a black hole present, with mass Mbh much greater than a
stellar mass, then stars on elliptical orbits around the black hole will obey Kepler’s third
law:

M
 + Mbh = a3

P 2
, (19.62)

where a is the semimajor axis of the star’s orbit (in AU) and P is its orbital period (in
years). Adaptive optics imaging at λ ≈ 2 μ m has enabled astronomers to track a few
bright stars near Sagittarius A* for more than a decade. One star in particular, called
S0-2, has been observed to have a very small orbit (Figure 19.23), with semimajor axis
a = 920 AU (assuming R0 = 8 kpc) and orbital period P = 14.5 yr. The mass of the
black hole is then given by the relation

M
 + Mbh = (920)3

(14.5)2
M� = 3.7 × 106M�. (19.63)

Since the star’s mass is insignificant compared to that of the black hole, we can simply
state Mbh = 3.7 × 106M�.

Within about 0.2 parsecs (or 40,000 AU) of Sagittarius A*, all the stars are on
Keplerian orbits, indicating that their dynamics are dictated by a single massive object
at the center. Combining all the orbits of stars near Sagittarius A* yields a mass

Mbh = (3.7 ± 0.2) × 106M�
(

R0

8 kpc

)3

, (19.64)
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indicating that the biggest uncertainty in the mass of the central supermassive black hole
is provided by the uncertainty in R0 (which in turn translates into an uncertainty in a

for stars near the center). One of the stars near Sagittarius A*, called S0-16, has an
extremely eccentric (e = 0.976) elliptical orbit (see Figure 19.23). At pericenter, S0-16
comes within 45 AU of Sagittarius A*. Since the star’s orbit is neatly elliptical, with no
detectable deviations from a Keplerian orbit, the massive object it is orbiting must be
spherically symmetric, with a radius less than 45 AU. The only way to cram 3.7 million
solar masses into a volume that small would be to make it into a black hole.27

The Schwarzschild radius of a black hole with Mbh = 3.7 × 106M� is RSch = 1.1 ×
107 km = 0.07 AU, which subtends an angle of 9 microarcseconds as seen from Earth.
The radio and X-ray emission we see from Sagittarius A* comes from outside RSch, more
or less by definition. It is emitted by gas that is compressed and heated as it falls toward
the black hole. In order to grow to a mass of Mbh = 3.7 × 106M� during the Galaxy’s
lifetime of tmw ∼ 10 Gyr, the black hole would have to accrete mass at an average rate

dM

dt
= Mbh

tmw
≈ 3.7 × 106M�

1.0 × 1010 yr
≈ 1M�

3000 yr
. (19.65)

By gobbling a solar mass of material every few millennia, the central black hole of our
galaxy could have grown to its present mass.

In Section 18.3, we learned that black holes less massive than Mbh ∼ 2000M� would
tidally rip you apart before you could reach the event horizon. Thus, if you wanted to
dive into our galaxy’s supermassive black hole, you wouldn’t be tidally destroyed until
after passing the event horizon. But what would happen to a star approaching the black
hole? Stars are held together by gravitational forces. Thus, a star of mass M
 and radius
r
 would be tidally ripped apart at a distance rrip from the black hole’s singularity. The
distance rrip is where the differential tidal force across the star,

�F ≈ GMbhM


r3
rip

r
, (19.66)

is equal to the gravitational force holding the two halves of the star together,

Fgrav ≈ GM2



r2



. (19.67)

By combining equations (19.66) and (19.67), we find that the star would be tidally
disrupted at a distance

rrip ≈
(

Mbh

M


)1/3

r
. (19.68)

27 If you tried to make a cluster of neutron stars, for instance, the neutron stars would collide and merge on a
timescale that was short compared to the age of our galaxy.
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(This is the equivalent to the Roche limit for a moon orbiting a planet; see Section 4.3.1.)
A star similar to our Sun, for instance, would be ripped apart at a distance

rrip ≈ 108 km

(
Mbh

3.7 × 106M�

)1/3

(19.69)

from a supermassive black hole. When we compare this to the Schwarzschild radius of
the black hole,

rSch = 2GMbh

c2
≈ 107 km

(
Mbh

3.7 × 106M�

)
, (19.70)

we find that Sun-like stars would be ripped apart before entering the event horizon so
long as

Mbh <

(
c6r3

�
8G3M�

)1/2

≈ 2 × 1038 kg ≈ 108M�. (19.71)

If a star is swallowed whole by a black hole, it doesn’t produce a major outburst of
radiation before it enters the event horizon. However, if the star is tidally shredded first,
its gas forms a hot accretion disk around the star and produces copious emission as it
spirals in toward the event horizon.

PROBLEMS

19.1 A star at rest with respect to the LSR is 60◦ away from the solar apex. The star’s
parallax is π ′′ = 15 milliarcseconds (mas). What are its radial velocity and proper
motion? In what direction is the proper motion, relative to the solar apex?

19.2 Suppose the Milky Way consisted of 2.7 × 1011 stars, each of solar luminosity
MB = 4.7. What would be the absolute magnitude of the whole Galaxy?

19.3 Show that in the case of Keplerian orbits with a centrally concentrated mass (that is,
M(r) = constant),

A − B

A + B
= 2.

Does this agree with the observationally determined values of A and B for the Galaxy?

19.4 Derive equation (19.49), starting from equation (19.42).
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19.5 Determine the proper motion relative to the LSR for a star in a circular orbit about
the Galactic center, at a distance d = 5 kpc from the Sun and at galactic longitude
� = 45◦. Hint: the Galaxy’s rotation curve is given in Figure 19.19.

19.6 The star Rigel has a radial velocity vr = 20.7 km s−1, parallax π ′′ = 4.22 milliarc-
seconds (mas), and proper motion components μα = 1.67 mas yr−1 in right ascension
and μδ = 0.56 mas yr−1 in declination. What are its total proper motion, tangential
velocity, and space motion?

19.7 Derive the relation

A + B

A − B
= −d�

dR

/
�

R
,

starting with the definitions of the Oort constants A and B.

19.8 Assume that a galaxy is spherical. What radial dependence of the mass density ρ(R)

gives a flat rotation curve (that is, �(R) = constant)? In this case, how does the
enclosed mass M(R) vary with radius R?

19.9 The Perseus spiral arm of the Galaxy can be traced from R = 4 kpc from the Galactic
center to R = 12 kpc. Using the rotation curve in Figure 19.19, determine how long
it takes for the stars at the inner end of the Perseus arm to gain one full orbit on stars
at the outer end.

19.10 The star S0-2, of spectral class B1 V, orbits the central black hole at the Galactic
center on an orbit with semimajor axis a = 920 AU and eccentricity e = 0.867.

(a) What is the star’s distance from the black hole at pericenter?
(b) How close does the star get to the Roche limit?
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The Hubble Ultra Deep Field (Color Figure 22) is the result of 800 exposures of a
single field in the constellation Fornax with the Hubble Space Telescope, summing to a
total exposure of over 11 days. The limiting magnitude in the V band is mV = 29 mag.
Within the 3 arcmin × 3 arcmin field of view of the Ultra Deep Field, there are ∼ 10,000
galaxies. If you multiply the ∼ 1100 galaxies per square arcminute within the Hubble
Ultra Deep Field by the 150 million square arcminutes on the celestial sphere, it implies
that there are ∼ 170 billion galaxies potentially observable by our telescopes.

The universe is as full of galaxies as a pomegranate is of pips. However, as late as the
year 1920, there was still considerable uncertainty among astronomers about whether
large galaxies other than the Milky Way Galaxy actually existed. This uncertainty was
encapsulated in a pair of talks, known to posterity as the “Great Debate,” given by the
astronomers Harlow Shapley and Heber Curtis. Shapley maintained that the Milky Way
was by far the largest collection of stars in the universe; Curtis maintained that the Milky
Way was only one of numerous large stellar systems, or “island universes,” as they were
sometimes called. The Great Debate involved the nature of small, spiral-shaped, nebulous
objects known at the time as “spiral nebulae.” Shapley identified them as either gas clouds
within our galaxy (probably sites of star formation) or small satellite galaxies orbiting
our own galaxy. Curtis, by contrast, identified them as distant, large “island universes”
comparable in size and shape to the Milky Way Galaxy.

That Curtis was essentially correct, and that the Milky Way is just one of many
galaxies, started to become clear when Edwin Hubble used the Mount Wilson 100-inch
telescope to observe the Andromeda Nebula, the largest of the spiral nebulae. Hubble
detected Cepheid variable stars within the Andromeda Nebula, and showed that it is
actually the Andromeda Galaxy. In 1929, Hubble published the result of his calculations;
the Andromeda Galaxy, he believed, is at a distance d = 275 kpc. This is not the end of the
story, however. In the year 1949, the 200-inch telescope at Mount Palomar was put into
operation. Walter Baade, one of the first astronomers to use the new telescope, calculated
that if the Andromeda Galaxy were at a distance d = 275 kpc, then he would be able to
detect its RR Lyrae variable stars. However, when he actually observed the Andromeda
Nebula with the 200-inch, he found no RR Lyrae stars at all. Consequently, he concluded
that Edwin Hubble had badly underestimated the distance to the Andromeda Galaxy,
which had to be at least twice as far as Hubble’s distance estimate for its RR Lyrae stars

467
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to be undetected. (In fact, the best current estimate of the distance to the Andromeda
Galaxy is d = 780 kpc.)

Hubble’s fundamental mistake was that he was comparing two different types of
variable stars. The Cepheids he observed in the Andromeda Galaxy were luminous blue
Population I stars. He was comparing them, however, to variable stars in our galaxy that
were Population II objects, within the galactic bulge. These Population II variable stars,
called W Virginis stars after their prototype, are only 1/4 as luminous as a Cepheid
star with the same pulsation period. Thus, by applying the W Virginis period-luminosity
relation to the intrinsically more luminous Cepheid stars, Hubble was underestimating
the distance to the Andromeda Galaxy by a factor of 2.

20.1 GALAXY CLASSIFICATION

Edwin Hubble, in addition to determining the true nature of the Andromeda Galaxy,
also devised the classification scheme for galaxies that we use today. Classification is an
important first step in understanding: the purely empirical classification of stellar spectra,
for instance, led to the physical understanding that the OBAFGKM sequence of spectral
types is a temperature sequence. Galaxies, unlike stars, are not customarily classified
by their spectra. In practice, Hubble found it was most useful to classify galaxies by
their shapes. The Hubble classification scheme for galaxies is thus a morphological
classification.1

The Hubble scheme divides galaxies into three main classes: elliptical, spiral, and
irregular galaxies. Our galaxy is an example of a spiral galaxy. As a useful mnemonic
device, the different types of galaxies are laid out in what’s generally called a “tuning
fork” diagram, as shown in Figure 20.1. In the tuning fork diagram, elliptical galaxies
are on the fork’s handle; the two types of spiral galaxies (with and without central bars)
provide the two tines of the fork; and irregular galaxies are dumped off to one side.
Hubble erroneously thought that the sequence shown in the tuning fork diagram was
an evolutionary sequence, with galaxies moving from left to right on the diagram as
they evolved. We now know that Hubble was wrong on this point: elliptical galaxies do
not evolve into spiral galaxies. Nevertheless, the tuning fork still appears in astronomy
textbooks as a convenient visual aid to remembering the different classes of galaxies.

Elliptical galaxies derive their name from the fact that they look like smooth, glowing,
elliptical blobs, with no dark dust lanes, no spiral arms, and no bright patches of star
formation. If you approximate the shape of an elliptical galaxy as a perfect ellipse, the
size and shape of the ellipse are given by the semimajor axis a and the semiminor axis
b, where b ≤ a. The shape of the ellipse can be described by a single number. It might
be the axis ratio q ≡ b/a, or the ellipticity ε = 1− q, or the eccentricity e = (1− q2)1/2.

The Hubble classification scheme assigns to each elliptical galaxy a label “En,”
where n is equal to 10 times the ellipticity, rounded to the nearest integer. Thus, an E0
galaxy is nearly circular, while the flattest elliptical galaxies seen are around E6 or E7

1 The term “morphological” comes from the Greek root morphos, meaning “shape.”
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FIGURE 20.1 The tuning fork diagram of galaxies.

(a) E0 (NGC 4486) (b) E3 (NGC 4365) (c) E6 (NGC 4564)

FIGURE 20.2 Elliptical galaxies, from circular (E0) to flattened (E6).

(Figure 20.2). One unavoidable drawback to Hubble’s method for classifying elliptical
galaxies is that it relies on the projected, two-dimensional shape of ellipticals, and not
on their intrinsic, three-dimensional shape. Unfortunately, we can’t scoot around to the
side of the galaxy for an alternate view, so we don’t know whether an E0 galaxy is a
sphere, or an oblate spheroid seen face-on, or a prolate spheroid seen end-on.
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(a) Sa (NGC 1302) (b) Sb (NGC 4450) (c) Sc (NGC 4303)

FIGURE 20.3 Spiral galaxies, from Sa to Sc.

Although the shape of a single elliptical galaxy can’t be unambiguously determined
from its two-dimensional image, statistical statements can be made about the intrinsic
shapes of elliptical galaxies, after looking at large data sets.2 The typical elliptical galaxy
must be a triaxial ellipsoid, with principal axes of three different lengths. The surface
brightness of bright elliptical galaxies, I (r), usually follows the law

log I ∝ −r1/4, (20.1)

where r is the distance from the galaxy’s center. The luminosities of ellipticals cover
a very wide range. The most luminous giant ellipticals have MV ∼ −23 mag, or LV ∼
1011LV,�.3

Spiral galaxies derive their name from their spiral arms, seen most easily when we
view the galaxy face-on. The spiral structure of these galaxies was first noted by Lord
Rosse in 1845, when he viewed M51 (the Whirlpool Galaxy) with the 72-inch telescope,
the Leviathan of Parsonstown.4 Every spiral galaxy has a central bulge, a rotating disk,
and spiral arms within the disk, containing gas, dust, and star-forming regions. There are
three main subdivisions of spiral galaxies, as illustrated in Figure 20.3. The main classes
are as follows:

. Sa: big bulge, tightly wound spiral arms, little gas and dust

. Sb: medium bulge, moderately wound spiral arms, middling amounts of gas and
dust

. Sc: small bulge, loosely wound spiral arms, lots of gas and dust

2 As a simple example, globular clusters must all be nearly spherical. Why? Because they all look nearly
circular in projection. The only shape that always looks circular, from any angle, is a sphere.
3 Cautionary note: all absolute magnitudes and V -band luminosities in this section are approximate.
4 He wasn’t certain, however, whether he was looking at a galaxy, a smaller cluster of stars in our own galaxy,
or perhaps a nearby planetary system in the process of formation.
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(a) SBa (NGC 4314) (b) SBb (NGC 4548) (c) SBc (NGC 613)

FIGURE 20.4 Barred spiral galaxies, from SBa to SBc.

Many spiral galaxies, perhaps even the majority of them, have an elongated central bar
of stars. Barred spirals, like “ordinary” spirals, can be further subdivided into SBa, SBb,
and SBc, with the capital “B” standing for Barred. Examples of barred spiral galaxies
are shown in Figure 20.4. Our own galaxy has a bar, though its degree of “barrishness”
is hard to tell from our location inside the disk. At a guess, the Hubble classification of
our galaxy would be SBb. The surface brightness of the disks of spiral galaxies falls off
exponentially with distance from the galaxy’s center:

log I ∝ −r. (20.2)

The bulges can frequently be fit with the log I ∝ −r1/4 law that applies to elliptical
galaxies. Our galaxy and M31 (the Andromeda Galaxy) are both bright, spiral galaxies,
with MV ∼ −21, or LV ∼ 2 × 1010LV,�.

The Hubble classification for spiral galaxies has been extended to type Sd, which
represents spirals with minuscule bulges and huge amounts of gas and dust. A final
type of spiral galaxy is the Magellanic spiral, also referred to as type Sm. Magellanic
spirals are systems similar to the Large Magellanic Cloud, which has a prominent bar,
rudimentary spiral arms, and lots of active star formation. Since the Large Magellanic
Cloud has many young stars, some of them massive, it is host to the occasional core-
collapse (type II) supernova, like Supernova 1987a.

There exist galaxies intermediate between spiral and elliptical galaxies; these are
called S0 galaxies.5 S0 galaxies have flat, rotating disks, like spiral galaxies. However,
like elliptical galaxies, they have very little gas and dust, and no spiral arms at all. In
tribute to their hybrid nature, they are placed at the Y-junction of the “tuning fork,”
between the ellipticals and spirals (see Figure 20.1). S0 galaxies are sometimes also
referred to as lenticular galaxies, since they have big, central bulges, which give them a
shape like a convex lens (Figure 20.5).

5 That’s “S zero,” not “S oh.”
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FIGURE 20.5 NGC 3115, an edge-on S0 galaxy (d ≈ 10 Mpc).

FIGURE 20.6 Large Magellanic Cloud (d ≈ 55 kpc) at left, and Small Magellanic
Cloud (d ≈ 65 kpc) at right.

Irregular galaxies are the last of Hubble’s main classes. As their name implies,
they are amorphous, lacking any regular shape. Irregular galaxies are rich in gas and
dust and have copious star formation. A nearby example of an irregular galaxy is the
Small Magellanic Cloud, in which there is not even a hint of spiral structure. The Small
Magellanic Cloud looks like an egg-shaped smear of stars punctuated with emission
nebulae. Figure 20.6 offers a comparison of the Large and Small Magellanic Clouds.

Although Hubble’s classification scheme is useful, it has some restrictions. First of
all, due to the technical limitations of Hubble’s day, it applies only to luminous galaxies
with high surface brightness. The lowest-luminosity galaxies are called dwarf galaxies.
These dwarfs tend to be low in surface brightness as well as low in total luminosity;
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FIGURE 20.7 The dwarf spheroidal Leo I (d ≈ 250 kpc).

that is, the stars they contain are spread over a relatively wide area across the sky.
Thus, dwarf galaxies are hard to detect. Some dwarf galaxies are elliptical in shape
and contain little gas and dust; these are called dwarf ellipticals. A dwarf elliptical
generally has MV > −18 mag, or LV < 109LV,�. The dimmest dwarf ellipticals, with
MV > −14 mag, or LV < 3 × 107LV,�, are often called dwarf spheroidals. The dwarf
spheroidal galaxy Leo I is shown in Figure 20.7. Note that individual stars can be resolved
in this dwarf spheroidal, which is only 250 kpc away. Some dwarf galaxies do contain
lots of gas and dust; these are called dwarf irregulars.6 Just as inconspicuous M dwarfs
are the most common type of star, inconspicuous dwarf galaxies are the most common
type of galaxy. An estimated 90% of the galaxies in our immediate neighborhood (less
than a megaparsec away) are dwarfs.

Finally, some galaxies don’t fit into Hubble’s classification scheme because they are
just plain weird. The galaxy Centaurus A (shown in Figure 21.7) has been called “a
pathological object.” It resembles an elliptical galaxy, but it has a prominent dustlane
slashing across its middle—something that ordinary ellipticals just don’t have. Centaurus
A is also a strong radio source; its name indicates that it is the brightest radio source in
the constellation Centaurus. It is probable that Centaurus A has recently cannibalized
a dust-rich companion galaxy. The galaxy NGC 7252 (Figure 20.8) has been called “a
train wreck.” Although NGC 7252 bears a single catalog number in the New General
Catalog, it is actually a pair of galaxies that have not yet finished the process of merging
together. The long tails extending away from the train wreck have been stretched out
by tidal forces. Roughly 0.5% of nearby bright galaxies are estimated to be members of
merging pairs.

6 There are exceedingly few dwarf spiral galaxies; spiral structure apparently is an attribute of massive,
luminous galaxies.
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FIGURE 20.8 NGC 7252, the remnant of a galaxy merger (d ≈ 60 Mpc).

20.2 GALAXY SPECTRA

Although a galaxy’s shape contains interesting information, it doesn’t tell the whole
story. Useful information can also be derived from the spectrum of a galaxy. Visible
light emitted by a galaxy is primarily produced by stars (which have an absorption line
spectrum) and by hot gas (which has an emission line spectrum). Most of the starlight
comes from a small number of very luminous stars, not from the huge number of dim M
dwarfs. A single main sequence O star, with MV ≈ −5 mag, produces as much visible
light as 100 million main sequence M stars, with MV ≈ +15 mag. In spiral and irregular
galaxies, where stars are currently forming, the brightest stars are young, hot main
sequence stars of spectral type O and B. In elliptical galaxies, where star formation
has usually ceased long ago, the brightest stars are red giants. Thus, elliptical galaxies,
whose bright stars are relatively cool, are redder in color than spiral and irregular galaxies,
whose bright stars are hot.

The spectra of different types of galaxies are similar in appearance. Elliptical galaxies
have strong absorption lines and no emission lines; the integrated light of all the stars
in an elliptical galaxy produces a spectrum similar to a star of spectral type K. Spiral
galaxies typically have both strong absorption lines and moderately strong emission
lines; the absorption lines are similar to those of a star of spectral type F or G. (Irregular
galaxies have spectra similar to those of spiral galaxies.) About 1 or 2% of bright galaxies
are active galaxies, in which a large fraction of the light is nonstellar in origin.7 The
nonstellar light in an active galaxy comes from a small but luminous central nucleus;
thus, active galaxies are also referred to as active galactic nuclei, or AGNs for short (see

7 The fraction given here refers to the most luminous types of activity found in galactic nuclei.
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Chapter 21). The spectrum of an AGN has extremely strong emission lines, indicating
the presence of large quantities of hot gas.

Radio emission is usually stronger in spirals than in ellipticals, although there are
many exceptions to the rule. In addition, many radio-loud galaxies, like Centaurus A
(Figure 21.7), are peculiar in their morphology. Active galactic nuclei are strong sources
of synchrotron emission. Gas clouds in spiral galaxies are strong sources of line emission.
Seen at λ = 21 cm, the disk of a spiral galaxy appears larger than at visible wavelengths.
This is what tells us that the gaseous disk is larger than the stellar disk.

Infrared light at 10–100 microns comes primarily from warm dust, with temperature
T ∼ 100 K. Infrared emission is stronger from spiral and irregular galaxies than from
elliptical galaxies. Within spiral galaxies, the infrared emission is greatest from the spiral
arms, where the dust is concentrated.

Ultraviolet light comes primarily from hot, short-lived stars. Thus, ultraviolet light
traces the arms of spiral galaxies, where most of the star formation occurs. The small
amount of ultraviolet light from elliptical galaxies comes from relatively hot, helium-
fusing stars.

X-rays from galaxies come primarily from a relatively small number of X-ray bi-
naries. In an X-ray binary, a black hole or neutron star accretes gas from a stellar
companion.8 In addition, some X-rays come from the hot coronal gas in a galaxy. In
a class of galaxies known as active galaxies, described in Chapter 21, a small central
nucleus is a luminous source of X-ray and ultraviolet light.

Because photons of different energy are created by different physical phenomena, a
galaxy can change its appearance dramatically when viewed at different wavelengths.
Consider, for example, the irregular galaxy M82, shown in Color Figure 23 at four
different wavelengths. At infrared wavelengths, M82 has the highest flux of any galaxy
in the sky. Although it’s at a distance d ≈ 3.5 Mpc, about five times the distance to M31,
it is more than 25 times as luminous in the infrared. The excess infrared emission from
M82 is caused by recent star formation inside dusty clouds. The dust absorbs the light
from luminous young stars and re-radiates it at longer wavelengths. Note also that the hot,
X-ray emitting gas stretches out beyond the star-inhabited region. It’s thought that the
gas in M82 has been heated by supernova explosions to the point where it is expanding
outward in a “galactic wind.” M82 is an example of a starburst galaxy, a galaxy that
has recently experienced a major episode of star formation.9

The visible spectra of galaxies generally contain absorption or emission lines that can
be used to compute a radial velocity for the galaxy. We measure a redshift, z ≡ �λ/λ,
and compute a radial velocity vr = cz, assuming we are in the nonrelativistic limit, where
z � 1 and vr � c. Because galaxies are resolved, extended objects, we can measure the
radial velocity as a function of position on the galaxy’s image. From this measurement,
we can deduce how fast the stars in the galaxy are orbiting, and hence how massive the
galaxy is.

8 The X-ray source V404 Cygni, discussed in Section 18.3, is an example of an X-ray binary consisting of a
black hole and a star.
9 In the case of M82, the star formation may have been triggered by a tidal encounter with its neighboring
galaxy, M81.
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As an example, suppose you are looking at a spiral galaxy in which the stars in the
disk are on perfectly circular orbits about the galaxy’s center. You see the disk at an
inclination i, where i = 0◦ if the disk is face-on and i = 90◦ if the disk is edge-on. You
see the intrinsically circular disk thanks to the effects of perspective, as an ellipse of axis
ratio q = b/a, where a is the semimajor axis and b is the semiminor axis. If the disk
is infinitesimally thin and perfectly circular, then the apparent axis ratio of the ellipse
will be

q = cos i. (20.3)

Thus, a face-on disk (i = 0◦) appears circular (q = 1), while an edge-on disk (i = 90◦)
appears as a line segment (q = 0). After you measure the apparent axis ratio q of a spiral
galaxy, you can compute the inclination i = cos−1 q. (There will be an error in your
calculation, of course, since disks are neither infinitesimally thin nor perfectly circular,
but in most circumstances, the error will be acceptably small.) For instance, the nearby
spiral galaxy M31, as seen in Color Figure 1, has an apparent axis ratio q = 0.3. This
implies that we are viewing M31 at a relatively high inclination of i = 73◦.10

Now suppose we measure the radial velocity vr = cz along the apparent long axis of
the disk of M31. The observed radial velocity vr will be related to the orbital speed vc

by the relation

vr(R) = vc(R) sin i + vr,0, (20.4)

where vr,0 is the radial velocity of the center of M31, and R is the distance measured
from the center of M31. If we want to know the orbital speed as a function of radial
distance, we must compute

vc(R) = vr(R) − vr,0

sin i
= vr(R) − vr,0√

1 − cos2 i
= vr(R) − vr,0√

1 − q2
. (20.5)

Although this equation applies to any rotationally supported disk, let’s continue to use
M31 as our example. M31 is at a distance d = 700 kpc from us; at this distance, 1 arcsec
corresponds to a length r = 700,000 AU = 3.4 pc. The center of M31 is moving toward
us, with a radial velocity vr,0 = −270 km s−1 relative to the Sun. At an angular distance
R′′ = 600 arcsec from the center of M31, along its apparent long axis, we measure a
Doppler shift z = −0.00010, corresponding to a radial velocity vr = cz = −30 km s−1.
We can compute that

R = (600 arcsec)(3.4 pc arcsec−1) = 2040 pc = 2.04 kpc. (20.6)

The orbital speed at this distance from M31 is (from equation 20.5)

vc(R) = vr(R) − vr,0√
1 − q2

= −30 km s−1 + 270 km s−1√
1 − (0.3)2

= 250 km s−1. (20.7)

10 Since M31 is at a low galactic latitude (b ≈ −22◦), inhabitants of M31 see the Milky Way at a high inclination,
as well.
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In fact, the rotation curve of M31 is observed to be flat out to nearly 3 degrees (R′′ ≈
10,800 arcsec) from the center of the galaxy, corresponding to a physical distance
R ≈ 36 kpc from the center. At R ≈ 36 kpc ≈ 1.1× 1021 m, the calculated orbital speed
is vc ≈ 230 km s−1 ≈ 2.3 × 105 m s−1. The deduced mass of M31 is then (compare to
equation 19.13):

M(R) ≈ v2
c
R

G
≈ (2.3 × 105 m s−1)2(1.1 × 1021 m)

6.67 × 10−11 m3 s−2 kg−1

≈ 9 × 1041 kg ≈ 4 × 1011M�, (20.8)

or nearly half a trillion solar masses, with no sign of a Keplerian falloff, which would
indicate the edge of a massive dark halo.

It is practical to reconstruct the rotation curve from measuring radial velocities vr ,
but not from measuring proper motions μ. If we viewed a spiral galaxy face-on (i = 0◦),
a star with orbital speed vc would have a proper motion μ′′ given by the relation
(equation 19.22):

μ′′ = vc

4.74d
arcsec yr−1, (20.9)

where vc is in kilometers per second and d is in parsecs. If we saw M31 face-on, we’d
expect proper motions of approximately

μ′′ ≈ 250

4.74(700,000)
arcsec yr−1 ≈ 8 × 10−5 arcsec yr−1. (20.10)

Future space-based interferometry missions may be able to measure proper motions of
this magnitude, but at the moment, it’s too small to measure.

The spectra of elliptical galaxies reveal different kinematics from spiral galaxies. In
ellipticals, the mean rotation speed vc is found to be small compared to that of comparably
sized spiral galaxies. However, the width of the absorption lines in ellipticals is much
greater than you would expect from the temperature of their stars. The added width is due
to the velocity dispersion σ of the stars. In an elliptical galaxy, stars are not on orderly,
near-circular orbits, like stars in the disk of a spiral galaxy. Instead, they are on eccentric,
randomly oriented orbits, like the stars in the halo of a spiral galaxy. Thus, along any line
of sight through an elliptical, you will see stars with a wide range of radial velocities,
and hence a wide range of Doppler shifts.

An interesting nearby elliptical galaxy is NGC 4365, a bright galaxy in the Virgo
Cluster, about 16 Mpc away from us. In the Hubble classification scheme, it is labeled
an E3 galaxy; its apparent diameter is about 6 arcminutes, so it is well resolved from
Earth. Its surface brightness, shown in false color in the left panel of Color Figure 24, is
smooth and featureless, with no bright patches of star formation and no dark dustlanes.
Along the semimajor axis, the surface brightness follows the usual law for bright elliptical
galaxies: log I ∝ −r1/4. The average radial velocity, vr − vr,0, is shown in the central
panel of Color Figure 24. The main body of the galaxy rotates about the apparent major
axis, with a maximum velocity of v ∼ 50 km s−1, much lower than the rotation speed
in spiral galaxies of similar luminosity. Note also that the central core in NGC 4365 is
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rotating in a different direction from the rest of the galaxy! This is actually fairly common
in elliptical galaxies; the “kinematically decoupled core,” as the jargon goes, may be the
remnants of a small but dense galaxy that has been cannibalized by the larger, fluffier
galaxy.

The dispersion in radial velocity, σ , is quite large in NGC 4365, particularly when
compared to the average radial velocity. The dispersion is as large as σ ≈ 275 km s−1

in the central regions of NGC 4365 (Color Figure 25), and remains as high as σ ≈
200 km s−1 farther from the center. If we think of the individual stars in NGC 4365 as
point masses in a gas, we can think of NGC 4365 as a system that is pressure supported
rather than rotationally supported. The mean square velocity of the stars is then a measure
of the “temperature” of the gas of stars.

The observed velocity dispersion σ along the line of sight can be used to estimate the
mass of an elliptical galaxy, or any other system dominated by random stellar motions
rather than ordered orbital motions. The mass estimate involves the use of the virial
theorem, which states that if a self-gravitating system of stars, such as a galaxy or star
cluster, is in equilibrium (neither expanding nor contracting), there is a simple relation
between the total kinetic energy K of all the stars and the gravitational potential energy
U of the system:

2K = −U. (20.11)

A derivation of the virial theorem is given in Section 3.4.
The total kinetic energy of a system of N stars is

K =
N∑

i=1

1

2
miv

2
i
, (20.12)

where mi is the mass of the ith star, and �vi is its velocity with respect to the center of
mass of the system. The kinetic energy can also be written in the form

K = 1

2
M〈v2〉, (20.13)

where M is the total mass of the stars and 〈v2〉 is the mass-weighted mean square velocity
of the stars.

The potential energy of a system of stars will be

U ∼ −GM2

r
, (20.14)

where r is an appropriately defined radius for the system. Finding an “appropriate” radius
for a galaxy might be difficult; remember that galaxies don’t have sharp, clearly defined
edges. For an elliptical galaxy, it’s found that a good approximation is

U ≈ −0.4
GM2

rh
, (20.15)
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where rh is the half-mass radius of the system, that is, the radius of a sphere (centered
on the galaxy’s center) large enough to contain half the mass of the galaxy. With this
approximation, the virial theorem (equation 20.11) becomes

M〈v2〉 = 0.4
GM2

rh
, (20.16)

or

M ≈ 2.5
〈v2〉rh

G
. (20.17)

Note the similarity of equation (20.17) to the equation we used to determine the mass of
a spiral galaxy:

M = v2
c
R

G
. (20.18)

In each case, we square a velocity, multiply it by a radius, and divide by Newton’s
gravitational constant G.

Unfortunately, we can’t measure the mass-weighted mean square velocity 〈v2〉 for
an elliptical galaxy. The practical difficulties of measuring proper motions for stars in
external galaxies means that we have information only about the velocity along the line of
sight. Moreover, the line-of-sight dispersion σ that we measure is luminosity-weighted,
not mass-weighted. If we assume that the red giants that provide the bulk of an elliptical
galaxy’s luminosity have the same dispersion as the rest of the galaxy’s stars, we can
ignore the difference between mass-weighting and luminosity-weighting. If, in addition,
we assume that the velocity dispersion is isotropic (the same in all three dimensions),
we may write

〈v2〉 = 3σ 2 (20.19)

if the galaxy’s net rotation speed is small compared to its line-of-sight velocity dispersion.
This leads to a mass estimate

M ≈ 7.5
σ 2rh

G
. (20.20)

Unfortunately, we can’t measure the half-mass radius rh, only the half-light radius (and
in projection, at that!). In estimating the total mass of a galaxy, we sometimes have to sigh
with resignation and make the additional assumption that the half-mass radius equals the
half-light radius.

As an example of the virial theorem in action, consider the dwarf spheroidal galaxy
Leo I (Figure 20.7), a member of the Local Group of galaxies, at a distance d ≈ 250 kpc
from us. The half-light radius of Leo I is r ′′

h
≈ 4.0 arcmin ≈ 240 arcsec; at a distance of

d ≈ 250 kpc, this corresponds to a physical distance

rh ≈ 290 pc ≈ 8.9 × 1018 m. (20.21)
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Because the stars in Leo I are individually resolved, a radial velocity can be measured
for each bright star in the galaxy. The dispersion in the radial velocities is

σ = 8.8 km s−1 ≈ 8.8 × 103 m s−1. (20.22)

The estimated mass of Leo I is then

M ≈ 7.5
(8.8 × 103 m s−1)2(8.9 × 1018 m)

6.67 × 10−11 m3 s−1 kg−1

≈ 8 × 1037 kg ≈ 4 × 107M�. (20.23)

Since the V -band luminosity of Leo I is LV = 4.9 × 106LV,�, this implies a mass-to-
light ratio for Leo I of M/LV ≈ 8M�/LV,�. Such a high mass-to-light ratio suggests
that Leo I may contain significant amounts of dark matter.

20.3 SUPERMASSIVE BLACK HOLES IN GALAXIES

The spectra of gas and stars in the central regions of galaxies reveals that most, if not all,
bright galaxies harbor a supermassive black hole at their center. For instance, M31 (the
Andromeda Galaxy) has a black hole with Mbh ≈ 5 × 107M�, over 10 times the mass
of our own galaxy’s supermassive black hole. Even though the masses of these black
holes are large, they are difficult to measure; the observable effects of the black hole
dominate the dynamics of gas and dust only on the very smallest scales, thus requiring
high angular resolution for accurate measurements. The gravitational potential of the
black hole dominates over the gravitational potential of the surrounding stars only within
the black hole radius of influence, defined by

rbh = GMbh

σ 2∗
≈ 11 pc

(
Mbh

108 M�

) (
σ∗

200 km s−1

)−2

, (20.24)

where Mbh is the black hole mass and σ∗ is the velocity dispersion of the stars in the
bulge of the galaxy.

Black hole masses have been measured by modeling the dynamics of stars or gas
disks (Figure 20.9) in galaxies in which the radius of influence is resolvable, which
in practice means resolvable with the Hubble Space Telescope. Generally speaking,
elliptical galaxies have a central black hole whose mass is proportional to the galaxy’s
luminosity L; for spiral galaxies, the black hole mass is proportional to the luminosity of
the galaxy’s bulge alone (Figure 20.10). Thus, the black hole mass depends only on the
“bulge” component of a galaxy (we can think of an elliptical galaxy as being all bulge
and no disk). Since L ∝ σ 4 for elliptical galaxies and bulges of spiral galaxies, there is
also a correlation between central black hole mass and the velocity dispersion σ of the
“bulge” component.

It’s not really surprising that big galaxies have big black holes. Astronomers are
surprised, however, at the tight correlation between Mbh and σ ; when the velocity
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dispersion σ is measured, it is dominated by stars far enough out that the black hole
has a negligible effect on their velocity. Why a black hole’s mass should be so tightly
correlated with the velocity of stars that are ignorant of its existence is an unanswered
question.

20.4 DISTANCES TO GALAXIES

Knowing the distance to galaxies is of great interest to astronomers, just as it was of
great interest to know the distance to stars within our galaxy. In practice, we work our
way outward to larger distances by using a distance ladder, with each “rung” in distance
depending on a lower rung. We have already encountered the lowest rungs of the distance
ladder:

. Radar determines distances out to ∼ 10 AU. Radar distances depend on knowing
the speed of light.

. Stellar parallax determines distances out to ∼ 200 pc. Stellar parallax distances
depend on knowing the length of the astronomical unit (determined using radar).

. Spectroscopic parallax determines distances out to ∼ 10 kpc. Spectroscopic par-
allax distances depend on knowing the distance to nearby main sequence stars
(determined using stellar parallax).

The technique of spectroscopic parallax is an example of a standard candle technique.
To astronomers, a standard candle is an object whose luminosity L you know and whose
flux F you can measure. The distance d can then be computed from the formula

d =
(

L

4πF

)1/2

, (20.25)

or expressed in terms of magnitudes,

d = 100.2(m−M+5) pc, (20.26)

assuming no dust extinction.
To measure the distance to external galaxies (as opposed to the distance to stars within

our own galaxy), a very luminous standard candle is required. Cepheid pulsating stars
are a favorite standard candle for nearby galaxies. The distances to nearby Cepheids can
be determined by stellar parallax, for the very nearest Cepheids, and by spectroscopic
parallax, in the case of Cepheids in clusters with main sequence stars. The period–
luminosity relation for Cepheids depends on the filter being used. In the V band, we
can use equation (17.25). Using ground-based telescopes, the apparent magnitudes
of Cepheids can be measured to d ∼ 4 Mpc. Using the Hubble Space Telescope, the
apparent magnitudes can be measured to d ∼ 25 Mpc.

Most of the hundreds of billions of galaxies in the visible universe are at distances
greater than 25 Mpc. In order to measure their distances, we need a brighter standard can-
dle. Such a standard candle is provided by type Ia supernovae. Type II (core-collapse)
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supernovae, although very bright, are not very standardized; they have a variety of
progenitor masses, and hence a variety of luminosities. Type Ia supernovae, however,
are more standardized, since they all result from white dwarfs pushed over the Chan-
drasekhar limit.

In any given galaxy, type Ia supernova are rare. In galaxies similar to the Milky Way
Galaxy, there are roughly one per century, on average. However, galaxies are sufficiently
numerous that we expect an average of three type Ia supernovae to go off each year within
25 Mpc of our galaxy. Since these supernovae occur in galaxies that contain observable
Cepheid stars, we can tie the supernova length scale to the Cepheid length scale, and add
another rung to the distance ladder.

Careful study of nearby type Ia supernovae reveals that they don’t all have exactly the
same luminosity. This is bad news for a standard candle. However, the peak luminosity
is found to be correlated with the rate of decline of the luminosity after the peak; brighter
supernovae have a slower decline. This means that we can predict a supernova’s peak
luminosity from its rate of decline, just as we can predict a Cepheid’s average luminosity
from its pulsation rate. This makes type Ia supernovae a much more attractive standard
candle. The average peak luminosity of nearby type Ia supernovae is MV = −19.2 mag.
This is about one-third the luminosity of the Milky Way Galaxy or M31, and about 3
times the luminosity of the Large Magellanic Cloud. Thus, a type Ia supernova is briefly
equal in luminosity to a midsized galaxy. Basically, if a galaxy is bright enough for you
to detect, a supernova in that galaxy will be bright enough to detect as well (unless it is
deeply buried in dust).

Type Ia supernovae have the drawback of being rare. If you want to find the distance to
any particular galaxy, you might have to wait decades—or even centuries—for a type Ia
supernova to occur. If you are impatient, and want to estimate a galaxy’s distance right
now, there is an alternative. You can use the entire galaxy as a standard candle. For
nearby ellipticals whose distance is known, the velocity dispersion σ is discovered to be
correlated with the total V band luminosity, LV . The relation between σ and LV , known
as the Faber–Jackson relation after its discoverers, is

LV

2 × 1010LV,�
=

(
σ

200 km s−1

)4

, (20.27)

or in terms of absolute magnitudes,

MV = −21.4 − 10 log

(
σ

200 km s−1

)
. (20.28)

For spiral galaxies, there is a similar relation, called the Tully–Fisher relation, which
relates the peak rotation speed vc to the absolute magnitude M of the galaxy. In the B

band,

MB = −20.8 − 10.2 log

(
vc

200 km s−1

)
. (20.29)

There is plenty of scatter in the Faber–Jackson and Tully–Fisher relations, but sometimes
it’s the best you can do. The scatter can be reduced in the Faber–Jackson relation by
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including information about the galaxies’ central surface brightness. The scatter can be
reduced in the Tully–Fisher relation by making observations in the infrared, where the
dimming effects of dust aren’t as strong.

20.5 THE HUBBLE LAW

In addition to determining the distance to a galaxy from a standard candle, we can
determine its radial velocity from its redshift. In the nonrelativistic limit, vr = cz =
c(�λ/λ). As noted in Section 19.3, nearby stars within our own galaxy show a mixture
of redshifts (z > 0) and blueshifts (z < 0). This is no surprise; our galaxy is neither
expanding nor contracting. Early in the twentieth century, Vesto Slipher began what
was then the nontrivial task of measuring the wavelength shifts of nearby galaxies. By
the year 1917, he had measured z for a sample of 25 nearby spiral galaxies (or “spiral
nebulae,” as Slipher called them back then). He was surprised to find that 21 out of the
25 galaxies were redshifted, and only four were blueshifted. This proportion of redshifts
was unlikely to have occurred by chance.11 Slipher was also surprised by the size of the
deduced radial velocities; some of the spiral galaxies had cz > 1000 km s−1.

Another surprise came in 1929, when Edwin Hubble examined how the wavelength
shift z depended on d , the measured distance to a galaxy. Hubble had z for about 50
galaxies but had distance estimates for only 25 of them. When he plotted cz versus d, he
found an approximate linear relation, as shown in Figure 20.11.

The linear relation between redshift and distance can be written in the form

cz = H0d, (20.30)

where the constant H0, pronounced “H naught,” is now called the Hubble constant.12

As a further tribute to Hubble, the plot of cz versus d is called a Hubble diagram, and
the equation cz = H0d is called the Hubble law.

As it turned out, Hubble severely underestimated the distance to nearby galaxies, since
his standard candles were actually much more luminous than he thought.13 The farthest
galaxies in Figure 20.11 are in the Virgo Cluster of galaxies. Hubble thought they were
∼ 2 Mpc away; current distance estimates put the Virgo Cluster at a distance d ∼ 16 Mpc.
Thus, although Hubble thought the Hubble constant was H0 ∼ 1000 km s−1/2 Mpc ∼
500 km s−1 Mpc, the current best estimate of the Hubble constant is much smaller:

H0 = 70 ± 5 km s−1 Mpc−1. (20.31)

After Hubble’s erroneously high value of H0 was discredited, there was a decades-long
debate over whether the true value of the Hubble constant was H0 ≈ 50 km s−1 Mpc−1

11 If you flipped a coin 25 times, the probability of having 21 or more heads is less than 1 in 2000.
12 In a rare display of modesty, Hubble called the constant “K ,” not H .
13 He was using the brightest star in each galaxy as his standard candle. However, in more distant galaxies,
what he thought was the brightest star was actually a compact, ultraluminous H ii region, which can be 50
times more luminous than even the brightest stars.
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FIGURE 20.11 The Hubble diagram, according to Hubble.

or 100 km s−1 Mpc−1. As a relic of that long debate, you sometimes see the Hubble
constant written in the form

H0 = 100h km s−1 Mpc−1, (20.32)

where 0.5 < h < 1. Since the value of the Hubble constant is pinned down more accu-
rately now, feel free to substitute h = 0.7.

When cosmologically naı̈ve individuals first encounter the Hubble law, they are likely
to say, “Why are all the galaxies moving away from us? Was it something we said? Do we
have the galactic equivalent of bad breath?” In fact, there is nothing particularly special
about us. We are not the center of the expansion; in fact, there is no center of expansion.
The Hubble law is the natural result of the homogeneous, isotropic expansion of the
universe.

Saying that the expansion is homogeneous means that it is the same at all locations.
Saying that it is isotropic means that it is the same in all directions. For homogeneous
expansion, H0 is the same at all positions; for isotropic expansion, H0 is the same in all
directions at a given location. The usual analogy compares the universe to a loaf of raisin
bread expanding homogeneously and isotropically, so that its shape remains the same as
the loaf expands. In such an expansion, each raisin sees every other raisin moving away
with a velocity proportional to its distance. Note that the raisins themselves don’t expand,
since they are held firmly together by intermolecular forces. Similarly, in the globally
expanding universe, galaxies themselves don’t expand, since they are held firmly together
by gravity. The Hubble expansion is not the result of some mysterious force that is prying
apart the entire universe down to the tiniest scales; it’s simply an empirical statement
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about kinematics on large scales. Widely separated galaxies are moving away from each
other, with a speed proportional to the distance between them.

If galaxies are moving apart from each other, they must have been closer together in
the past. Thus, the discovery by Hubble of the expansion of the universe led naturally
to the Big Bang model for the universe. A Big Bang model can be defined as a universe
that starts in an extremely dense, compressed state, and then expands to increasingly low
densities. Consider a pair of galaxies that are currently separated by a distance d and thus
have a relative speed vr = H0d. If the relative speed of the galaxies has been constant,
then the time it took to reach their current separation is

t = d

vr

= d

H0d
= 1

H0
, (20.33)

assuming that the galaxies started out very close to each other (dinit � d). Notice that t

is independent of the present separation d. This means that at a time t before the present,
all pairs of galaxies were very close to each other.

The Hubble law thus gives us a natural time scale for the expansion of the universe:
the Hubble time, which is simply

H−1
0 = 14 ± 1 Gyr = (4.4 ± 0.3) × 1017 s. (20.34)

In calculating that the universe has been expanding for 1 Hubble time, we assumed that
the relative speed of any pair of galaxies has been constant; this is not necessarily true.
The gravitational attraction between galaxies tends to decelerate the expansion; in this
case, the expansion was faster in the past than it is now, and the universe is younger than
H−1

0 . On the other hand, it has been theorized that the universe contains “dark energy,”
which causes the expansion to accelerate outward; in such a case, the expansion was
slower in the past than it is now, and the universe is older than H−1

0 . It is reassuring
to note, in any case, that the estimated age of the oldest globular clusters is close to 14
Gyrs. Hubble’s initial (erroneously large) value for the Hubble constant implied a Hubble
time of only 2 Gyr, which was embarrassingly short compared to the known age of the
Earth.14

The expansion of the universe has profound cosmological and philosophical impli-
cations. At the moment, let’s postpone the profound philosophy, and be practical and
down-to-earth. The Hubble law, from a practical viewpoint, gives us another way of
estimating the distance to a galaxy. We simply measure the redshift z and then compute

d = c

H0
z = (4300 ± 300 Mpc)z. (20.35)

Notice that just as the Hubble time, 1/H0, gives a natural timescale in an expanding
universe, the Hubble distance, c/H0, gives a natural length scale. If a galaxy is moving
away from us at 1% the speed of light, its distance from us is 1% of the Hubble distance,
or 43 Mpc.

14 The universe can’t be younger than the objects it contains. In the words of a lady who was asked her age, “I
am older than my teeth, and the same age as my tongue.”
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We should keep in mind, however, the sources of error involved when we use equa-
tion (20.35) to estimate distances. First of all, we don’t know the Hubble distance
exactly. Second, there is a significant amount of scatter in the Hubble diagram (see
Figure 20.11). This is because in addition to the perfectly homogeneous Hubble ex-
pansion, galaxies have peculiar velocities of order ∼ 10−3c caused by the gravitational
attraction of their neighboring galaxies. These peculiar velocities cause errors of order
∼ 10−3(c/H0) ∼ 4 Mpc in the distance estimates.15 Finally, we must keep in mind that
the linear relation between d and z holds true only in the limit z � 1. At higher redshifts,
nonlinear relativistic corrections must be taken into account.

PROBLEMS

20.1 At what distance (and at what redshift) does an object 1 kpc across subtend an angle
of 1 arcsecond?

20.2 The Ca ii H and K lines have rest wavelengths of λ0 = 3968.5 Å and 3933.6 Å,
respectively. In the spectrum of a galaxy in the cluster Abell 2065 (a.k.a. the Corona
Borealis Cluster), the observed wavelengths of the two lines are λ = 4255.0 Å and
4217.6 Å.

(a) What is the redshift z of the galaxy?
(b) What is the distance to the galaxy?
(c) What is the distance modulus of the galaxy?

20.3 Rewrite the relation for the distance modulus (equation 13.25) in terms of the redshift
z rather than the distance d.

20.4 A spiral galaxy, when seen face-on, appears circular; the flux you observe per square
arcsecond of the galaxy is given by the relation

�(r) = �0e
−r/r0,

where r is the distance, in arcseconds, from the center of the galaxy. Show that the
total flux you observe from the spiral galaxy is F = 2π�0r

2
0 .

15 For example, the radial velocity of M31 relative to the Milky Way Galaxy is negative, since the two galaxies
form a gravitationally bound system in which they are on strongly radial orbits about their center of mass. If
you stared straight at M31 while computing its distance using equation (20.35), you would conclude it was
behind you!
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20.5 You observe an E0 elliptical galaxy; the flux you observe per square arcsecond of the
galaxy is given by the relation

�(r) = �0 exp
[
−(r/r0)

1/4
]

,

where r is the distance, in arcseconds, from the center of the galaxy. Show that the
total flux you observe from the elliptical galaxy is F = 8!π�0r

2
0 .

20.6 Consider a black hole of mass M = 108M�. What is the maximum distance at which
its radius of influence could be resolved using the Hubble Space Telescope at a
wavelength λ ≈ 1 μ m?

20.7 Figure 20.9 shows the rotation curve for the galaxy M87, which is at a distance d =
16 Mpc. Just outside 0.1 arcsec from the center, the rotation curve is approximately
Keplerian. Estimate the mass inside this region.

20.8 At what redshift (and at what distance) do peculiar velocities of galaxies contribute
less than 1% error to the distance measurement?
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Active galaxies have many distinctive attributes that distinguish them from the “normal”
galaxies discussed in the previous chapter.

. As briefly mentioned in Section 20.2, active galaxies produce large amounts of
nonstellar emission, some of it nonthermal in origin, arising from energetic and
violent processes.1 Active galaxies produce more radio and X-ray emission than
you’d expect if all their light came from the photospheres of stars.

. Active galaxies have much of their light concentrated in a small, central region
known as an active galactic nucleus, or AGN.

. Light from AGNs is variable on short timescales at virtually all wavelengths.
The timescale for significant variability is dependent on both luminosity and
wavelength, with the most rapid variability seen at shorter wavelengths in lower-
luminosity AGNs. In low-luminosity AGNs, X-ray emission can vary on time-
scales of minutes.

. Some active galactic nuclei have jets that are detectable at X-ray, visible, and radio
wavelengths. The jets contain ionized gas flowing outward at relativistic speeds.

. The ultraviolet, visible, and infrared spectra of AGNs are dominated by strong
emission lines.

In order to be labeled as an active galaxy, a galaxy need not have every attribute listed
above; it’s more like a “choose any 3 out of 5” proposition. Thus, there are many classes
of active galaxies, depending on which attributes a particular object displays.

The accumulated evidence indicates that the activity in galactic nuclei results from
the accretion of matter onto supermassive black holes. As we saw in Chapter 20, most
if not all bright galaxies harbor a supermassive black hole at their centers. Although
bright galaxies contain supermassive black holes, not every bright galaxy is an active
galaxy. A supermassive black hole is a necessary but insufficient condition for activity
in galaxies: to be classified as an active galaxy, the central black hole must be accreting

1 These energetic and violent processes are the “activity” that gives active galaxies their name.

489
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gas sufficiently rapidly to have a luminosity high enough to compete with or outshine
the stars in the host galaxy.

21.1 TYPES OF ACTIVE GALAXIES

We can identify three major classes of active galaxies: Seyfert galaxies, quasars, and radio
galaxies. Seyfert galaxies and quasars are actually quite similar to each other; Seyfert
galaxies can be thought of as low-luminosity, relatively nearby quasars. Radio galaxies
are different in that their nuclear emission often is not prominent in wavelengths other
than radio. We consider each of these three main classes below.

21.1.1 Seyfert Galaxies

Seyfert galaxies, whose unusual properties were first identified by Carl Seyfert in the
1940s, are spiral galaxies with luminous, variable nuclei that have strong emission lines
in their spectra. Seyfert galaxies have nuclei with L ∼ 108L� → 1012L�. There are over
10,000 Seyfert galaxies known; it’s estimated that about 5% of bright spiral galaxies are
Seyferts, but this fraction might be as high as ∼ 40% if very-low-luminosity Seyfert-
like objects are included in the census. The spiral galaxy NGC 3516 (Figure 21.1) is a
relatively nearby Seyfert galaxy.

Seyfert galaxies can be divided into two main subclasses, depending on the properties
of the emission lines in their spectra. The spectrum of a Seyfert 1 galaxy is shown in
Figure 21.2a. In the spectrum of a Seyfert 1 galaxy, the emission lines from forbidden
transitions (such as the O iii lines at λ = 4959 Å and λ = 5007 Å) are relatively narrow,
with Doppler widths ∼ 300 km s−1. By contrast, the emission lines from permitted
transitions (such as the Hα line at λ = 6563 Å) have two components. One component

(a) (b)

FIGURE 21.1 Two images of the Seyfert galaxy NGC 3516 (d ∼ 36 Mpc). (a) A
brief exposure reveals the bright nucleus. (b) A longer exposure reveals the extended
starlight surrounding the nucleus.
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FIGURE 21.2 (a) Spectrum of a Seyfert 1 galaxy (both broad and narrow lines).
(b) Spectrum of a Seyfert 2 galaxy (narrow lines only).

of a Seyfert 1 permitted line is narrow, but the other is very broad, with a Doppler width
∼ 5000 km s−1 to 10,000 km s−1.2 The broad and narrow emission lines arise in two
different regions of the AGN. The broad-line region contains relatively dense gas, in
which the forbidden lines are collisionally suppressed. The width of the broad line is due
to the proximity of the broad-line region to the central black hole, where gas motions are
very rapid. The narrow-line region contains lower-density gas and is farther from the
central black hole.

In the spectrum of a Seyfert 2 galaxy, shown in Figure 21.2b, all the emission lines,
both forbidden and permitted, are narrow. In at least some cases, a broad-line region is
present in Seyfert 2 galaxies but is hidden from our direct view by dust.

21.1.2 Quasars

Radio telescopes first surveyed the sky in the mid-twentieth century. These first surveys
showed that the optical counterparts of most radio sources were galaxies (the radio
galaxies discussed in the next section). However, some radio sources did not have

2 In extreme cases, this combination of narrow and broad components makes a permitted line from a Seyfert
1 galaxy look like a pickelhaube, the old-fashioned spiked helmet of the Prussian infantry.



492 Chapter 21 Active Galaxies

FIGURE 21.3 The quasar 3C 273, and two galaxies, NGC 4527 and NGC 4536.

obvious counterparts; ambiguity arose because of the poor angular resolution of single-
dish radio telescopes. Once better radio positions were obtained, it was found that the
radio sources were associated with blue starlike objects. This was unusual; stars are not
generally strong radio sources. It seemed clear that they weren’t stars, so their starlike
appearance led to the name quasi-stellar radio source, which was later contracted to
quasar. Figure 21.3 shows the quasar 3C 273, one of the first quasars to be identified.3

Note how the quasar more strongly resembles the stars in the field of view than the
two fuzzy, extended galaxies at the left of the figure.

When the spectra of these quasi-stellar radio sources were obtained, things became
more unusual still. The spectra contained strong, broad emission lines that didn’t corre-
spond to any known element. The breakthrough to understanding came in 1963, when
Maarten Schmidt had a “Eureka!” moment while looking at the spectrum of 3C 273 (Fig-
ure 21.4). He realized that the emission lines in the spectrum were Balmer lines with a
redshift z = 0.158. No one had been expecting such a high redshift. It corresponds to
a radial velocity vr ≈ cz ≈ 47,000 km s−1 and a distance d ≈ (c/H0)z ≈ 680 Mpc. The
large distance was itself impressive at the time but hardly unprecedented: clusters of
galaxies at redshifts as large as z ≈ 0.2 were already known.

However, what was extraordinary was the luminosity implied by the large distance. A
quasar is an AGN that has a very high luminosity: L > 1038 W, or so. The most luminous
known quasars have L ∼ 1041 W ∼ 3 × 1014L� ∼ 104LMW. The reason why they look
“quasi-stellar” is that quasars are much more luminous than the sum of all the stars in
the galaxies that contain them; thus, the quasars usually appear like unresolved points
of light, just like stars (Figure 21.5). It’s initially difficult to believe that the highest
and lowest luminosity AGNs in Figure 21.5 represent the same phenomenon. Indeed, as

3 Many well-known quasars have names that start with “3C.” This is their catalog number in the third Cambridge
Catalog of radio sources.
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FIGURE 21.4 Spectrum of the quasar 3C 273, showing redshifted Balmer lines.

we’ll describe next, the energy requirements needed to explain quasars were so radical
in the 1960s that a 20-year controversy over the nature of quasars ensued: are they high-
luminosity versions of Seyfert galaxies at the large distances implied by their redshifts,
or are they low-luminosity, nearby objects of some sort, with their large redshifts due to
some other effect than the expansion of the universe? For most astronomers, the matter
was settled definitively in favor of the former hypothesis in the 1980s, with the detection
of stellar absorption features in the faint “fuzz” surrounding quasars.

The remarkable properties of quasars soon led to more efficient ways of discovering
them. For example, quasars are very blue compared to stars, so searches for objects with
“ultraviolet excess” (relative to starlight, of course) proved to be especially effective.
Moreover, it quickly became apparent that there was an even larger population of objects
that had the optical properties of quasars but were weak or even undetectable emitters at
radio wavelengths. These radio-quiet sources became known as quasi-stellar objects,
or simply QSOs. The original radio-loud quasars make up only ∼ 5% of the total
population of QSOs.4

Intensive searches for quasars turned up yet another variant of the AGN theme, objects
that are known as BL Lac objects. Unlike Seyfert galaxies, which are named after their
discoverer, BL Lac objects are named after their archetype, BL Lacertae. The name “BL

4 In practice, the terms QSO and quasar are now used interchangeably by most astronomers.
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(a) NGC 4051
z = 0.00234

(b) Mrk 335
z = 0.0256

(c) PG 0953+414
z = 0.234

FIGURE 21.5 These three AGNs have comparable apparent brightness, but each
step from (a) to (c) represents an increase in distance of about a factor of 10 and an
increase in luminosity of almost a factor of 100.

FIGURE 21.6 A negative image of the object BL Lac (between the two vertical
lines); the area imaged is ∼ 1′ on a side.

Lacertae” is the type of name (two letters plus the Latin genitive form of the constellation
name) that is given to a variable star. In fact, BL Lacertae was originally thought to be a
variable star within our own galaxy. However, deep exposures (Figure 21.6) reveal that
BL Lacertae is not a star but a distant elliptical galaxy; its redshift of z ≈ 0.07 puts it at
a distance d ≈ (c/H0)z ≈ 300 Mpc.

The reason why BL Lacertae was originally mistaken for a star was that its unresolved
nucleus is brighter than the diffuse fuzz of starlight surrounding it. The nuclei of BL
Lac objects are rapidly variable, and have a nonthermal spectrum, but do not show any
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emission lines. This makes it difficult to determine the distance to a BL Lac object, unless
you can manage to detect the absorption lines in the fuzz of starlight. Doing so is very
difficult for many BL Lac objects, since their nuclei are so extraordinarily luminous
compared to their stars. (It also makes it difficult to determine their morphology; it’s
conjectured that all BL Lac objects are ellipticals, but no one is totally sure.) The flux
from a BL Lac object can change significantly from one night to the next; this indicates
that the bulk of the luminosity comes from a region less than one light-day (∼ 200 AU)
across.

Seyfert galaxies were first noticed because someone looked at images of spiral galax-
ies and said, “Wow! Those nuclei are really bright.” BL Lac objects were first noticed
because someone looked at the radio emission from BL Lacertae and said, “Wow! That’s
way too much radio emission for BL Lacertae to be a star.”

21.1.3 Radio Galaxies

Radio galaxies are defined, simply enough, as galaxies that have strong radio emission.
Sometimes it is stated that radio galaxies must have Lradio > 1033 W ∼ 3 × 106L� at
radio wavelengths, but that’s a fairly arbitrary cutoff, chosen because a bright but inactive
spiral galaxy—like our own galaxy—has Lradio ∼ 1033 W from its interstellar gas. The
strongest radio galaxies have Lradio ∼ 1038 W ∼ 3 × 1011L�. Strong radio sources are
most frequently associated with elliptical galaxies, but sometimes radio galaxies are
classified as “peculiar,” as in the case of Centaurus A (Figure 21.7).

In a radio galaxy, the radio emission is not necessarily confined to a central nucleus.
Extended radio galaxies have long jets that can be much larger than the image of the
galaxy at visible wavelengths. For instance, Centaurus A is an extended radio galaxy;

FIGURE 21.7 A contour map of λ = 6 cm radio emission from the extended
radio galaxy Centaurus A, superimposed on a B-band image of the galaxy.
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FIGURE 21.8 The nucleus and jet of the elliptical galaxy M87.

Figure 21.7 shows the long radio jets of Centaurus A superimposed on its visible-light
image. The jets of an extended radio galaxy can be over a megaparsec long.

Compact radio galaxies have smaller jets, frequently accompanied by an unresolved
radio source at the galaxy’s nucleus. Very-long-baseline interferometry reveals that the
material in jets is moving outward at relativistic speeds; indeed, the apparent motion
of jets away from the nucleus often appears to be faster than the speed of light (or
superluminal), although this is simply a projection effect (as described in the Appendix
to this chapter). To find a compact radio galaxy, we need go no farther than the nearby
Virgo Cluster of galaxies. The galaxy M87, a bright elliptical galaxy near the cluster’s
center, goes under the alias “Virgo A,” indicating that it’s the highest-flux radio source
in the constellation Virgo.

In the central regions of M87, there’s a 2 kpc long jet seen at radio, visible, and X-
ray wavelengths (Figure 21.8). Hubble Space Telescope imaging of the central regions
reveals a gas disk perpendicular to the jet. The disk (Color Figure 26) looks like the
minispiral of hot gas in the center of our own galaxy, only an order of magnitude bigger.
The radius of the central disk in M87 is r = 16 pc = 4.9 × 1017 m; we are seeing it at an
inclination i = 42◦. The observed spectrum of the disk reveals that it is rotating with

vc sin i = 460 km s−1, (21.1)

or vc = 690 km s−1. We can then calculate that the mass within 16 pc of the center is

M = v2
c
r

G
≈ 4 × 1039 kg ≈ 2 × 109M�. (21.2)

This mass is primarily due to the supermassive black hole at the center of M87.5

5 It is tempting to call it a “hypermassive” black hole, since it is more than 500 times the mass of the relatively
dainty black hole at the center of our galaxy.
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21.2 ACCRETION BY SUPERMASSIVE BLACK HOLES

21.2.1 Energetics

As matter falls toward a black hole, a large amount of energy can, in principle, be
extracted from it. Suppose a mass m falls from a large distance r � rSch toward the
Schwarzschild radius (equation 18.54), rSch = 2GMbh/c

2, of a black hole. Its loss of
gravitational potential energy will be

�E = −GMbhm

r
+ GMbhm

rSch
≈ GMbhm

rSch
≈ 1

2
mc2. (21.3)

If the mass isn’t halted before reaching the Schwarzschild radius, it will pass the event
horizon with a speed v ∼ c/

√
2, and its kinetic energy will go to swell the mass of the

black hole. If the mass is decelerated by slamming into an accretion disk (as described in
Section 18.3), its kinetic energy will be converted into thermal energy, and then into
photon energy. The conversion of gravitational potential energy (equation 21.3) into
photon energy is not perfectly efficient. (Some of the energy, for instance, goes into
the kinetic energy of the outflowing jets.) It is customary to write the energy carried
away by photons as

�Ephot = ηmc2, (21.4)

where η is a dimensionless number, sometimes called the “efficiency” of the black hole.
From equation (21.3), we expect η ≤ 1/2. In practice, it is thought that a typical active
galactic nucleus has

η ≈ 0.1, (21.5)

which means that a single gram of matter falling toward the central black hole yields 9
trillion joules of radiation energy.

As gas feeds into the black hole at a rate Ṁ , the luminosity of the AGN is

L = ηṀc2. (21.6)

If we know an AGN’s luminosity, we can then deduce its infall rate Ṁ:

Ṁ = L

ηc2
= 0.018M� yr−1

(
L

1037 W

) (
η

0.1

)−1

. (21.7)

In general, we don’t expect Ṁ to be constant with time, perhaps accounting for some of
the variability detected in the luminosity of AGNs. The low luminosity of the Galaxy’s
central black hole, L ∼ 1000L� ∼ 4 × 1029 W, implies either a low infall rate at the
present moment (Ṁ ∼ 10−9M� yr−1), or a low efficiency, or both.

21.2.2 The Eddington Limit

You might think that by shoveling in matter at higher and higher rates, you can make
an AGN have arbitrarily high luminosity. In fact, there exists a maximum permissible



498 Chapter 21 Active Galaxies

luminosity for a given black hole mass Mbh; crank up the luminosity too high, and the
gas surrounding the black hole will be blown away by radiation pressure. Consider an
accreting black hole of mass Mbh and luminosity L = ηṀc2. Let’s assume that the black
hole is surrounded by ionized hydrogen.6

At a distance r from the active nucleus, the photons have an energy flux

F = L

4πr2
. (21.8)

In addition to an energy E, each photon has a momentum p = E/c. Thus, the outward
flow of photons creates a momentum flux

Fp = F

c
= 1

c

L

4πr2
. (21.9)

Because the photons carry momentum, they can exert a force on the free electrons
and protons in the ionized hydrogen. The force exerted on each particle is the rate
at which momentum is transfered to it. The rate of momentum transfer depends in
turn on the particle’s cross-section for interaction with photons. Electrons have a much
larger cross-section for photon interactions than protons do.7 For electrons, the relevant
cross-section is the Thomson cross-section (equation 15.24) σe = 6.65 × 10−29 m2. The
electron experiences an outward force due to radiation pressure. The amplitude of the
force is equal to the momentum flux times the electron’s cross-section:

Frad = σeFp = σeL

4πcr2
. (21.10)

As the electron is accelerated, it drags the nearest proton along with it, which maintains
charge neutrality. Thus, every electron is burdened with a massive proton that it drags
along like a ball and chain.

The inward force on the electron–proton pair is provided by gravity:

Fgrav = −GMbh(mp + me)

r2
≈ −GMbhmp

r2
, (21.11)

since the electron mass me is insignificant compared to the proton mass mp. The max-
imum possible luminosity for the accreting black hole is called the Eddington lumi-
nosity, or Eddington limit, after the astronomer Arthur Eddington. The Eddington
luminosity LE is the luminosity at which the outward radiation force exactly equals
the inward gravitational force:

σeLE

4πcr2
= GMbhmp

r2
. (21.12)

6 It’s natural that the gas should be ionized, since it’s heated as it falls toward the black hole. The assumption
that it’s pure hydrogen is simply to make the calculation easier.
7 As shown by equation (15.24), the cross-section goes as 1/m2, where m is the particle mass. Since electrons
are less massive than protons by a factor ∼ 1/2000, they have larger cross-sections by a factor ∼ 4 million.
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Note that the factors of r2 cancel: the ratio of radiation force to gravitational force is
independent of distance from the black hole. The Eddington luminosity for a black hole
of mass Mbh is

LE = 4πGmpc

σe

Mbh = 1.3 × 1039 W

(
Mbh

108M�

)

= 3.3 × 1012L�

(
Mbh

108M�

)
. (21.13)

If the luminosity is greater than LE, then the ionized gas will be accelerated outward and
accretion will cease. The existence of a maximum luminosity LE leads to a maximum
accretion rate for black holes:

ṀE = LE

ηc2
= 2M� yr−1

(
Mbh

108M�

) (
η

0.1

)−1

. (21.14)

If you try to feed a black hole more rapidly than this, it spews the gas back out. It is
sometimes useful to express the accretion rate in terms of the Eddington rate,

ṁ = Ṁ

ṀE

, (21.15)

which we refer to as the Eddington ratio.

21.2.3 Accretion Disks

As discussed earlier in Section 18.3, infalling gas does not plummet directly through the
Schwarzschild radius and into the black hole. If the gas has any net angular momentum,
it will first pancake into an accretion disk. Let’s suppose that such an accretion disk will
be geometrically thin but optically thick, so that each point on the disk’s surface radiates
like a blackbody. Given these assumptions, consider a small patch of the accretion disk,
with area dA, at a distance r from the black hole. The luminosity of the patch is

dL = (2 dA)(σSBT 4), (21.16)

where T is the temperature of the patch; the factor of 2 enters because each surface of
the patch is radiating. The mass of the patch is dM = � dA, where � is the mass surface
density. Thus, the luminosity of the patch can also be written as

dL = 2dM

�
σSBT 4. (21.17)

The energy that is radiated away ultimately comes from the gravitational potential
energy of the patch, which can be written in the form

dU = −GMdM

r
, (21.18)
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where M is the mass of the central black hole. As viscosity causes the patch to slowly
spiral inward, it loses gravitational potential energy at the rate

dLpot = GMdM

r2

dr

dt
= GMdM

r2
v, (21.19)

where v is the radial speed of the patch as it moves toward the black hole. If we assume
that all the gravitational potential energy goes to heating the disk, we can combine
equations (21.17) and (21.19) to find the temperature of the patch:

2 dM

�
σSBT 4 ≈ GMdM

r2
v, (21.20)

or

T ≈
[

GM

2σSBr2
�v

]1/4

. (21.21)

The above equation can be simplified if the accretion disk is axisymmetric and the mass
infall rate Ṁ is constant with time. Under these conditions, mass conservation requires
that

Ṁ = 2πr�(r)v(r), (21.22)

which is the two-dimensional equivalent of the three-dimensional continuity equation
that we previously derived for a steady-state solar wind (equation 7.7).

Equations (21.21) and (21.22) can be combined to find the temperature profile of a
steady-state, axisymmetric disk:

T (r) ≈
[

GMṀ

4πσSBr3

]1/4

∝ r−3/4. (21.23)

It is convenient to express the radius r in terms of the Schwarzschild radius (equa-
tion 18.54) and the mass accretion rate Ṁ in terms of the Eddington ratio (equa-
tion 21.15):

Ṁ = ṁṀE = ṁLE

ηc2
= ṁ

(
4πGmp

σeηc

)
M. (21.24)

A little rearranging of equation (21.23) yields

T (r) ∼
(

c5mp

8σSBGσe

)1/4 (
ṁ

M

)1/4 (
r

rSch

)−3/4

∼ 3 × 105 K ṁ1/4

(
M

108M�

)−1/4 (
r

rSch

)−3/4

. (21.25)

The continuum emission from quasars typically peaks in the ultraviolet, at an emitted
wavelength of about 1000 Å. If this is the peak thermal emission from the accretion
disk, Wien’s law tells us that the temperature of the disk is about 3 × 104 K; inserting
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this temperature into equation (21.25) tells us that UV emission arises at

(
r

rSch

)
∼ 14

(
ṁ

η

)1/3
(

M

108M�

)−1/3

. (21.26)

21.3 THE STRUCTURE OF AGNS AND UNIFIED MODELS

Seyfert galaxies, BL Lac objects, and radio galaxies seem to be something of a mixed
bag, with different morphologies and spectra. However, it is possible to describe all of
the various types of AGN in the context of unified models; the goal of unified models is
to describe the broadest range of AGN phenomenology while using the fewest possible
free parameters. The basic idea is that AGN structure is more flattened than spherical and
that the visibility or strength of various components depends strongly on the inclination
of the AGN axis relative to the line of sight.

We start by listing the major components of AGN, starting from the inside and working
outward. At the heart of every AGN, there is a supermassive black hole. While this was
suspected for many years based on the combination of the energetics arguments outlined
earlier and the observed rapid flux variability (implying a compact emitting region), more
recent spectroscopic evidence for supermassive black holes in AGNs comes in the form
of the high-speed motions of stars and gas in galactic nuclei. The Schwarzschild radius
of a 108M� black hole (equation 18.54) is ∼ 3 × 1011 m ∼ 2 AU.

Surrounding the black hole is an accretion disk that accounts for the ultraviolet and
visible continuum emission of AGNs. Equation (21.25) tells us that the ultraviolet and
visible emission from a 108M� black hole arises on a scale of 1012–1013 m. The origin
of X-rays is less well understood, but they seem to be produced in a hot corona that
surrounds the accretion disk. The jets observed in some objects are thought to arise
on this same physical scale. Some ionized gas is ripped from the accretion disk by
electromagnetic fields, and spirals along magnetic field lines away from the disk, forming
a jet. The accelerated electrons in the ionized gas emit synchrotron emission, accounting
for the radio emission from the jet.

Proceeding outward, the size of the broad-line region is measured by timing the delay
between flux variations of the ultraviolet and visible continuum and the response of the
broad emission lines, a technique known as reverberation mapping; the time delay is
simply due to the light travel time across the broad-line region. The size of the broad-line
region scales with luminosity:(

Rblr

1015 m

)
≈ 0.26

(
Lbol

1037 W

)1/2

(21.27)

It has been speculated that the broad-line region may be the outer part of the accretion
disk structure.

The outer extent of the broad-line region seems to be defined by the dust sublima-
tion radius, the closest point to the continuum source where graphite grains can survive
the intense ultraviolet radiation emitted by AGNs; dust at smaller radii, where the equi-
librium blackbody temperature exceeds ∼ 1500 K, is simply vaporized. The existence
of dust is important in unified models because dust supplies the source of opacity that
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can block our direct view of the inner regions from some directions. The sublimation
radius marks the inner edge of dusty structure with a larger scale height than the inner
regions. It is often referred to as the obscuring torus, or dusty torus (although evidence
is accumulating that this region is not a doughnut-shaped structure but is rather the cool,
dense part of a disk wind that arises from the accretion-disk structure itself ).

The inner part of the narrow-line region is on about the same scale as the obscuring
torus but can extend out to hundreds of parsecs. The morphology of the narrow-line
region is often wedge-shaped or conical and along the axis of the black-hole/accretion-
disk system. The narrow-line region gas is apparently just the interstellar medium of the
host galaxy; interstellar gas that is not shielded from the central source by the obscuring
torus is photoionized by the AGN ultraviolet radiation.

A schematic view of such a unified model is illustrated in Figure 21.9, which shows
that the type of AGN you see from Earth depends on the orientation of the outer torus
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FIGURE 21.9 Cross-sectional view of an active galactic nucleus on three different
scales. (a) An active galactic nucleus on a large scale. Vertical structures are jets of
gas; in the equatorial plane is a torus of dusty clouds. (b) Expanded view of the
central region. Small clouds of gas are concentrated near the equator. (c) Further
expanded view. In the equatorial plane is a gas disk that is very bright in visible light.
X-rays are emitted by hot gas near the disk.
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of dusty clouds relative to the line of sight. If you look directly along the jet (vector 4 in
Figure 21.9), you see primarily synchrotron emission from the jet. In this case, you see
the featureless continuum spectrum characteristic of BL Lac objects. If you look at an
angle close to the jet (vector 3), you get a good look at the accretion disk and the broad-
line region, close to the event horizon where gas is moving very rapidly. In this case,
you see broad emission lines from the rapidly moving gas, and the AGN is classified as
a Seyfert 1 galaxy. If you look at an angle close to the disk (vector 1), the broad-line
region is hidden by dust, and you can see only the narrow-line region, farther from the
central black hole. In this case, you see narrow emission lines, and the AGN is classified
as a Seyfert 2 galaxy. At some angles (vector 2), you are playing peekaboo with the edge
of the obscuring torus.8

The key piece of evidence supporting this scenario is that some Seyfert 2 galaxies have
clear broad-line region components visible in their polarized spectra. The light from the
continuum source and the broad-line region is scattered into the observer’s line of sight by
electrons, which polarize the light they scatter, above the plane of the obscuring region.

It is also worth noting that while the majority of low-luminosity AGNs are Seyfert
2 galaxies, outnumbering Seyfert 1 galaxies by about three to one, “quasar 2” objects
are extremely rare. Certainly this has something to do with the large dust sublimation
radius for more luminous objects. If, for example, the scale height of the obscuring dust
is independent of luminosity, then in more luminous quasars, the obscuring torus covers
a smaller fraction of the sky as seen from the central source.

21.4 QUASARS OVER COSMIC HISTORY

Astronomers are fond of the saying “A telescope is a time machine.” As we look farther
out in space, we are looking farther back in time. When we look at 3C 273, 2 billion
light years away, we are seeing it as it was 2 billion years ago. When we look at the
quasar with the highest known redshift, z = 6.4, the relativistically correct equations
tell us that we are looking at a quasar that is currently 27 billion light years away, and
we are seeing it as it was 13 billion years ago.9 We know from the measured masses
of black holes today that quasars must have relatively short lives. The most luminous
quasars, with L ≈ 3 × 1014L�, must have accretion rates Ṁ ≈ 200M� yr−1 to maintain
that luminosity. The biggest supermassive black holes today have Mbh ∼ 4 × 109M�. To
grow to that mass at the accretion rate of the most luminous quasars would take a time

t ≈ Mbh

Ṁ
≈ 4 × 109M�

200M� yr−1
≈ 20 Myr. (21.28)

8 In rare cases of extreme variability, AGNs appear to change from type 1 to type 2, or vice versa. Such extreme
behavior can be understood in the context of a patchy obscuring medium.
9 The z = 6.4 quasar is currently more than 13 billion light years away because the distance between us and
it has been constantly stretching during the past 13 billion years. At the time the quasar emitted the light that
we see today, it was only 3.7 billion light years away. The details of computing the distance to high-redshift
objects are given in Section 23.4.
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FIGURE 21.10 Host galaxies of six quasars (d ∼ 400 → 900 Mpc).

If the most luminous quasars maintained their luminosity for the age of the universe
(∼ 14 Gyr), they would have grown to ∼ 3 × 1012M� by the present day.

When we compute the number density of quasars as a function of redshift, we find that
there were many more quasars in the past than there are now. At the present moment,
only one in a million bright galaxies is a quasar. When the universe was about 20%
of its present age (that is, when it was ∼ 2.7 Gyr old), about one in a thousand bright
galaxies was a quasar. The black holes that accreted gas and drove the luminosity of
the quasars haven’t gone away. Black holes can only grow more massive with time.10

This means that the black holes that powered quasars are still around today, bigger
and fatter than ever. They are just less luminous because they are being fed gas at a
lower rate. Old quasars never die—they just go into hibernation when there’s nothing to
eat.

One reason why supermassive black holes accreted gas more rapidly in the past is
hinted at when you look at the high-redshift galaxies that host quasars (Figure 21.10).
Although some quasar hosts are fairly normal-looking spiral and elliptical galaxies
(Figure 21.10a), most are peculiar-looking galaxies in the process of merging. Galaxy
mergers were more common in the past than they are now—in an expanding universe,
galaxies were closer together in the past. When galaxies merge, their gas clouds collide,
lose angular momentum, and fall to the center of the merged galaxy, where the black
hole(s) are ready to accrete them.11

10 Unless they are extremely tiny, in which case Hawking radiation makes them evaporate.
11 When two galaxies, each with a central, supermassive black hole, merge to form a new, larger galaxy, it is
not known with certainty how long it takes for their two black holes to become one. They may just form a
stable black hole binary at the center of the new galaxy.
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21.5 PROBING THE INTERGALACTIC MEDIUM

Quasars are interesting not merely for their own sake, but because they act as probes
of the intergalactic medium. Light from quasars hundreds of megaparsecs away must
pass through hundreds of megaparsecs of intergalactic gas before it reaches us. Just as
stellar spectra can show absorption lines from interstellar gas clouds (see Section 16.2),
quasar spectra can show absorption lines from intergalactic gas. Because the gas clouds
between us and the quasar are at a smaller distance d than the quasar (Figure 21.11),
they have a smaller redshift z. Thus, the absorption lines are at shorter wavelengths
than the corresponding emission line from the quasar itself. As an example, consider
the Lyman alpha line of neutral hydrogen, which has a rest wavelength of λ0 = 1216 Å.
The quasar QSO 1425+6039 has a redshift of z = 3.18, so its Lyman alpha emission line
peaks at a wavelength λ = (1+ z)λ0 = (4.18)(1216 Å) = 5080 Å, in the visible range of
the spectrum, which makes it convenient for observation (Figure 21.12). The absorption
lines from neutral hydrogen in the intervening atomic gas will be at wavelengths ranging
from 1216 Å to 5080 Å.

0

0.2

0.4

0.6

0.8

1

T
ra

ns
m

itt
ed

 f
lu

x

(a)

(b)

FIGURE 21.11 (a) An observer looks through the distribution of intergalactic
gas, looking toward a quasar lying in the direction of the arrow. Darker regions
indicate denser gas. (b) The resulting Lyman alpha absorption spectrum.
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FIGURE 21.12 Spectrum of the z = 3.18 quasar, QSO 1425+6039. The broad
emission line at λ = 5080 Å is the red-shifted Lyman α line from the quasar itself.
The absorption lines at shorter wavelengths arise in neutral hydrogen gas between
us and the quasar and constitute the “Lyman alpha forest.” Note the damped Lyman
α absorption line at λ ≈ 4650 Å, corresponding to high-column-density gas at a
redshift z ≈ 2.8.

For high-redshift quasars like QSO 1425+6039, a great many individual absorption
lines are seen. The thicket of Lyman alpha absorption lines is referred to as the “Lyman
alpha forest.” Some of the absorbers along the line of sight are extremely optically thick
(τ > 104) at the wavelength of Lyman alpha. Therefore, they produce Lyman alpha
absorption lines that are saturated in the center and have Lorentz damping wings to
either side (see Section 5.5). These high-density absorbers are called “damped Lyman
alpha” systems. Much of the neutral gas in the universe at high redshifts is in damped
Lyman alpha systems. By converting part of their gas into stars, damped Lyman alpha
systems will evolve into galaxies of the type we see today.

The study of Lyman alpha systems is a topic of much interest, since it gives us
an unfolding picture of how galaxies and other structures in the universe evolve. In
particular, observations of quasar absorption lines (see Figure 21.12, for instance) are
well explained by simulations such as the one shown in Figure 21.11, which includes
the effects of gravity, gas dynamics, and ionization by the ultraviolet background light.
In such simulations, it is found that much of the volume of intergalactic space contains
low-density ionized gas. The observed Lyman alpha forest is produced by denser neutral
gas that tends to lie along filaments. The damped Lyman alpha lines are produced by
high-column-density neutral gas that seems to correspond to the gas-rich disks of young
galaxies.

APPENDIX: SUPERLUMINAL RADIO SOURCES

Beginning in the 1970s, the technique of very-long-baseline interferometry allowed the
imaging of quasars at resolutions of one milliarcsecond or less. These high-resolution
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FIGURE 21.13 The observer at A makes two observations of a radio source, the
first at position B1 and the second when the radio source has moved to B2.

radio images revealed that some radio-loud quasars have multiple components that
are moving apart from each other with startlingly large proper motions. For instance,
the quasar 3C 273 has a radio jet containing compact “knots” of emission. These
knots are moving away from the base of the jet with a proper motion as large as
μ′′ ≈ 7 × 10−4 arcsec yr−1. Given the distance to 3C 273 implied by its redshift,
d ≈ 0.158(c/H0) ≈ 6.8 × 108 pc, this naı̈vely implies a tangential velocity (equation
19.22) of

vt ≈ 4.74(6.8 × 108)(7 × 10−4) km s−1 ≈ 2 × 106 km s−1 ≈ 7c. (21.29)

This faster-than-light (or superluminal) tangential velocity led some astronomers to
conclude that, in order to avoid violating special relativity, the jet of 3C 273 must be
at less than 1/7 the distance implied by its redshift. However, it can be shown that
apparent superluminal motion can result from relativistic motion close to the line of
sight.

The conditions under which apparent superluminal motion can occur are illustrated
in Figure 21.13. An observer is at point A. At a time t1, a radio source (a hot blob of
gas, for instance) is located at point B1. At some later time t2, the same radio source is at
point B2. In moving from position B1 to B2, the radio source has traveled at an angle θ

relative to the observer’s line of sight. If the source is moving at a speed v, the distance
between B1 and B2 is vδt , where δt ≡ t2 − t1.

The photons emitted by the radio source at time t1 and position B1 are detected by the
observer at A at a time

t ′1 = t1 + d + vδt cos θ

c
, (21.30)

where the second term is the light travel time from B1 to A. The photons emitted by the
radio source at time t2 and position B2 are detected at a time

t ′2 = t2 + 1

c

[
d2 + v2δt2 sin2 θ

]1/2

≈ t2 + d

c
, (21.31)
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where the second term is the light travel time from B2 to A, assuming vδt � d. The
interval between the two observations is thus

�t = t ′2 − t ′1 = t2 − t1 − vδt cos θ

c

= δt − vδt cos θ

c

= δt (1 − β cos θ), (21.32)

where in the last step we have used the common definition β ≡ v/c. If the radio source
is moving toward the observer (cos θ > 0), then the time between observations, �t =
t ′2 − t ′1, will be shorter than the time between emissions, δt = t2 − t1. If the radio source
is moving almost straight toward the observer at highly relativistic speeds, then the factor
β cos θ will be nearly equal to 1, resulting in �t � δt .

During the time interval �t between observations, the radio source will move through
an angle �φ = vδt sin θ/d as seen by the observer. Thus, the observer will compute a
proper motion (in radians per unit time)

μ = �φ

�t
= vδt sin θ

d

1

δt (1 − β cos θ)

= v sin θ

d(1 − β cos θ)
. (21.33)

We can multiply the proper motion by the distance d to get the tangential velocity vt ;
then, dividing this by the speed of light we obtain

βt = μd

c
= v sin θ

c(1 − β cos θ)
= β sin θ

1 − β cos θ
. (21.34)

It is left as an exercise for the reader to show that the maximum value of βt(θ) occurs
when the radio source is moving at an angle θmax = cos−1 β relative to the line of sight;
in that case, the value of βt is

βmax
t

= β

(1 − β2)1/2
. (21.35)

As β → 1, βmax
t

can become arbitrarily high. For βmax
t

≥ 7, required to explain the
apparent superluminal motion in the jet of 3C 273, the true velocity of the jet material
must be β ≥ (49/50)1/2 ≈ 0.99, and it must be moving at an angle θ ≈ cos−1 β ≤ 8◦
relative to the line of sight.
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PROBLEMS

21.1 The quasar PDS 456 has a redshift z = 0.184 and an apparent magnitude mV = 14.0.

(a) What is the distance to this quasar?
(b) What is its absolute magnitude, MV ?

21.2 At what redshift will the Lyα line (λ0 = 1215 Å) be centered in the Johnson–Cousins
U band? (Quasars will be particularly easy to discover at this redshift.)

21.3 The Eddington limit applies to stars as well as to accreting black holes and places an
upper limit on their mass. Using the mass–luminosity relation for high-mass stars (see
Section 13.6), determine the maximum mass of a star that is stable against disruption
by radiation pressure.

21.4 Stellar-mass black holes in close binary systems can have hot accretion disks.
These systems, sometimes called “microquasars,” are bright X-ray sources. Explain
quantitatively why microquasars are so luminous in X-rays. (Hint: equation (21.25)
gives the temperature of an accretion disk.)

21.5 Starting from equation (21.27), demonstrate that the angular diameter of an AGN’s
broad-line region is proportional to the square root of the AGN’s bolometric
flux. The apparently brightest AGN is NGC 4151, with bolometric flux Fbol =
1.2 × 10−12 W m−2 and redshift z = 0.00332. What is the angular size of the broad
line region of NGC 4151, measured in arcseconds?

21.6 If the widths of the broad-emission lines in AGN spectra were due to thermal
broadening, how hot would the gas have to be? On what grounds can we exclude the
possibility of pure thermal broadening?

21.7 Suppose that you have a spectrum of the quasar 3C 273, as shown in Figure 21.4. You
measure the width of the Hβ emission line to be 3500 km s−1 and the optical flux to
be Fopt = 10−13 W m−2. From these data, estimate the following:

(a) the bolometric luminosity of the quasar, assuming Lbol ≈ 9Lopt
(b) the size of the Hβ-emitting region
(c) the mass of the central black hole
(d) the Eddington luminosity
(e) the Eddington ratio

21.8 For a quasar jet, show that the maximum value of βt(θ) occurs when the radio source
in the jet is moving at an angle θmax = cos−1 β relative to the line of sight; then prove
that equation (21.35) is correct.
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21.9 Most quasars do not show damped Lyman alpha lines in their “Lyman alpha
forest.” However, by observing many quasars, we can estimate that the mean free
path λ between damped Lyman alpha absorbers is ∼ 70,000 Mpc. Assuming that
these systems are associated with luminous galaxies, which have a space density
n ≈ 0.01 Mpc−3, what does this say about the size of the atomic hydrogen disks of
typical luminous galaxies?



22 Clusters and
Superclusters

If the universe is a loaf of raisin bread (a metaphor that we adopted in Section 20.5),
then the raisins are not uniformly distributed through the loaf. Speaking less metaphor-
ically, galaxies are not uniformly distributed through space. Figure 22.1 is a plot of the
distribution of galaxies in the northern sky with B < 19 mag. The plot is based on the
Shane–Wirtanen catalog of galaxies. Shane and Wirtanen photographed the portion of
the sky visible from Lick Observatory, then spent long hours counting the ∼ 106 galaxies
detected on the photographic plates. In the plot of the Shane–Wirtanen counts, we defi-
nitely see a nonuniform distribution. People tend to use the words “bubbly” or “spongy”
when they describe the large-scale distribution of galaxies. The galaxies lie along walls
or filaments, with particularly strong concentrations in the clusters where filaments meet.

The universe shows hierarchical structure; that is, it contains structure on a very
wide range of length scales.

. Stars (typical diameter d ∼ 106 km) are found largely in gravitationally bound
objects called galaxies, containing 106 → 1012 stars, plus gas, dust, and dark
matter.

. Galaxies (typical diameter d ∼ 10 kpc) are found largely in gravitationally bound
objects called groups or clusters, containing 10 → 104 galaxies, plus gas and dark
matter.

. Groups and clusters (typical diameter d ∼ 1 Mpc) are found largely in currently
collapsing objects called superclusters.

Superclusters have a maximum length d ∼ 100 Mpc and are among the largest structures
in the universe.

22.1 CLUSTERS OF GALAXIES

Groups and clusters are both gravitationally bound aggregations of galaxies, differing
only in the number of galaxies that they contain. Groups contain fewer galaxies than
clusters; typically, collections of fewer than 50 galaxies are called groups, but the
boundary between a large group and a small cluster is not sharply defined.

511
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FIGURE 22.1 Distribution of galaxies in the Northern Galactic Hemisphere; the
missing slice at lower right is inaccessible from Mount Hamilton, California, where
Lick Observatory is located.

To start at home, our own galaxy is part of a group called the Local Group. The
Local Group, mapped in Figure 22.2, contains at least 40 galaxies. The exact number of
galaxies in the Local Group is not known, since most of the galaxies are inconspicuous
dwarf spheroidal and dwarf irregular galaxies. Like most small clusters, the Local Group
is irregularly shaped. Most of the galaxies clump around our own galaxy (labeled “Milky
Way” in Figure 22.2) and M31 (also known as the Andromeda Galaxy). Our own galaxy
and M31 contain most of the mass and luminosity in the Local Group. Third and fourth
place go to M33 (an Sc galaxy) and the Large Magellanic Cloud. Most of the remaining
galaxies are low-luminosity, low-surface brightness “fluff muffins.”

The nearest cluster to the Local Group is the Virgo Cluster. The distance to the center
of the Virgo Cluster is d = 16 Mpc, found using Cepheid stars as standard candles. The
diameter of the Virgo Cluster is D ≈ 2 Mpc; the caveat should be added that the Virgo
Cluster is not particularly close to being spherical. Since the Virgo Cluster is both large
and nearby (as clusters go), it subtends a large angle against the sky. It sprawls over a
region ∼ 7◦ across, covering much of the constellation Virgo and stretching into Coma
Berenices.

The four brightest galaxies in the Virgo Cluster (named M49, M60, M86, and M87)
are all giant elliptical galaxies, swollen to a large size by cannibalizing smaller galaxies.1

These four giant ellipticals each have an apparent magnitude V ∼ 9 mag, so even in a

1 As we’ve seen in Chapter 21, M87 is also a radio galaxy.
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FIGURE 22.2 A map of the Local Group; note that the barycenter (a.k.a. the
center of mass) is roughly midway between the Milky Way Galaxy and M31.

nearby cluster like Virgo, distance has rendered highly luminous galaxies invisible to
the naked eye. There are several other Virgo-sized clusters within 60 Mpc of us (Abell
3655, Hydra, and Centaurus, for instance) as well as numerous smaller groups.

The nearest rich cluster of galaxies is the Coma Cluster, so called because it is in
the constellation Coma Berenices, slightly north of the Virgo Cluster. A snapshot of
the Coma Cluster (seen in the left panel of Color Figure 27) shows only the most
luminous galaxies in the cluster. The two brightest galaxies in the cluster, NGC 4889
and NGC 4874, have an apparent magnitude V ∼ 13 mag. Deeper images of the Coma
Cluster reveal as many as 10,000 galaxies.

The distance to the Coma Cluster can be estimated from the Hubble law (see Sec-
tion 20.5). The 100 brightest galaxies in the cluster have an average redshift of 〈z〉 =
0.0232. This corresponds to a radial velocity

vr = c〈z〉 = 6960 km s−1. (22.1)

The distance to the Coma Cluster is, from the Hubble law (equation 20.30),

dComa = c

H0
〈z〉 = (4300 Mpc)(0.0232) = 100 Mpc, (22.2)

about six times the distance to the Virgo Cluster.
Knowing the distance, we can now estimate the absolute magnitude of the bright

Coma galaxies, NGC 4889 and NGC 4874:
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MV = V − 5 log d + 5 ≈ 13 − 5 log(108) + 5

≈ 13 − 40 + 5 ≈ −22 mag. (22.3)

This is a magnitude brighter than M31 or the Milky Way, and comparable to the very
brightest galaxies known. The luminosity of the Coma Cluster as a whole is estimated
to be

LB ≈ 8 × 1012LB,�. (22.4)

Our own galaxy has LB,MW ≈ 2 × 1010LB,�, so the luminosity of the Coma Cluster in
the B band is equal to 400 times the luminosity of the Milky Way. Just as most of the
visible light in a galaxy comes from a relatively few luminous stars, most of the visible
light in a cluster comes from a relatively few luminous galaxies.

The mass of the Coma Cluster can be estimated from the virial theorem (equa-
tion 20.20):

M ≈ 7.5
σ 2rh

G
. (22.5)

Now galaxies, not stars, are the individual masses whose line-of-sight velocity we
measure. For the 100 brightest galaxies in the Coma Cluster, the dispersion in the radial
velocities is

σ = 880 km s−1 = 8.8 × 105 m s−1. (22.6)

The half-light radius of the cluster is

rh = 1.5 Mpc = 4.6 × 1022 m. (22.7)

The virial theorem estimate of the mass is then

M ≈ 7.5
(8.8 × 105 m s−1)2(4.6 × 1022 m)

6.67 × 10−11 m3 s−2 kg−1
(22.8)

≈ 4 × 1045 kg ≈ 2 × 1015M�.

With a mass-to-light ratio M/LB ≈ 250M�/LB,�, the Coma Cluster must be amply
supplied with dark matter.

The mass of the Coma Cluster can also be estimated by looking at its X-ray emission
(right panel of Color Figure 27). The X-ray emission, produced by hot intergalactic gas,
looks smoothly distributed, which suggests that the hot gas is in hydrostatic equilibrium.
From the X-ray spectrum, it is estimated that the average temperature of the hot gas is

〈Tgas〉 ≈ 1 × 108 K, (22.9)

and that the total amount of gas radiating X-rays is

Mgas ≈ 2 × 1014M�, (22.10)

about 10% of the total mass of the cluster. Back when we were discussing stellar interiors
(see Section 15.1), we noted that if a sphere of gas with radius R is in hydrostatic
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equilibrium, its central temperature must be

Tc ≈ 2GMμmp

Rk
, (22.11)

if the pressure is described by a perfect gas law. If we substitute R ∼ 2rh and Tc ∼ 〈T 〉,
we can estimate the mass of the Coma Cluster:

M ∼ rhk〈T 〉
Gμmp

. (22.12)

With μ ≈ 0.6 (assuming a mix of ionized hydrogen and helium with a few metals),
rh ≈ 1.5 Mpc, and 〈T 〉 ≈ 108 K, the mass estimated from X-ray emission is

M ∼ 1045 kg ∼ 0.5 × 1015M�. (22.13)

Despite the crudity of our estimate, we get a mass in the same ballpark as our earlier
mass estimate M ≈ 2 × 1015M� from the virial theorem.2

22.2 WHEN GALAXIES COLLIDE!

The novel When Worlds Collide, by Wylie and Balmer, is a classic of science fiction.
But how often do objects actually collide in the real universe? Consider a population of
stars, each with radius R. One particular star is moving with a speed v relative to the
average velocity of the stars in its vicinity. When its center comes within a distance 2R

of the center of any other star, the two stars will collide. During a time t , the star sweeps
out a cylindrical volume of length vt and radius 2R; any star whose center lies within
this cylinder will collide with the moving star. The volume of the cylinder is

V (t) = vt (4πR2). (22.14)

If the number density of stars is n, the average number of stars colliding with our moving
star will be

N(t) = nV (t) = nvt (4πR2). (22.15)

The mean time between collisions for any individual star, t, will be roughly the time
required to make N = 1, that is,

t ≈ 1

nv(4πR2)
. (22.16)

Scaled to the properties of stars in the solar neighborhood,

2 More sophisticated models of the X-ray emission yield M = (1.3 ± 0.5) × 1015M� within 3 Mpc of the
cluster’s center.
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t ≈ 5 × 1010 Gyr

(
R

R�

)−2 (
v

30 km s−1

)−1 (
n

0.1 pc−3

)−1

. (22.17)

During the Sun’s lifetime of 4.6 Gyr, its probability of slamming into another star is
only 1 in 10 billion; no wonder such a collision hasn’t occurred. In the central parsec of
our galaxy, where n ∼ 107 pc−3 and v ∼ 200 km s−1, the time between collisions is just
t ∼ 80 Gyr, nearly a billion times shorter than in the solar neighborhood. Since t near
the Galactic center is only 8 times the age of the Galaxy, the probability that a low-mass
star will undergo a collision during its lifetime is no longer negligible.3

We can also ask how often galaxies collide with each other. Galaxies are much larger
than stars but are also more widely spaced. Let’s take, as an example, the Coma Cluster,
which contains about 10,000 detectable galaxies. The typical size of these galaxies is

r ∼ 3 kpc ∼ 1.3 × 1011R�. (22.18)

The typical relative speed, assuming an isotropic velocity dispersion, is

v ∼ √
3σ ∼ √

3(880 km s−1) ∼ 1500 km s−1. (22.19)

The average number density of galaxies, assuming that half the galaxies are inside the
half-light radius, is

n ∼ N/2

(4π/3)r3
h

∼ 5000

(4π/3)(1.5 Mpc)3
(22.20)

∼ 350 Mpc−3 ∼ 3.5 × 10−16 pc−3.

By plugging the above values for r , v, and n into equation (22.17), we find that the
average time between collisions for a galaxy in the Coma Cluster is

t ∼ 17 Gyr ∼ 1.2H−1
0 . (22.21)

Thus, the collision time is comparable to the Hubble time, and a typical galaxy in the
Coma Cluster is as likely as not to undergo a collision. In a rich cluster, collisions between
galaxies are the rule rather than the exception. In poor clusters and groups, the velocities
and number densities are lower, but there is still a significant probability of collisions.
Notice that when two galaxies collide, the individual stars within the galaxy do not collide
with each other. Their cross-sections are just too tiny, even when you jack up the relative
velocities to v ∼ 1500 km s−1 and double the number density n of stars.

For every head-on collision, where the galaxies actually interpenetrate, there are many
close encounters, where there is no overlap, but the tidal distortions of each galaxy are

3 If two main sequence stars collide, they can merge to form a single massive star. There is evidence for such
stellar merger remnants in the cores of globular clusters. Since globular clusters have ages of t ∼ 10 Gyr or
more, all stars with initial mass M > 1M� should have evolved off the main sequence. However, globular
clusters are observed to have a few stars on the main sequence with M > 1M�. These stars are called “blue
stragglers,” since they are hotter and bluer than expected for main sequence stars in an old cluster. Color
Figure 28 shows the H–R diagram for the globular cluster M55, with its blue stragglers indicated.
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(a) (b)

FIGURE 22.3 One of Holmberg’s simulated galaxy encounters. (a) Before closest
approach. (b) After closest approach, with tidal tails sketched in.

significant. Suppose two galaxies are on hyperbolic orbits about their mutual center of
mass. Near the time of closest approach, each galaxy raises tidal bulges on the other
galaxy. If the differential tidal force is strong enough to liberate loosely bound stars
from a galaxy, then the stars from the tidal bulge closer to the center of mass will have
a faster orbital speed (and thus will lead the main body of the galaxy), while stars from
the tidal bulge farther from the center of mass will have a slower orbital speed (and thus
will lag the main body of the galaxy).

Galaxy interactions can be modeled using computer simulations. In a typical n-
body simulation, the galaxies are approximated as a distribution of n point masses,
interacting according to an inverse square law gravitational force. The grandmother of
all n-body simulations was performed by Erik Holmberg in 1941; he used an analog
computer consisting of n = 74 light bulbs being pushed across a 3 m × 4 m patch of
floor covered with black paper.4 Despite the simplicity of Holmberg’s “computer,” he
was able to reproduce the tidal tails seen in interacting galaxies (Figure 22.3). More
recent numerical simulations (for example, Figure 22.4) can contain n > 108 particles.
It’s the same physics, though. If you’ve seen one inverse square law, you’ve seen them
all.

Many interacting galaxies can be seen in the real universe, particularly in rich clusters,
where close encounters are more frequent. The Coma Cluster, for instance, contains a
pair of galaxies known as “the Mice” because of their long tidal tails (Figure 22.5). The
Mice, known also as NGC 4676 A and B, are a favorite system of astronomers doing
computer models of galaxy encounters. The Mice can be modeled as a pair of identical

4 Since the flux from each bulb was an inverse square law, just like gravity, the computed acceleration for each
bulb was taken to be equal to the net flux of light at the bulb’s position. At each time step, the velocity of each
bulb was recomputed, and the bulb was moved the appropriate distance across the black paper.
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FIGURE 22.4 A recent simulated galaxy encounter.

FIGURE 22.5 The Mice (d ≈ 100 Mpc).

spiral galaxies that have just passed pericenter in their encounter. (“Just,” in this case,
means that the closest approach was 1 or 2 hundred million years ago.)

The Cartwheel Galaxy, shown in Figure 22.6, is another interesting system involving
interacting galaxies. It’s located in the constellation Sculptor, about 130 Mpc away. The
Cartwheel is a galaxy that recently had a smaller but denser galaxy zip through it at
high speed—higher than the escape velocity from the Cartwheel Galaxy. The impulse
provided by the high-speed intruder caused a circular “ripple” to run outward from the
Cartwheel’s center, similar to the ripple caused when a rock is dropped into a pool of
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FIGURE 22.6 The Cartwheel and companions (d ≈ 130 Mpc).

water. The circular ripple causes the Cartwheel Galaxy’s ringlike appearance.5 The outer
ring of the Cartwheel is blue because the ripple running through the interstellar gas
triggered star formation, creating hot, short-lived O and B stars.

If the relative speed of the galaxies is comparable to or less than the escape speed of
the galaxies, then a nearly head-on encounter will result in the merger of the galaxies
to form a single larger galaxy. Things to remember when galaxies collide:

. Individual stars do not collide with each other. There will not be a sudden bonanza
of blue stragglers.

. Galaxy collisions are inelastic. That is, during the collision, some of the orbital
kinetic energy of the galaxies is converted to internal energy, in the form of random
motions of stars. Thus, a pair of galaxies that start out on hyperbolic orbits relative
to each other can still end up as a bound system.

. Although stars don’t collide, gas clouds do. A giant molecular cloud has Rgmc ∼
10 pc ∼ 4 × 108R�. The large cross-section for molecular clouds means that the
gas clouds will collide when two gas-rich galaxies pass through each other.

Thanks to the colliding gas clouds, merging galaxies are hotbeds of star formation. The
class of galaxies known as ultraluminous infrared galaxies, or ULIRGs, are frequently
found to be merging galaxies, in which large numbers of dust-enshrouded protostars
produce copious amounts of far infrared light. Merging galaxies also produce lots of blue
and ultraviolet light, thanks to the large numbers of O and B stars produced. The merging
galaxies known as “the Antennae” (a tribute to their long tidal tails) are 14 Mpc away in

5 The intruding galaxy is not necessarily either of the two galaxies on the right side of Figure 22.6. The high-
speed culprit may already have fled the scene of the crime.
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the constellation Corvus. The Antennae are very luminous in their central regions, both
at blue wavelengths and at infrared wavelengths (Color Figure 29).

Galaxy mergers are like car crashes in that they are very effective at increasing entropy.
Galaxies differ in the amount of entropy, or disorder, they contain. Spiral galaxies contain
stars on orderly, one-way, nearly circular orbits; spirals are low in entropy. Elliptical
galaxies contain stars on disorderly, randomly oriented orbits; ellipticals are high in
entropy. When two neat, orderly compact cars collide, you don’t get a neat, orderly SUV;
you get a disordered heap of rubble. Similarly, when two neat, orderly spiral galaxies
collide, you don’t get a neat, orderly giant spiral; you get a disordered heap of stars
(otherwise known as an elliptical galaxy).

The giant elliptical galaxies in the centers of rich clusters, like NGC 4889 and
NGC 4874 in the middle of the Coma cluster, have grown to their present large size
by the process of galactic cannibalism. The “cannibalism” refers to the fact that when
a large galaxy merges with a small one, the large galaxy retains its identity, while the
smaller one is disrupted. Sometimes “partially digested” cannibalized galaxies can be
seen as multiple nuclei within a giant elliptical galaxy.

Our galaxy is a cannibal, as well, but only on a low level. It is currently tidally
disrupting the Sagittarius dwarf galaxy and the Canis Majoris dwarf galaxy, which are
disintegrating into long tidal streams that will eventually be mixed in with the halo of
our galaxy. These minor encounters are trivial in comparison to our upcoming encounter
with M31 (the Andromeda Galaxy). M31 is blueshifted with respect to the center of our
galaxy. The relative velocity of the centers of the two galaxies is vr = −123 km s−1 =
−126 kpc Gyr−1. The tangential velocity of M31 relative to our galaxy is unknown,
thanks to the difficulty of measuring proper motions at large distances, but is likely to
be small. Thus, in a time

t ∼ dM31

|vr|
∼ 700 kpc

126 kpc Gyr−1
∼ 6 Gyr, (22.22)

M31 and our own galaxy will merge. Detailed computer simulations indicate that in
∼ 3.2 Gyr, the two galaxies will have a close passage, inducing long tidal tails. The two
distorted galaxies will fall back toward each other; about ∼ 4.6 Gyr from now, they will
have formed a large elliptical galaxy, surrounded by tidal debris. When the Sun becomes
a red giant, it will be a member of an elliptical galaxy, not a spiral galaxy.

22.3 SUPERCLUSTERS AND VOIDS

In the hierarchy of structures in our universe, the average density of a star is greater than
that of a galaxy. The average density of a galaxy is greater than that of a cluster. Finally,
the average density of a cluster is greater than that of a supercluster. The superclusters
consist of regions that are just now collapsing under their own gravity. For superclusters
to be collapsing today, they must have a freefall time tff that is comparable to the age of
the universe, which in turn is comparable to the Hubble time, H−1

0 . Using the value of
the freefall time in terms of the average density ρ0 of a structure (equation 17.6), we find
that for superclusters,
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FIGURE 22.7 A slice of the universe: each dark dot represents a galaxy.

tff =
(

3π

32Gρ0

)1/2

≈ H−1
0 . (22.23)

Thus, the average density of a supercluster must be

ρ0 ≈ 3πH 2
0

32G
≈ 2 × 10−26 kg m−3 ≈ 3 × 1011M� Mpc−3. (22.24)

This is equivalent to 14 hydrogen atoms per cubic meter; even compared to the low-
density coronal gas of the interstellar medium, the average density of a supercluster is
not great.

The arrangement of clusters and groups into superclusters was first discovered by the
astronomer Gerard de Vaucouleurs, who pointed out that the Local Group and the Virgo
Cluster, along with other nearby groups and clusters, were arranged in a flattened “super-
cluster.” This is now known as the Local Supercluster, or the Virgo Supercluster. More
distant superclusters are most easily seen in three-dimensional maps of the universe,
rather than in two-dimensional projections on the sky (such as Figure 22.1). A “redshift
map” of the universe can be made by using the redshift z of a galaxy as a surrogate
for its distance, since d ∝ z for small z. To make such a redshift map, you can start by
measuring redshifts for galaxies in a long, narrow strip of the sky.

Among the earliest redshift maps of this kind were those produced in the 1980s by
the CfA Redshift Survey.6 A wedge of the universe from the CfA survey is shown in
Figure 22.7. To make this redshift map, redshifts were measured for galaxies with right
ascension 8h < α < 17h and declination 26.5◦ < δ < 32.5◦, down to a limiting apparent
magnitude B = 15.5 mag. For the 1061 galaxies meeting these criteria, vr = cz was

6 CfA stands for the Harvard–Smithsonian Center for Astrophysics.



522 Chapter 22 Clusters and Superclusters

FIGURE 22.8 A bigger slice of the universe: each tiny dark dot represents a
galaxy.

plotted versus right ascension. Note that dense regions in the redshift map tend to be
elongated, while the underdense regions, or voids, are more nearly spherical (or more
nearly circular, in the case of this thin slice).

A more recent redshift map, with a fainter apparent magnitude limit, is shown in
Figure 22.8. This shows a slice from the Sloan Digital Sky Survey (SDSS). When
the SDSS is complete, it will have provided redshifts for about a million galaxies
in the Northern Galactic Hemisphere, down to a limiting apparent magnitude mr ≈
17.8 mag.7 This gives a detailed map of the galaxy distribution out to a redshift z ∼ 0.2,
corresponding to a distance d ∼ (c/H0)z ∼ 900 Mpc. Thus, the Sloan Digital Sky Survey
probes the universe to four times the distance of the CfA Redshift Survey, which reached
to z ∼ 0.05.

We learn something about the large-scale structure of the universe just from looking
at redshift maps. Superclusters tend to be flattened pancakelike structures, or elongated
filaments. Voids, by contrast, are more nearly spherical. Voids, by definition, have a very
low density of bright galaxies. The density of nonstellar matter in voids is not always
well determined. The transparency of intergalactic space places an upper limit on the
density of dust: ρdust < 4 × 10−30 kg m−3. The limits on Lyman alpha absorption by
neutral gas in voids places a stringent upper limit on the density of neutral hydrogen:
ρH < 10−36 kg m−3. However, the amount of ionized hydrogen and of dark matter in
voids is not as well constrained.

7 The Sloan r band is centered at a wavelength λ ≈ 6160 Å and is roughly comparable to the Johnson R band.
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Redshift maps should be used with the caveat that not all redshifts are due to the
expansion of the universe. For instance, rich clusters in redshift maps show the “Finger
of God” effect, which means that they are elongated in the radial direction. Figure 22.7
shows an example of a Finger of God. At the center of the figure is a structure that looks
vaguely like a bowlegged stick figure. The elongated torso of the stick figure is actually
the Coma Cluster. Note how the Coma Cluster is stretched out in the radial direction. The
Finger of God effect received its name because the grossly elongated cluster is jokingly
compared to God’s finger pointing accusingly at the observer, while the Voice of God
booms out, “You are WRONG!”

What the sinning observer has done wrong, in this case, is to assume that the redshift
z measured for each galaxy in the cluster can be converted directly to a distance using
the simple formula d = (c/H0)z. In fact, if a cluster has a velocity dispersion σ along
the line of sight, then some galaxies will have a radial velocity of approximately +σ

relative to the cluster’s center of mass, while other galaxies will have a radial velocity
of approximately −σ . Thus, two galaxies that are actually close to each other physically
can have redshifts that differ by

�z ∼ 2σ

c
. (22.25)

If we naı̈vely convert observed redshifts to distances using the Hubble law, we will
conclude that the Finger of God has a length

�d = c

H0
�z ∼ 2σ

H0
. (22.26)

The Coma Cluster, which has σ = 880 km s−1, appears to be stretched to a length of
�d ∼ 25 Mpc in a redshift map, when its actual diameter is d ∼ 3 Mpc, an order of
magnitude smaller.

Since the largest structures in the universe are superclusters and voids about 100 Mpc
across, we expect that the region withing a few hundred megaparsecs of us, containing
several superclusters and several voids, should be a fair sample of the universe at the
present day. When we perform a census of galaxies in this region (out to z ∼ 0.05),
we can compute the number density of galaxies as a function of their luminosity. This
function, known as the luminosity function of galaxies, is found to be well fitted by a
power-law with an exponential cutoff:

�(L) = �∗
(

L

L∗

)α

exp

(
− L

L∗

)
dL

L∗
, (22.27)

where �(L)dL is the number density of galaxies with luminosity in the range L to
L + dL. The luminosity function of equation (22.27) is often called a Schechter function,
after the astronomer who first applied it to the galaxy luminosity function. Schechter’s
own plot of the galaxy luminosity function is given in Figure 22.9. The exponential cutoff
in the luminosity function occurs at

L∗ ≈ 2 × 1010L� ≈ LMW. (22.28)
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FIGURE 22.9 The number density of galaxies as a function of luminosity.

There are relatively few galaxies with luminosities greater than that of the Milky Way
Galaxy, LMW. Most of the scarce ultraluminous galaxies are fat “cannibals” in rich
clusters of galaxies. At luminosities below the cutoff, the luminosity function is a power-
law with index

α ≈ −1.2. (22.29)

Thus, the luminosity function is weighted toward dim galaxies. Presumably, there is a
cutoff at low luminosities as well as at high luminosities; otherwise, the total number
density of galaxies,

ngal =
∫ ∞

0
�(L)dL, (22.30)

would go to infinity as L → 0. However, given the extreme difficulty of counting dwarf
galaxies (we don’t even know how many are in the Local Group, after all), how the
luminosity function cuts off at low luminosities is not well determined.

The normalization of the luminosity function is

�∗ ≈ 0.01 Mpc−3. (22.31)

The total luminosity density of galaxies (in L� Mpc−3) does not diverge. By integrating
the luminosity function of equation (22.27) weighted by the luminosity, we find a total
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luminosity density8

ρL =
∫ ∞

0
L�(L)dL = �∗L∗�(2 + α) ≈ 2.3 × 108L� Mpc−3. (22.32)

This is equivalent to having a single 40-watt light bulb inside a sphere 1 AU in radius.
By terrestrial standards, the universe is a poorly lit place.

PROBLEMS

22.1 Suppose you are an astronomer orbiting a star somewhere near the middle of the
Virgo Cluster, and are observing the Local Group.

(a) What would be the angular size of the Local Group?
(b) What would be the angular size of the Milky Way Galaxy?
(c) What would be the apparent B magnitude of the Milky Way Galaxy?

22.2 Compute the mean apparent V magnitude of a P = 100 day Cepheid star in the Coma
Cluster (d = 100 Mpc).

22.3 How would the “Finger of God” effect change if the dominant motion of clusters was
rotation?

22.4 Using data from this chapter, estimate the time it takes a galaxy in the Coma Cluster
to cross from one side of the cluster to the other. Does this result tell you anything
about whether or not the cluster is gravitationally bound?

22.5 In a few billion years, as we note in this chapter, our galaxy and the Andromeda
Galaxy will merge. Compute the expected number of collisions between stars when
this occurs. (Assume that the typical star in each galaxy is an M dwarf, and that their
average space density is equal to that of the solar neighborhood.)

22.6 The number of galaxies brighter than mB = 12 mag is about 0.014 per square degree
of the celestial sphere. Suppose that you wanted to observe every galaxy brighter
than mB = 16 mag in one-quarter of the sky. How many galaxies would you expect
in such a sample?

8 Since most of the light is contributed by the bright galaxies with L >∼ L∗, the uncertainty in the faint end of
the luminosity function doesn’t greatly affect our estimate of the luminosity density of the universe.



23 Cosmology

Cosmology is the study of the universe, or cosmos, regarded as a whole. Some questions
addressed by cosmologists are What is the universe made of? Is it finite or infinite in
spatial extent? Did it have a beginning at some time in the past? Will it come to an end
at some time in the future?

In addition to dealing with Very Big Things, cosmology also deals with very small
things. Early in its history, as we’ll see later on, the universe was very hot in addition
to being very dense, and interesting particle physics phenomena were occurring. Thus,
a brief review of elementary particle physics will be useful as a preface to this chapter.
For most particle physics applications, the electron volt (1 eV = 1.602 × 10−19 J) tends
to be an inconveniently small unit of energy. Thus, particle physicists tend to measure
energy in units of MeV (106 eV), GeV (109 eV), or TeV (1012 eV).

The most cosmologically important particles are listed in Table 23.1.1 The objects that
surround us in everyday life are made of protons, neutrons, and electrons. Protons and
neutrons are both examples of baryons, where a baryon is defined as a particle made of
three quarks.2 A proton (p) contains two “up” quarks, each with a charge q = +2/3, and
a “down” quark, with a charge of q = −1/3. A neutron (n) contains one “up” quark and
two “down” quarks. A proton has a mass (or equivalently, a rest energy) that is 0.1% less
than that of a neutron. A free neutron is unstable, decaying into a proton with a decay
time of τn = 940 s, about a quarter of an hour.

Electrons (e−) are examples of leptons, a class of elementary particles that are not
made of quarks.3 The mass of an electron is small compared to that of a proton or neutron;
the electric charge of an electron is equal in magnitude, but opposite in sign, to that of a
proton. On large scales, the universe seems to be electrically neutral, with equal numbers
of protons and electrons. The component of the universe made of atoms, molecules, and
ions is called baryonic matter, since only the baryons contribute significantly to the
mass density.

1 Other particles, exotic by current standards, were abundantly present during the first few seconds of the
universe. Since then, however, the particles we tabulate have been the most abundant.
2 “Baryon” comes from the Greek root barys, meaning “heavy” or “weighty.” A barometer measures the weight
of the atmosphere, and the barycenter of the Local Group (see Figure 22.2) is the center of gravity, or center
of mass.
3 “Lepton” comes from the Greek root leptos, meaning “small” or “thin.” In Greece, the euro cent (1/100 of a
euro) is called a lepton, since it is the smallest coin minted.

526
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TABLE 23.1 Particle Properties

Particle Symbol Rest energy (MeV) Charge

proton p 938.3 +1

neutron n 939.6 0

electron e− 0.511 −1

neutrino νe,νμ,ντ < 2 × 10−6 0

photon γ 0 0

dark matter ? ? 0

Neutrinos (ν) are also leptons. Neutrinos have no electric charge and interact with
other particles only through the weak nuclear force or gravity. There are three types,
or flavors, of neutrinos: electron neutrinos (νe), muon neutrinos (νμ), and tau neutrinos
(ντ ). Although recent experiments indicate that the different neutrino types have different
masses, those masses must be small compared to the electron mass, with mνc

2 < 2 eV
being the approximate upper limit on the rest energy.

A particle known to be massless is the photon (γ ). Unlike neutrinos, photons interact
readily with electrons, protons, and neutrons. Although photons are massless, they have
an energy E = hc/λ, where λ is the wavelength.

The most mysterious component of the universe is the dark matter. As discussed in
Section 19.2, some of the dark matter may be baryonic (in the form of brown dwarfs
or other dense, dim MACHOs). Some of the dark matter, but not much, is contributed
by the lightweight neutrinos. It is likely that some of the dark matter is contributed by
WIMPs, weakly interacting massive particles that are far more massive than neutrinos.

23.1 BASIC COSMOLOGICAL OBSERVATIONS

Observations of the universe around us have led cosmologists to adopt the Hot Big Bang
model, which states that the universe has expanded from an initial hot and dense state
to its current cooler and lower-density state, and that the expansion is continuing today.
Several observations have contributed to the acceptance of the Hot Big Bang model.
Many of these observations are recent and depend on sophisticated technology. However,
the first observation on which the Hot Big Bang is based is ancient and requires nothing
more sophisticated than your own eyes.

The first observation underpinning modern cosmology is this: The night sky is dark.
When you go outside on a clear night and look upward, you see scattered stars on a
dark background. The fact that the night sky is dark at visible wavelengths, rather than
being uniformly bright with starlight, is known as Olbers’s paradox, after the astronomer
Heinrich Olbers, who wrote a paper on the subject in the year 1826.4 Olbers was not

4 Closer to home, Olbers is also known as the discoverer of the asteroids Pallas and Vesta.
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actually the first person to think about Olbers’s paradox; as early as 1576, Thomas Digges
was worrying in print about the darkness of the night sky.

Why should the darkness of the night sky be paradoxical? First, consider the light
from a single star of luminosity L at a distance r . The flux from the star is given by the
inverse square law:

F = L

4πr2
. (23.1)

The solid angle subtended by the star is also inversely proportional to its distance; if the
star’s radius is R, its angular area (in steradians) is

d� = πR2


r2
. (23.2)

This means that the surface brightness � of the star (in watts per square meter per
steradian) is independent of distance:

� = F

d�
= L

4π2R2


= 2.0 × 107 W m−2 ster−1

(
L

L�

) (
R

R�

)−2

. (23.3)

For a Sun-like star, this corresponds to � ∼ 0.5 mW m−2 arcsec−2. Since even nearby
stars, like those of the Alpha Centauri system, have angular areas d� < 10−5 arcsec2,
any individual star other than the Sun will cover only a tiny fraction of the celestial sphere
and contribute only a tiny flux here at Earth. But what if the universe stretches to infinity
in all directions?

Let n be the average number density of stars in the universe, and let L and R be
the average stellar luminosity and radius. Consider a thin spherical shell of radius r and
thickness dr centered on the Earth (Figure 23.1). The total number of stars in the shell
will be

dN = n4πr2dr. (23.4)

Since each star covers an angular area d� = πR2

/r2, the fraction of the shell’s area

covered with stars will be

df = dNd�

4π
= nπR2


dr, (23.5)

independent of the radius r of the shell. The fraction of the sky covered by stars within
a distance r of us will then be

f =
∫ r

0
df = nπR2



∫ r

0
dr = nπR2


r. (23.6)

The coverage becomes complete when f ≈ 1, corresponding to a distance

rOlb ≈ 1

nπR2


. (23.7)
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r

dr

FIGURE 23.1 A star-filled spherical shell.

Thus, if the universe extends for a distance r ≥ rolb, the sky must be uniformly bright,
with a surface brightness equal to that of a typical star.

Obviously, the sky is not uniformly bright; at least one of the assumptions that went
into our calculation must be wrong. One assumption we made was that n and R∗ were
independent of distance. This might be wrong. Distant stars might be smaller or less
numerous than nearby stars.

A second assumption is that the universe is bigger than rolb. This might be wrong.
If the universe stretches only to a distance r0 < rolb, then the fraction of the night sky
covered by stars will be

f ≈ nπR2

r0 < 1, (23.8)

and the average surface brightness of the sky will be

�sky = f � ≈ nπR2

r0

L

4π2R2


≈ nLr0

4π
. (23.9)

This result will also be found if the universe is infinitely large but empty of stars beyond
a distance r0.

A third assumption, slightly more subtle, is that the universe is infinitely old. This
might be wrong. If the universe has a finite age t0, then the greatest distance we can see
is r0 ≈ ct0, and the average surface brightness of the sky will be

�sky ≈ nLct0

4π
. (23.10)

This result will also be found if the universe is eternally old but has contained stars only
for a finite time t0.
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A fourth assumption made in computing the surface brightness is that the flux of
stars is given by the inverse square law of equation (23.1). This might be wrong. The
assumption that F ∝ r−2 follows directly from Euclid’s laws of geometry. However, on
large scales, the universe is under no obligation to be Euclidean. In some non-Euclidean
geometries, the flux falls off more rapidly than an inverse square law.5

The darkness of the night sky caused astronomers to question many of their as-
sumptions; an infinitely large, infinitely old, Euclidean universe can’t stand up to close
scrutiny.

The second observation on which modern cosmology is based is the Hubble law:
Galaxies show a redshift proportional to distance. As noted in Section 20.5, the Hub-
ble law is a natural consequence of homogeneous, isotropic expansion. If the expansion
is perfectly homogeneous and isotropic, then the distance r(t) between any two points
can be written in the form

r(t) = a(t)r0, (23.11)

where r0 ≡ r(t0) is the separation at the current time t0, and a(t) is a dimensionless
function known as the scale factor. The homogeneity and isotropy of the expansion
imply that a(t) is not a function of position or direction but only of the time t . The
distance between the two points will increase at the rate

v(r) = ȧr0 = ȧ

a(t)
[a(t)r0] = ȧ

a(t)
r(t). (23.12)

Thus, the velocity–distance relation takes the form of the Hubble law: v(t) = H(t)r(t),
where H(t) ≡ ȧ/a. The function H(t) is called the Hubble parameter. Its value at the
present day, H0 ≡ H(t0), is called the Hubble constant.

Note how the Hubble law ties in with Olbers’s paradox. If the universe is of finite
age, t0 ∼ H−1

0 , then we expect that the horizon distance, the maximum distance from
which light has had time to reach us, will be of the order r0 ∼ ct0 ∼ c/H0. The luminosity
density of starlight in the universe, computed in Section 22.3, is

nL = ρL = 2.3 × 108L� Mpc−3. (23.13)

The average surface brightness of the sky should then be approximately

�sky ∼ nL

4π

c

H0
∼ (2.3 × 108L� Mpc−3)(4300 Mpc)

4π
(23.14)

∼ 8 × 1010L� Mpc−2 ster−1 ∼ 3 × 10−8 W m−2 ster−1.

When we compare this to the surface brightness of a Sun-like star,

� ≈ 2.0 × 107 W m−2 ster−1, (23.15)

5 Of course, in other non-Euclidean geometries, the flux falls off less rapidly than an inverse square law, which
will only increase the problem.
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we find that � ∼ 6 × 1014�sky. Thus, for the entire sky to have a surface brightness as
great as the Sun’s, the universe would have to be 600 trillion times older than it is—and
you’d have to keep the stars shining during all that time.

The primary resolution to Olbers’s paradox is that the universe has a finite age. Stars
beyond the horizon distance are invisible to us because their light hasn’t had enough time
to reach us. A secondary contribution to the darkness of the night sky is the redshift of
distant light sources, close to the horizon, which reduces their flux as measured from
Earth.

A third observation on which modern cosmology is based was made in the year 1965:
The universe is filled with a cosmic microwave background (CMB). The discovery
of the CMB by Arno Penzias and Robert Wilson has entered cosmological folklore.
Using a microwave antenna at Bell Labs, they discovered a slightly stronger signal than
they expected from the sky. The extra signal was isotropic and constant with time. After
removing all sources of noise that they could, they realized that they were truly detecting
an isotropic background of microwave radiation. More recently, the Cosmic Background
Explorer (COBE) satellite revealed that the CMB has a spectrum indistinguishable from
a Planck function (equation 5.86) to a very high degree of accuracy:

Iν = 2hν3

c2

1

ehν/kT0 − 1
, (23.16)

with a temperature

T0 = 2.725 ± 0.001 K. (23.17)

That is, the CMB is just what we would see if we were inside a hollow blackbody at a
temperature of 2.725 K. The current energy density of the CMB is

u0 = 4σSB

c
T 4

0 = 4.17 × 10−14 J m−3 = 0.260 MeV m−3, (23.18)

where σSB is the Stefan–Boltzmann constant. The average energy of a single CMB
photon, integrating over the complete Planck spectrum, is

ε0 = 2.7kT0 = 6.34 × 10−4 eV. (23.19)

The average photon energy ε0 corresponds to a wavelength λ0 = hc/ε0 ≈ 2 mm, in the
microwave range of the electromagnetic spectrum (hence the name cosmic microwave
background). The number density of CMB photons is

n0 = u0

ε0
= 2.60 × 105 eV m−3

6.34 × 10−4 eV
= 4.11 × 108 m−3. (23.20)

In an expanding Big Bang universe, cosmic background radiation arises naturally
if the universe was initially very hot in addition to being very dense. Suppose the
initial temperature was T � 104 K. At such high temperatures, the baryonic matter in
the universe was completely ionized (Figure 23.2), and scattering of photons from the
free electrons rendered the universe opaque. A dense, hot, opaque medium produces
blackbody radiation, with a Planck spectrum. However, as the universe expanded, it
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FIGURE 23.2 (a) The ionized, opaque universe before recombination. (b) The
transparent universe after recombination.

cooled. When the temperature dropped to T ∼ 3000 K, ions and free electrons combined
to form neutral atoms. When the universe no longer contained a significant number of
free electrons, the liberated blackbody photons started streaming through the universe,
without further scattering.

At the time the universe became transparent, the temperature of the background
radiation was T ∼ 3000 K, about the temperature of an M star’s photosphere. The
temperature of the background radiation today is T0 = 2.725 K, a factor of 1100 lower.
Why has the background radiation cooled? It’s a consequence of the expansion of the
universe.

Consider a region of volume V that expands along with the universe, so that V (t) ∝
a(t)3, where a(t) is the scale factor. The blackbody radiation within this volume can be
thought of as a photon gas with energy density u = (4σSB/c)T 4 and pressure P = u/3.
The photon gas within our volume obeys the first law of thermodynamics:

dQ = dE + PdV, (23.21)

where dQ is the amount of heat flowing into or out of the volume, and dE is the change
in the internal energy of the photon gas. In a homogeneous and isotropic universe, there
is no flow of heat, since everything is at the same temperature; thus, dQ = 0. The first
law of thermodynamics, applied to a gas in an expanding universe, then becomes

dE

dt
= −P(t)

dV

dt
. (23.22)

For the photons of the CMB, the internal energy is E(t) = u(t)V (t) = (4σSB/c)T (t)4V (t)

and the pressure is P(t) = (1/3)u(t) = (4σSB/3c)T (t)4. Equation (23.22) then becomes

4σSB

c

(
4T 3dT

dt
V + T 4 dV

dt

)
= −4σSB

3c
T 4 dV

dt
, (23.23)
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or, with a little algebraic manipulation,

1

T

dT

dt
= − 1

3V

dV

dt
. (23.24)

Since V (t) ∝ a(t)3 as the universe expands, equation (23.24) can be rewritten in the form

1

T

dT

dt
= − 1

a

da

dt
, (23.25)

or

d

dt
(ln T ) = − d

dt
(ln a). (23.26)

This implies the simple relation T (t) ∝ a(t)−1; the temperature of the CMB drops as
the universe expands. Note that it also implies ε(t) ∝ a(t)−1 for the average photon
energy and λ(t) ∝ a(t) for the average photon wavelength. The background radiation
has dropped in temperature by a factor of 1100 since the universe became transparent
because the scale factor has grown by a factor of 1100 since then.

The observations we have noted so far—the dark night sky, the Hubble law, and the
CMB—all fit neatly within the framework of the Hot Big Bang model for the universe,
in which the universe was initially very hot and dense but has since cooled as it expanded.
Although an exact treatment of how the universe expands requires knowledge of general
relativity, many of the most important aspects of the expanding universe can be explained
using purely Newtonian dynamics.

23.2 COSMOLOGY À LA NEWTON

Let’s compute, using Newton’s law of gravity and second law of motion, how the scale
factor a(t) depends on time. Consider a homogeneous sphere of matter, with fixed total
mass M . The sphere is expanding (or contracting) homogeneously, so that its radius r(t)

is changing with time (Figure 23.3). Place a test mass, of infinitesimal mass m, at the
surface of the sphere. The gravitational acceleration of the test mass will be

d2r

dt2
= − GM

r(t)2
. (23.27)

If we multiply each side of equation (23.27) by dr/dt and integrate over time, we find

1

2

(
dr

dt

)2

= GM

r(t)
+ k, (23.28)
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r(t)

FIGURE 23.3 A sphere of fixed mass M and variable radius r(t).

where k is the constant of integration. Equation (23.28) is an energy conservation
statement. The sum of the kinetic energy per unit mass and the gravitational potential
energy per unit mass is a constant (k) for a bit of mass at the sphere’s surface.6

The future of an expanding, self-gravitating sphere falls into one of three classes,
depending on the sign of the constant k. First, consider the case k > 0. In this case, the
right-hand side of equation (23.28) is always positive. Therefore, the left-hand side of
the equation never goes to zero, and the expansion continues forever. Second, consider
the case k < 0. In this case, the right-hand side of equation (23.28) goes to zero at a
maximum radius rmax = GM/k, and the expansion stops. However, at the maximum
radius, the acceleration, given by equation (23.27), is still negative, so the sphere will
then contract. Third and last, consider the case k = 0. This is the boundary case in which
dr/dt asymptotically approaches zero as t → ∞.

The three possible fates of an expanding sphere in a Newtonian universe are analogous
to the three possible fates of a ball thrown upward from the Earth’s surface. First, the
ball can be thrown upward with a speed greater than the escape speed vesc. In this case,
the ball goes upward forever. Second, the ball can be thrown upward with a speed less
than the escape speed. In this case, the ball reaches a maximum height, then falls back
down. Third and last, the ball can be thrown upward with a speed exactly equal to vesc.
In this case, the speed of the ball asymptotically approaches zero as t → ∞.

Equation (23.28), describing an expanding (or contracting) sphere, can be rewritten
in such a way that it applies to a sphere of arbitrary radius and mass. The mass M , which
is constant, can be written in the form

M = 4π

3
ρ(t)r(t)3. (23.29)

Since the expansion is isotropic about the center of the sphere, we can write

r(t) = a(t)r0, (23.30)

6 Note also that the expansion velocity, dr/dt , enters equation (23.28) only as its square. This means that a
contracting sphere (dr/dt < 0) is simply a time reversal of an expanding sphere (dr/dt > 0).
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where a(t) is the dimensionless scale factor and r0 is the current radius of the sphere.
Using these relations, equation (23.28) can be written in the form

1

2
r2

0 ȧ2 = 4π

3
Gr2

0ρ(t)a(t)2 + k, (23.31)

or, dividing each side of the equation by r2
0a2/2,

(
ȧ

a

)2

= 8πG

3
ρ(t) + 2k

r2
0

1

a(t)2
. (23.32)

The left-hand side of equation (23.32) is the square of the Hubble parameter, H(t) ≡ ȧ/a.
Thus, we now have an equation that links the expansion rate of the universe to its
mass density ρ. Equation (23.32) is called the Friedmann equation, after the Russian
cosmologist Alexander Friedmann, who first found it (using a relativistically correct
derivation) in the 1920s.

For a given value of the Hubble parameter, H(t), there is a critical mass density
ρc(t) for which k = 0, and the universe is exactly on the boundary between eternally
expanding (k > 0) and eventually recollapsing (k < 0). The value of the critical density
is, from equation (23.32),

ρc(t) = 3H(t)2

8πG
. (23.33)

At the present moment in the real universe, H0 = 70 km s−1 Mpc−1 and the value of the
critical density is

ρc,0 = 3H 2
0

8πG
= 9.2 × 10−27 kg m−3 = 1.4 × 1011M� Mpc−3. (23.34)

If the average density of the universe is greater than this value, then (if our Newtonian
analysis is adequate) the universe will eventually collapse in a “Big Crunch.” If the
average density is less than or equal to this value, then it will expand forever in an
increasingly tenuous “Big Chill.” Is the average density greater than or less than ρc,0?
It’s not immediately obvious. Although ρc,0 is equivalent to a density of one hydrogen
atom per 200 liters—much more tenuous than even the lowest density coronal gas in the
interstellar medium—you must remember that most of the universe consists of very low
density voids.

In a strictly Newtonian universe, the fate of the universe—Big Crunch or Big Chill—
is determined solely by the ratio of the average mass density to the critical density.
However, if a cosmological constant is present, then this ratio of densities no longer
uniquely determines the ultimate fate of the universe. A cosmological constant is an
entity that provides a positive acceleration (ä > 0) to the expansion of the universe. The
cosmological constant was introduced by Einstein in the context of general relativity.
Since the Newtonian view is that gravity is always an attractive force (ä < 0), it will be
necessary for us to dabble in general relativity in order to understand the cosmological
constant and the possibility of an accelerating universe.
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23.3 COSMOLOGY À LA EINSTEIN

In Newton’s view of the universe, space is static, unchanging, and Euclidean. In Eu-
clidean, or “flat,” space, all the axioms and theorems of plane geometry (as codified by
Euclid around 300 BC) hold true. In Newton’s view, an object with no net force acting
on it moves through this Euclidean space with a constant velocity. However, when we
look at real celestial objects (comets, planets, asteroids, and so forth) we find that their
velocity is not constant; they move on curved lines with continuously changing speeds.
Why is this? Newton would say, “Their velocities are changing because there is a force
acting on them; the force called gravity.”

Newton derived a useful formula for computing the gravitational force between two
objects. Every object in the universe, said Newton, has a property that we may call the
“gravitational mass.” Let the gravitational mass of two spherical objects be mg and Mg,
and let the distance between their centers be r . The gravitational force acting between
the objects is

Fgrav = −GMgmg

r2
, (23.35)

where G is the Newtonian gravitational constant. The gravitational mass of an object is
a nonnegative number, so the Newtonian gravitational force is always attractive, with
Fgrav ≤ 0. Newton also provided us with a useful formula that tells us how objects move
in response to a force. Every object in the universe, said Newton, has a property that we
may call the “inertial mass.” If the inertial mass of an object is mi, then if a net force F

is applied to it, Newton’s second law of motion tells us that its acceleration will be

a = F/mi. (23.36)

In equations (23.35) and (23.36), we use different subscripts to distinguish between the
gravitational mass mg and the inertial mass mi. One of the fundamental principles of
physics (a rather remarkable one, if you stop to think about it) is that the gravitational
mass and the inertial mass of an object are identical:

mg = mi. (23.37)

The equality of gravitational and inertial mass is known as the equivalence principle.
The gravitational acceleration a of an object under the influence of a sphere of mass Mg

will generally be

a = Fgrav

mi

= −GMg

r2

(
mg

mi

)
. (23.38)

If the equivalence principle didn’t hold true, then different objects would fall at different
rates in the Earth’s gravitational field. The observation that a = −9.8 m s−2 for all objects
near the Earth’s surface is supporting evidence that the equivalence principle holds true.
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FIGURE 23.4 Equivalence principle (teddy bear version).

It is the equivalence principle that led Einstein to devise his theory of general relativity.
To see why, let’s do a thought experiment.7 Suppose you wake up one morning to find
that you’ve been sealed inside a small, opaque, soundproof box. You are so startled by
this, you drop your teddy bear. Observing the falling bear, you find that it falls toward
the floor with an acceleration a = −9.8 m s−2. “Whew!” you say with relief. “At least I
am still on the Earth’s surface, and not being abducted by space aliens.” At that moment,
a window in the side of the box opens to reveal that you are in an alien spacecraft that
is being accelerated at a = 9.8 m s−2 by a rocket engine. When you drop a teddy bear,
or any other object, in a small, sealed box, the equivalence principle allows two possible
interpretations, illustrated in Figure 23.4: (1) The bear is moving at a constant velocity,
and the box is being accelerated upward by a constant nongravitational force; or (2)
The box is moving at a constant velocity (which may be zero), and the bear is being
accelerated downward by a constant gravitational force. The observed behavior of the
bear is the same in each case.

Now suppose you are still in the sealed box, being accelerated through space by a
rocket at a = 9.8 m s−2. You grab the flashlight you keep on the bedside table and shine
a beam of light perpendicular to the acceleration vector (Figure 23.5). Since the box is
accelerating upward, the path of the light will appear to you to be bent downward toward
the floor, as the floor of the box accelerates upward to meet the photons. However, thanks
to the equivalence principle, we can replace the accelerated box with a stationary box
experiencing a constant gravitational acceleration. Since there’s no way to distinguish
between these two cases, we are led to the conclusion that the paths of photons will

7 This thought experiment, as well as some other arguments in Chapters 23 and 24, are taken from Introduction
to Cosmology (Barbara Ryden, 2003).
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FIGURE 23.5 Equivalence principle (flashlight version).

be curved in the presence of a gravitational field. Gravity affects photons, Einstein
concluded, even though they have no mass.

Contemplating the curved path of the photons, Einstein had another insight. A funda-
mental principle of optics is Fermat’s principle, which states that light travels between
two points along a path that minimizes the travel time.8 In a vacuum, where the speed
of light is constant, this translates into the requirement that light takes the shortest path
between two points. In Euclidean space, the shortest distance between two points is a
straight line. In the presence of gravity, however, the path taken by light in a vacuum is
a curved line. This led Einstein to conclude that space is non-Euclidean.

The presence of mass, in Einstein’s view, causes space to be curved. More broadly, in
the theory of general relativity, mass and energy (which Newton thought of as very dif-
ferent things) are interchangeable, via the equation E = mc2. Moreover, space and time
(which Newton thought of as very different things) form a four-dimensional spacetime.
A more complete summary of Einstein’s viewpoint, then, is that the presence of mass-
energy causes spacetime to be curved. This gives us a third way of thinking about the
motion of the teddy bear in the box: (3) No forces are acting on the bear; it is simply
following a geodesic in curved spacetime.9

In general, computing the curvature of spacetime is a complicated problem. Since the
distribution of mass and energy is inhomogeneous on small scales, the curvature of space
and time is also inhomogeneous, with strong curvature near black holes and neutron stars,
and weak curvature in intergalactic voids. However, on scales bigger than 100 Mpc, the
spatial distribution of mass and energy appears homogeneous and isotropic. Thus, we

8 More precisely, Fermat’s principle requires that the travel time be an extremum. Under most circumstances,
the path minimizes travel time rather than maximizes it.
9 The word “geodesic,” in this context, is shorthand for “the shortest distance between two points.”
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FIGURE 23.6 A flat, two-dimensional space (plane).

conclude that the curvature of space is also homogeneous and isotropic on large scales.
The assumption of homogeneity and isotropy vastly simplifies the problem. There are
only three basic geometries that space can have under such restrictive conditions. Since
picturing the curvature of three-dimensional space is difficult, we’ll start by considering
the curvature of two-dimensional spaces, whose pictures can be neatly drawn on paper;
later, we’ll generalize to three dimensions.

First of all, space could be flat, or Euclidean. A picture of a flat two-dimensional
space, otherwise known as a plane, is given in Figure 23.6. In flat space, all of Euclidean
geometry holds true. For instance, in flat space, a geodesic is a straight line. If a triangle
is constructed in flat space by connecting three points with geodesics, the angles at the
vertices (α, β, and γ in Figure 23.6) must obey the relation

α + β + γ = π, (23.39)

when the angles are measured in radians. A plane has an infinite area,10 and has no edge
or boundary.

Another two-dimensional space with homogeneous, isotropic curvature is the surface
of a sphere, as illustrated in Figure 23.7. On a sphere, a geodesic is a portion of a great
circle.11 If a triangle is constructed on the surface of a sphere by connecting three points
with geodesics, the angles at its vertices (α, β, and γ in Figure 23.7) must obey the
relation

α + β + γ = π + A/r2
c
, (23.40)

where A is the area of the triangle and rc is the radius of the sphere. Spaces in which
α + β + γ > π are called positively curved spaces. A sphere has a finite area, 4πr2

c
,

but no edge or boundary.

10 Figure 23.6, of course, only shows a portion of a plane.
11 If the Earth is approximated as a sphere, a line of constant longitude falls along a great circle. The equator
is a great circle, but other lines of constant latitude are not.
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FIGURE 23.7 A positively curved, two-dimensional space (sphere).

In addition to flat spaces and positively curved spaces, there exist negatively curved
spaces. An example of a negatively curved, two-dimensional space is the hyperboloid,
or “saddle shape,” shown in Figure 23.8. Consider a two-dimensional space of constant
negative curvature, with radius of curvature rc. If a triangle is constructed on this surface
by connecting three points with geodesics, the angles at its vertices (α, β, and γ in
Figure 23.8) must obey the relation

α + β + γ = π − A/r2
c
, (23.41)

where A is the area of the triangle. A surface of constant negative curvature has infinite
area, just as a plane does.

If you want a two-dimensional surface to have homogeneous, isotropic curvature, only
three cases fit the bill: it can be uniformly flat, it can have uniform positive curvature,
or it can have uniform negative curvature. The same holds true for three-dimensional
spaces. Thus, the curvature of homogeneous, isotropic space can be specified by just
two numbers, κ and rc. The number κ , called the curvature constant, is κ = 0 for flat
space, κ = +1 for positively curved space, and κ = −1 for negatively curved space. If
κ is not zero, then rc, which has dimensions of length, is the radius of curvature of
the space. Generally, rc(t) is a function of time, with rc(t) = a(t)rc,0 if the space is to
remain homogeneous and isotropic.

So what is the curvature of the universe—positive, negative, or flat? As early as the
year 1829, long before Einstein’s parents were twinkles in his grandparents’ eyes, the
mathematician Nikolai Ivanovich Lobachevski, one of the founders of non-Euclidean
geometry, proposed observational tests to determine the curvature of the universe. In
principle, measuring the curvature is simple. Just draw a triangle, then measure its area
A and the angles α, β, and γ at its vertices. From equations (23.39), (23.40), and (23.41),
we know that

α + β + γ = π + κA

r2
c,0

, (23.42)



23.3 Cosmology à la Einstein 541

α

β

γ

FIGURE 23.8 A negatively curved two-dimensional space (hyperboloid).

where κ is the curvature constant and rc,0 is the present radius of curvature. Thus, we
can compute

κ

r2
c,0

= α + β + γ − π

A
. (23.43)

Unfortunately for this elegant plan, the deviation of α + β + γ from π radians is tiny
unless the area of the triangle is comparable to r2

c,0. Really, really big triangles are
required.

We can conclude that if the universe is curved, with κ = ±1, the radius of curvature
cannot be much smaller than the Hubble distance, c/H0 ≈ 4300 Mpc. To see why this
is true, consider looking at a galaxy of diameter D that is at a distance d from the Earth
(Figure 23.9). In a flat universe, in the limit D � d, we can use the small angle formula
to compute the angular size α of the galaxy:

αflat = D

d
, (23.44)

where the angle α is in radians. However, in positively or negatively curved space, the
angular size is no longer proportional to 1/d.

In a space with uniform positive curvature, the angular size is

αpos = D

rc,0 sin(d/rc,0)
>

D

d
. (23.45)

In a positively curved universe, the mass–energy content acts as a magnifying gravi-
tational lens, making galaxies appear larger than they would in flat space. There are
two interesting consequences of equation (23.45). First, the angular size blows up when
d = πrc,0; that is, when a galaxy is at a distance equal to half the circumference of the
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FIGURE 23.9 Angular size of a distant galaxy.

universe, it fills the entire sky.12 No such enormous, sky-filling galaxies are seen. Second,
since the universe has a finite circumference C0 = 2πrc,0, an object seen at a distance
d will also be seen, with the same angular size, at a distance d + C0, and at a distance
d + 2C0, and at a distance d + 3C0, and so forth, ad nauseum. No such periodic galaxy
images are seen. If the universe is positively curved, its radius of curvature must therefore
be comparable to or greater than the Hubble distance.

In a space with uniform negative curvature, the angular size of a galaxy is

αneg = D

rc,0 sinh(d/rc,0)
<

D

d
. (23.46)

A negatively curved universe thus acts as a demagnifying lens.13 If a galaxy is at a
distance d � rc,0, we can use the approximation sinh x ≈ ex/2 when x � 1. With this
approximation,

αneg ≈ 2D

rc,0
e−d/rc,0. (23.47)

In a negatively curved universe, objects at a distance much greater than the radius of
curvature will appear exponentially tiny. Since galaxies are resolved in angular size,
with α > 1 arcsec, out to distances comparable to the Hubble distance, we conclude that
if the universe is negatively curved, its radius of curvature must be comparable to or
greater than the Hubble distance.

The conclusion of cosmologists, using geometrical arguments like the ones given
above, is that the universe is consistent with being flat (κ = 0). Although we cannot rule
out the possibility of slight positive or negative curvature, the radius of curvature in that
case would be bigger than the Hubble distance, and would have negligible effects on the

12 As a two-dimensional analogy, suppose that you were at the north pole of the Earth and a light source were
at the south pole. If the light were constrained to follow great circles on the Earth’s surface, it would flow along
all the lines of longitude stretching away from the south pole and converge on your position at the north pole.
No matter which way you turned, you would see the south pole beacon.
13 Or a demagnifying rear view mirror: “Objects in mirror are closer than they appear.”
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small bit of the universe within a Hubble distance of us.14 To make life simpler, we will
assume, in many of the following equations, that the universe is perfectly flat.

23.4 METRICS OF SPACETIME

Astronomers study events that are widely spread out in space, and also widely spread
out in time. Thus, it is useful for them to be able to compute the distance between two
events in a four-dimensional spacetime. Computing the distance between two points in
a flat, three-dimensional space is easy. If one point is at (x, y, z) and the other is at
(x + dx, y + dy, z + dz), the distance d� between them is given by the formula

d�2 = dx2 + dy2 + dz2. (23.48)

A formula such as equation (23.48) that gives the distance between two points is known
as a metric. Equation (23.48) uses the convention, common among relativists, that
d�2 = (d�)2, not d(�2); omitting the parentheses reduces visual clutter. The metric of
flat space appears different when different coordinate systems are used. For instance, in
spherical coordinates, the metric of flat space is

d�2 = dr2 + r2(dθ2 + sin2 θdφ2). (23.49)

By extension, we can compute the four-dimensional spacetime distance between two
events, one at (t, x, y, z) and the other at (t + dt, x + dx, y + dy, z + dz). According
to special relativity, the spacetime distance between these events is

d�2 = −c2dt2 + dx2 + dy2 + dz2 (23.50)

= −c2dt2 + dr2 + r2(dθ2 + sin2 θdφ2).

The metric given in equation (23.50) is called the Minkowski metric, and the spacetime
in which it holds true is called Minkowski spacetime. Note that the sign of the term in-
volving time (−c2dt2) is opposite to that of the terms involving the spatial coordinates.15

The Minkowski metric applies only in the context of special relativity, which deals with
the special case in which spacetime is not distorted by the presence of mass or energy.
Thus, the Minkowski metric represents a static, empty, spatially flat universe.

In an expanding (or contracting) universe, the metric we use to measure spacetime
distances is called the Robertson–Walker metric. If space is flat, then the Robertson–
Walker metric takes the form

d�2 = −c2dt2 + a(t)2[dr2 + r2(dθ2 + sin2 θdφ2)]. (23.51)

14 Similarly, a small bit of the Earth’s curved surface is reasonably well described by a flat map. A flat map of the
entire Earth results in distortions of size or shape (think of Greenland or Antarctica in a Mercator projection),
but a flat map of Ohio doesn’t have perceptible distortions.
15 Some textbooks use the opposite sign convention: d�2 = c2dt2 − dx2 − dy2 − dz2. This is purely a formal
convention and has no physical meaning. It’s like the arbitrary pronouncement that electrons have negative
charge and protons have positive; physics would be unchanged if we assigned + to electrons and − to protons.
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FIGURE 23.10 An observer looks at a galaxy.

Notice how the spatial component of the Robertson–Walker metric is scaled by the
square of the scale factor a(t). The time variable t in the Robertson–Walker metric
is the cosmic time, which is the time measured by an observer who sees the universe
expanding uniformly around him or her. The spatial variables (r, θ, φ) in the Robertson–
Walker metric are the comoving coordinates of a point in space. If the expansion of the
universe is perfectly homogeneous and isotropic, then the comoving coordinates of any
point remain constant with time.16

Suppose you are observing a distant galaxy and want to know how far away it is.
Since we are in an expanding universe, when we assign a distance � between two objects
(such as an astronomer and a galaxy), we must specify the time t at which that distance is
correct. For convenience, let’s set up a coordinate system in which you are at the origin
and the galaxy is at a comoving coordinate position (r, θ, φ), as shown in Figure 23.10.
The proper distance �p(t) between two points in space is the length of the geodesic
between them when the cosmic time is fixed at the value t , and the scale factor is thus
fixed at the value a(t). The proper distance between an observer and a galaxy in a flat
universe can be found by using the Robertson–Walker metric of equation (23.51) at fixed
time t :

d�2 = a(t)2[dr2 + r2(dθ2 + sin2 θdφ2)]. (23.52)

Along the geodesic between the galaxy and observer, the angle (θ, φ) is constant, and
thus

d� = a(t)dr. (23.53)

The proper distance �p(t) is found by integrating over the radial comoving coordinate r:

�p(t) = a(t)

∫ r

0
dr = a(t)r. (23.54)

16 Similarly, if the Earth were uniformly expanding or contracting with time, the latitude and longitude of any
point would remain constant with time.
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The normalization a(t0) = 1 for the scale factor means that the comoving coordinate r

is simply the current proper distance to the galaxy: r = �p(t0).
Unfortunately, the proper distance �p(t0) to a distant galaxy is impossible to measure,

since we don’t have gigaparsec-long tape measures that can be extended infinitely rapidly.
As astronomers, we are condemned to a passive role; we learn what we can about the
galaxy in Figure 23.10 by gathering up the photons that it emits. A photon that we collect
at time t0 was emitted at an earlier time te < t0. Photons travel on geodesics through
spacetime; more precisely, they travel on null geodesics. A null geodesic is a geodesic
for which d� = 0 along every infinitesimal section of its path. Given equation (23.51), a
photon must satisfy the relation

c2dt2 = a(t)2[dr2 + r2(dθ2 + sin2 θdφ2)] (23.55)

as it travels through an expanding, spatially flat universe. A photon traveling from the
galaxy at (r, θ, φ) to an observer at the origin follows a beeline with θ and φ constant.
This implies

c2dt2 = a(t)2dr2 (23.56)

along every infinitesimal segment of the photon’s radial path. Rearranging equation
(23.56), we find

c
dt

a(t)
= dr, (23.57)

in which the left-hand side depends only on t and the right-hand side depends only on
r . Integrating along the photon’s path,

c

∫ t0

te

dt

a(t)
=

∫ r

0
dr = r. (23.58)

Since the comoving distance r is equal to the current proper distance �p(t0), this implies
that the proper distance is related to the scale factor by the relation

�p(t0) = c

∫ t0

te

dt

a(t)
. (23.59)

In a static universe, where a(t) = 1 for all time, equation (23.59) states that the
proper distance to a galaxy is equal to the speed of light times the photon’s travel time:
�p = c(t0 − te). If the universe has been steadily expanding since te and t0, then a(t) was
smaller in the past than it is now, and thus �p(t0) > c(t0 − te). In general, although the
current proper distance �p(t0) isn’t something we can measure, it’s something we can
compute if we know a(t).

Although we can’t directly measure the current proper distance of a galaxy, there
is a consolation prize; we can measure the galaxy’s redshift. The redshift z tells us
something useful: the scale factor a(te) at the time the observed light was emitted. When
we considered the cooling of the CMB, we learned that the wavelength of light expands
along with the expansion of the universe: λ(t) ∝ a(t). This applies to all photons, not
just CMB photons. If we observe a galaxy’s emission line with wavelength λ0 at time t0,



546 Chapter 23 Cosmology

it was emitted with a shorter wavelength λe at an earlier time te. The relation between
observed wavelength λ0 and emitted wavelength λe is

λe

a(te)
= λ0

a(t0)
. (23.60)

Using the definition of redshift,

z = λ0 − λe

λe

, (23.61)

we find that the redshift is simply related to the scale factor at the time of emission:

1 + z = λe

λ0
= a(t0)

a(te)
= 1

a(te)
. (23.62)

If we observe a quasar with z = 6.4, we are observing it as it was when the universe had
a scale factor a(te) = 1/7.4 = 0.135.

The most distant objects we can see, in theory, are those for which the light emitted
at time t = 0 is just now reaching us at t = t0. The proper distance to such an object is
called the horizon distance. In the limit te → 0, equation (23.59) tells us that the current
horizon distance is

�hor(t0) = c

∫ t0

0

dt

a(t)
. (23.63)

As an example, let’s suppose that the scale factor is a power-law, with a(t) = (t/t0)
n. If

n < 1, the horizon distance is finite, with

�hor(t0) = c

∫ t0

0

dt

(t/t0)
n

= ct0

1 − n
. (23.64)

Since the Hubble constant is

H0 =
(

ȧ

a

)
t=t0

= n

t0
, (23.65)

the horizon distance can also be written in the form

�hor(t0) = n

1 − n

c

H0
, (23.66)

when 0 < n < 1. Thus, if we want to know the exact relation between the Hubble distance
c/H0 and the horizon distance, we need to know the functional form of a(t).

23.5 THE FRIEDMANN EQUATION

In the context of general relativity, the form of a(t) as well as the curvature constant κ and
radius of curvature rc,0 are dictated by Einstein’s field equations. In general relativity,
the field equations link the curvature of spacetime at any point to the energy density
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and pressure at that point.17 The equation that links a(t), κ , and rc,0 is the Friedmann
equation. We have already seen the Newtonian version of the Friedmann equation; it’s
the energy conservation equation for the expanding sphere (equation 23.32):(

ȧ

a

)2

= 8πG

3
ρ(t) + 2k

r2
0

1

a(t)2
. (23.67)

The relativistically correct form of the Friedmann equation is(
ȧ

a

)2

= 8πG

3c2
u(t) − κc2

r2
c,0

1

a(t)2
+ �

3
. (23.68)

Equation (23.68) is offered without proof. (A derivation should be done only by a highly
trained relativist; please don’t try this at home!)

Consider the changes made in going from the Newtonian form of the Friedmann
equation to the relativistically correct form. First, the mass density ρ has been replaced
by an energy density u. Relativistic particles, such as photons, have an energy ε = hc/λ

that contributes to the energy density. Not only do photons respond to the curvature of
spacetime, they also contribute to it.

Second, in going from the Newtonian to the relativistic form, we make the substitution

2k

r2
0

→ −κc2

r2
c,0

. (23.69)

In the Newtonian model, the constant k told us whether the universe was gravitationally
bound (k < 0) or unbound (k > 0). In the relativistic model, the constant κ tells us whether
the universe is positively curved (κ > 0) or negatively curved (κ < 0).

Third and last, in going from the Newtonian to the relativistic form, we add a new term,
�/3, to the right-hand side of the equation. The Greek letter “�” is the symbol for the
famous (or perhaps infamous) cosmological constant. The cosmological constant has a
checkered history, going back to the year 1917, when Einstein published his first paper
on the cosmological implications of general relativity. In a formal mathematical sense,
� is a constant of integration resulting from solving Einstein’s field equations, which are
a set of differential equations. In addition, however, the cosmological component can be
given a physical meaning.18

A close look at the Friedmann equation (eq. 23.68) shows that adding the � term is
equivalent to adding a new component to the universe that has a constant energy density

u� = c2�

8πG
. (23.70)

17 The field equations are the relativistic equivalent of Poisson’s equation, which links the gravitational potential
at any point to the mass density ρ at that point.
18 Pedantic note: we are using the convention that � has units of 1/[time]2. Other authors use a value of �

that differs by a factor 1/c2, and thus has units of 1/[length]2. Just a warning, in case you want to go browsing
through the cosmological literature.
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Thus, any component of the universe whose energy density is constant with time will
play the part of a cosmological constant. One such component is the vacuum energy.
In quantum physics, a vacuum is not a sterile void. The Heisenberg uncertainty princi-
ple allows particle/antiparticle pairs to spontaneously appear and then annihilate in an
otherwise empty space. Just as there is an energy density u associated with real parti-
cles, there’s an energy density uvac associated with the virtual particles and antiparticles.
The vacuum energy density uvac is a small-scale quantum effect that is unaffected by the
large-scale expansion of the universe; hence, uvac remains constant as the universe ex-
pands. (Unfortunately, quantum field theory cannot tell us the expected numerical value
of uvac.)

Let’s rewrite the Friedmann equation in terms of the energy density of the universe,
including the energy density u� associated with the cosmological constant:

(
ȧ

a

)2

= 8πG

3c2
[ur(t) + um(t) + u�] − κc2

r2
c,0

1

a(t)2
. (23.71)

We’ve subdivided the energy density into three categories. First, the radiation density
ur is the energy density contributed by relativistic particles, such as photons. Second,
the matter density um is the energy density contributed by nonrelativistic particles such
as protons, neutrons, electrons, and WIMPs. For nonrelativistic particles, um = ρmc2.
Finally, the lambda density, a.k.a. the vacuum density, is the constant energy density
provided by the cosmological constant �.

The fact that our universe is flat (or very close to it) means that the total energy density
is equal to the critical energy density (or very close to it). For perfect flatness (κ = 0),

ur + um + u� = uc, (23.72)

where the critical energy density is

uc = ρcc
2 = 3H(t)2c2

8πG
. (23.73)

Since the Hubble parameter is currently H0 = 70 km s−1 Mpc−1, this translates into a
current critical density

uc,0 = 3H 2
0 c2

8πG
= 8.3 × 10−10 J m−3 = 5200 MeV m−3. (23.74)

This is one of the more fascinating results of general relativity. Because the universe is
flat on large scales, we know the average energy density of the universe! Even if we don’t
know how much is contributed by each component, we know that the total must come
to 5200 MeV m−3.19

Since the critical density uc(t) is vital to an understanding of the curvature and
expansion of the universe, cosmologists frequently express the energy density of the

19 That’s the calorie content of a standard candy bar spread over a million cubic meters.
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universe in terms of the dimensionless density parameter

�(t) ≡ u(t)

uc(t)
. (23.75)

If � < 1, the universe is negatively curved; if � > 1, the universe is positively curved.
Saying “The universe is flat” is equivalent to saying “Omega equals one.” By extension,
we can write down a density parameter for each component of the universe:

�r(t) ≡ ur(t)

uc(t)
, �m(t) ≡ um(t)

uc(t)
, ��(t) ≡ u�

uc(t)
. (23.76)

Knowing how the universe expands with time requires knowing how much energy density
is in radiation, matter, and the cosmological constant today, and knowing how the energy
density of radiation and matter evolves with time. (There are various exotic cosmologies
that contain other components, like cosmic strings and domain walls and various types of
dark energy, but for simplicity, we’ll stick to a universe with just radiation, nonrelativistic
matter, and a cosmological constant.)

PROBLEMS

23.1 Suppose that we smooth the Earth so that it’s a perfect sphere of radius R⊕ = 6371 km.
If we then draw on its surface an equilateral triangle with sides of length L = 1 km,
what will the sum of the interior angles be?

23.2 Imagine a universe full of regulation basketballs, each with mass mbb = 0.62 kg and
radius rbb = 0.12 m.

(a) What number density of basketballs, nbb, is required to make the mass density
equal to the current critical density, ρc,0 = 3H 2

0 /(8πG)?
(b) Given this density of basketballs, how far on average would you be able to see in

any direction before your line of sight intersected a basketball?
(c) In fact, we can see galaxies at a distance d ≈ c/H0 ≈ 4300 Mpc. Does the

transparency of the universe on this length scale place useful limits on the number
density of intergalactic basketballs?

23.3 Just as the universe has a cosmic microwave background dating back to the time when
the universe was opaque to photons, it has a cosmic neutrino background dating back
to the earlier time when the universe was opaque to neutrinos. The calculated number
density of cosmic neutrinos is nν = 3.36 × 108 m−3.

(a) How many cosmic neutrinos are inside your body right now?
(b) What average neutrino mass, mν, would be required to make the mass density of

cosmic neutrinos equal to the critical density ρc,0?
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23.4 Suppose you are in a Newtonian universe whose density is equal to the critical density
ρc,0. The scale factor a(t) is implicitly given by the relation

ȧ2

a2
= 8πGρc,0

3

1

a3
.

(a) What is the functional form of a(t), given the boundary condition a = 1 at t = t0?
(b) What is t0 in terms of the Hubble constant, H0?
(c) In our universe, H0 = 70 km s−1 Mpc−1 and the oldest stars have an age

t = 13 Gyr. Are these two observations consistent with a Newtonian universe
that has ρ0 = ρc,0?

23.5 Prove that a redshifted blackbody is still a blackbody but at a temperature T/(1+ z).
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Knowing how the scale factor a(t) grew in the past and predicting how it will change
in the future is an important goal of cosmologists. The Friedmann equation tells us that
the growth of the scale factor is related to the energy density of the universe. It is useful
to divide the energy content into radiation (relativistic particles), matter (nonrelativistic
particles), and a cosmological constant. This is because each of these components has
an energy density with a different dependence on the scale factor.

A cosmological constant has an energy density u� that is constant with time. To see
how the energy density of radiation and matter behaves as the universe expands, consider
a volume V that expands with the universe, so that V (t) ∝ a(t)3. If particles are neither
created nor destroyed, then the number density of particles, n, is diluted by the expansion
of the universe at the rate n(t) ∝ V (t)−1 ∝ a(t)−3, as illustrated in Figure 24.1. The
energy of the nonrelativistic particles is contributed entirely by their rest mass, ε = mc2,
which remains constant as the universe expands. Thus, for nonrelativistic particles, a.k.a.
“matter,” the energy density has the dependence

um(t) = n(t)ε = n(t)mc2 ∝ a(t)−3. (24.1)

The energy of relativistic particles, such as photons, has the dependence ε(t) = hc/

λ(t) ∝ a(t)−1. Thus, for relativistic particles, a.k.a. “radiation,” the energy density has
the dependence

ur(t) = n(t)ε(t) = n(t)hc/λ(t) ∝ a(t)−4. (24.2)

Given the different rates of decrease for the energy density, we find that the total energy
density u was contributed mainly by radiation at early times, when a � 1 (Figure 24.2).
In the language of cosmologists, the early universe was “radiation dominated.” If the
universe has a positive cosmological constant �, then it becomes “lambda dominated”
if it reaches a sufficiently large scale factor.

24.1 THE CONSENSUS MODEL

In recent years, cosmologists (ordinarily a contentious bunch) have found themselves ap-
proaching an approximate consensus on the curvature, contents, and age of the universe.
The curvature is flat (or nearly so), implying that the energy density today is close to the

551
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FIGURE 24.1 Dilution of nonrelativistic particles (“matter”) and relativistic
particles (“radiation”).
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critical density u0 ≈ uc,0 ≈ 5200 MeV m−3. To see how this energy density is allocated
among the different components, let’s do a census of the universe.

Most of the energy density of photons is provided by the cosmic microwave back-
ground; although stars have been shining away for ∼ 13 Gyr, starlight still provides less
than 10% of the total photon energy of the universe.1 The current energy density of the
CMB, as computed in equation (23.18), is ucmb,0 = 0.260 MeV m−3. The contribution
of the CMB to the critical density is thus

�cmb,0 = ucmb,0

uc,0
= 0.260 MeV m−3

5200 MeV m−3
= 5.0 × 10−5. (24.3)

The CMB is a relic of the time when the universe was hot and dense enough to be
opaque to photons. If we extrapolate to earlier times and smaller scale factors, we reach
a time when the universe was hot and dense enough to be opaque to neutrinos. Thus,
there should be a cosmic neutrino background (CNB) analogous to the CMB. A detailed
statistical mechanics calculation (of which we omit the details) reveals that the energy
density of the CNB should be

uν,0 = 0.68ucmb,0 = 0.177 MeV m−3, (24.4)

if the neutrinos are still traveling fast enough to qualify as relativistic particles today
(that is, if the energy per particle, εν, is much larger than the rest energy mνc

2). The
CNB has not yet been detected. The energy per neutrino is comparable to the energy per
photon in the CMB—less than 10−3 eV. Detecting such low-energy neutrinos is not yet
technically feasible.

If neutrinos are low enough in mass to be relativistic today, the present density
parameter in radiation is

�r,0 = �cmb,0 + �ν,0 = 1.68�cmb,0 = 8.4 × 10−5. (24.5)

Thus, photons and neutrinos contribute a small fraction of the critical density today; about
1 part in 12,000. Most of the density must currently be provided by nonrelativistic matter
and/or a cosmological constant (or by some other, hitherto unsuspected, component).

The energy density of the CMB has been measured with high precision; the energy
density of the CNB has been computed using well-understood principles of physics. The
energy density of matter is not as well determined. If we add together the mass of all the
clusters of galaxies in our neighborhood, we find that the density of clustered matter is

�cluster,0 ≈ 0.2. (24.6)

This number doesn’t include any smoothly distributed matter in the intercluster voids.
The best estimate for the current density of nonrelativistic matter, using all available
data, is

�m,0 ≈ 0.3. (24.7)

1 Thus, although photon number is not strictly conserved, as we assumed when computing ur ∝ a−4, it’s a
better approximation than we might guess.
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The best estimate for the current density of baryonic matter (that is, stuff made of protons,
neutrons, and electrons) is

�bary,0 = 0.04. (24.8)

(We see how this number is determined in Section 24.3.) The majority of the matter in
the universe must consist of nonbaryonic dark matter, such as WIMPs.

The total mass density of baryonic matter today is

ρbary,0 = 0.04ρc,0 = 3.7 × 10−28 kg m−3. (24.9)

The number density of baryons is thus nbary,0 ≈ ρbary,0/mp ≈ 0.22 m−3. This is much
lower than the number density of photons. The photon-to-baryon ratio in the universe is
approximately

ncmb,0

nbary,0
≈ 4.11 × 108 m−3

0.22 m−3
≈ 2 × 109. (24.10)

Baryons are badly outnumbered by photons, by a ratio of 2 billion to 1.
The available observational evidence has led cosmologists to a Consensus Model

of the Universe. This model is flat and contains radiation, nonrelativistic matter, and
a cosmological constant (a.k.a. � or “lambda,” a.k.a. “vacuum energy,” a.k.a. “dark
energy”). Some of the current properties of the Consensus Model are listed in Table 24.1.

For the Consensus Model, with its mix of radiation, matter, and cosmological con-
stant, the Friedmann equation (eq. 23.71) is

H(t)2 = 8πG

3c2

[
ur,0

a(t)4
+ um,0

a(t)3
+ u�

]
, (24.11)

where H(t) ≡ ȧ/a. Dividing by H 2
0 , and using the definition of the critical density

(equation 23.73), we find that

H(t)2

H 2
0

= 1

uc,0

[
ur,0

a(t)4
+ um,0

a(t)3
+ u�

]
, (24.12)

TABLE 24.1 The Consensus Model

Component Property

photons �γ,0 = 5.0 × 10−5

neutrinos �ν,0 = 3.4 × 10−5

total radiation �r,0 = 8.4 × 10−5

baryonic matter �bary,0 = 0.04

nonbaryonic dark matter �dm,0 = 0.26

total matter �m,0 = 0.30

cosmological constant ��,0 ≈ 0.70



24.1 The Consensus Model 555

or, in terms of the dimensionless density parameter � (equation 23.76),

H(t)2

H 2
0

= �r,0

a(t)4
+ �m,0

a(t)3
+ ��. (24.13)

The Friedmann equation thus provides us with a differential equation for the scale factor
a(t):

da

dt
= H0

[
�r,0

a(t)2
+ �m,0

a(t)
+ ��,0a(t)2

]1/2

. (24.14)

Given values for H0, �r,0, �m,0, and ��,0, equation (24.14) can be integrated to yield the
scale factor as a function of time, given our usual normalization a(t0) ≡ 1. Unfortunately,
the solution of equation (24.14) doesn’t have a simple analytic form. However, since the
right-hand side of equation (24.14) is always positive for the Consensus Model, we can
immediately predict that the universe will continue to expand forever. There is no Big
Crunch for the Consensus Model.

Since the three components (radiation, matter, and �) have different dependences
on scale factor, there will be long stretches in the history of the universe when one
component dominates the energy density. At the moment, u� > um,0 � ur,0. At an earlier
time, and a smaller scale factor am�, the density of matter um was equal to u�. This
equality took place when

u� = um,0

a3
m�

, (24.15)

or

am� =
(

um,0

u�

)1/3

=
(

�m,0

��,0

)1/3

=
(

0.7

0.3

)1/3

= 0.75. (24.16)

When we observe a galaxy with redshift z = 1/am� − 1= 0.33, we are looking back to
a time when matter was equal in density to the cosmological constant.

If we go to earlier times, there was a scale factor arm at which the density of radiation
ur was equal to the density of matter um. This equality took place when

um,0

a3
rm

= ur,0

a4
rm

, (24.17)

or

arm = ur,0

um,0
= �r,0

�m,0
= 8.4 × 10−5

0.3
= 2.8 × 10−4. (24.18)

This scale factor corresponds to a redshift z = 1/arm − 1= 3600. This is higher than the
redshift at which the universe became transparent (z ≈ 1100), so we cannot directly see
the time of radiation–matter equality.

Early in the history of the universe, when the scale factor was small (a � arm ≈
0.00028), the universe was radiation-dominated. That is, the vast majority of the
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density was provided by photons and highly relativistic particles such as neutrinos. The
Friedmann equation (eq. 24.14) in a radiation-dominated universe reduces to the form

da

dt
= �

1/2
r,0 H0

a(t)
. (24.19)

This equation has the solution

a(t) = [2�
1/2
r,0 H0t]

1/2, (24.20)

as the reader can verify by substitution. Since a(t) ∝ t1/2 in the early universe, the horizon
size


hor(t0) =
∫ t0

0

dt

a(t)
(24.21)

does not diverge as t → 0, and we live in a universe with a finite horizon. The acceleration
in the early universe was negative:

ä = − 1

4t2
a(t) < 0, (24.22)

indicating that the expansion of the early universe was slowed by gravity acting on
photons and other relativistic particles.

At intermediate scale factors, when arm � a � am�, or 0.00028 � a � 0.75, the
universe was matter-dominated. That is, the majority of the density was provided
by nonrelativistic particles, such as WIMPs, protons, and neutrons. During the matter-
dominated era, the Friedmann equation (eq. 24.14) takes the simplified form

da

dt
= �

1/2
m,0H0

a(t)1/2
, (24.23)

which has the solution

a(t) = [
3

2
�

1/2
m,0H0t]

2/3, (24.24)

again verifiable by substitution. Since a(t) ∝ t2/3 during the matter-dominated era, the
acceleration was

ä = − 2

9t2
a(t) < 0. (24.25)

A matter-dominated universe, like a radiation-dominated universe, is decelerating.
In the future, when the scale factor becomes large (a � am� ≈ 0.75), the universe

will become lambda-dominated. When the cosmological constant is the only significant
contributor to the energy density, the Friedmann equation (eq. 24.14) takes the form

da

dt
= �

1/2
�,0H0a(t). (24.26)
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This equation has an exponential solution:

a(t) ∝ eKt, (24.27)

where

K = �
1/2
�,0H0 = 1

16.7 Gyr
. (24.28)

When the cosmological constant takes over, the universe will expand exponentially, with
an e-folding time of 16.7 Gyr. In the lambda-dominated universe, the Hubble parameter
will be

H = ȧ

a
= K = �

1/2
�,0H0. (24.29)

The Hubble constant really will be constant with time. In addition, when the universe is
lambda-dominated, the acceleration will be positive:

ä = ��,0H
2
0 a(t) > 0. (24.30)

In a relativistic universe, a cosmological constant � > 0 plays the role of a repulsive
force in a Newtonian universe; that is, it causes the relative speed of any two points to
increase with time.2

The Friedmann equation for the Consensus Model can be integrated numerically to
find a(t) for all times, not just those special epochs when a single component is dominant.
The resulting scale factor is shown in Figure 24.3. Note that the transitions from radiation
to matter domination, and from matter to lambda domination, are smooth and gradual.

With a complete knowledge of a(t), the time corresponding to any scale factor can
be computed. The scale factor of radiation–matter equality, arm = 0.00028, corresponds
to a time

trm = 3.3 × 10−6H−1
0 = 47,000 yr. (24.31)

Despite the brevity of the radiation-dominated era, a lot of interesting physics was going
on back then, and cosmologists have focused a great deal of attention on it. The scale
factor of matter–lambda equality, am� = 0.75, corresponds to a time

tm�0.70H−1
0 = 9.8 Gyr. (24.32)

This should be compared to the current age of the universe in the Consensus Model,
which turns out to be

t0 = 0.964H−1
0 = 13.5 Gyr. (24.33)

2 It can be shown that if a component of the universe has an energy density u ∝ a−n, then if n < 2, it will cause
ä > 0. In general, components that cause ä > 0 are given the generic name of “dark energy.” The “cosmological
constant” is a special case of “dark energy,” with n = 0.
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FIGURE 24.3 Scale factor as a function of time (in units of the Hubble time) for
the Consensus Model.

What’s amusing is that the period of deceleration (when the universe was dominated
by radiation and matter) was almost exactly balanced by the later period of positive
acceleration (when the universe was dominated by �). The net effect is that the age
of the universe is nearly equal to H−1

0 , the naı̈ve result you would get by assuming no
acceleration at all.

With a(t) known, other properties of the Consensus Model can be computed. For in-
stance, Figure 24.4 shows the current proper distance, 
p(t0), to a galaxy with measured
redshift z. The bold, solid line shows the results for the Consensus Model. For compar-
ison, the dotted line shows the proper distance in a flat, matter-only universe and the
dot-dash line shows the proper distance in a flat, lambda-only universe. As z → ∞, the
proper distance in the Consensus Model reaches a limiting value, 
p(t0) → 3.24c/H0.
Thus, the Consensus Model has a finite horizon distance,


hor(t0) = 3.24
c

H0
= 3.12ct0 = 14,000 Mpc. (24.34)

In the matter-only universe, the horizon distance is 
hor = 2c/H0; in the lambda-only
universe, the horizon distance is infinite.
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FIGURE 24.4 Current proper distance (in units of the Hubble distance) to a
galaxy with redshift z.

24.2 THE ACCELERATING UNIVERSE

The Friedmann equation for the Consensus Model can be written in the form

ȧ = H0

[
�r,0

a2
+ �m,0

a
+ ��,0a

2
]1/2

. (24.35)

By taking the derivative with respect to t , then doing a bit of algebra, we find an equation
for the second time-derivative of the scale factor:

ä = H 2
0

[
−�r,0

a3
− �m,0

2a2
+ ��,0a

]
. (24.36)

Note that on the right-hand side of equation (24.36), the terms involving radiation and
matter are negative (they slow down the expansion), while the term involving � is
positive (it speeds up the expansion). At present, a(t0) = 1, so the acceleration of the
expansion is

ä0 = H 2
0 [−�r,0 − �m,0/2 + ��,0] = 0.55H 2

0 (24.37)
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for the Consensus Model. The speeding up of the expansion is a remarkable—and in
the context of Newtonian gravity, counterintuitive—result. What led cosmologists to
embrace the accelerating universe? The conclusion was based largely on measuring the
flux of standard candles at high redshifts.

Suppose we are looking at a standard candle, of known luminosity L, whose current
proper distance is r = 
p(t0). In a static, flat universe, the observed flux would be given
by an inverse square law:

Fstatic = L

4πr2
. (24.38)

If the universe is expanding rather than static, the observed flux of the standard candle
will be lower than this value, for two reasons.

First, the expansion of the universe causes the energy of each photon from the standard
candle to decrease. The photon begins with an energy εe when it is emitted at time te.
By the time we observe the photon at time t0, its energy will have dropped to the value

ε0 = εe

a(te)

a(t0)
= εe

1 + z
, (24.39)

where z is the measured redshift of the standard candle.
Second, the expansion of the universe will cause the time between photon detections

to increase. If two photons are emitted in the same direction separated by a time interval
δte, the proper distance between them will initially be δre = c(δte). However, by the time
we detect the two photons at the later time t0, the proper distance between them will be
stretched to δr0 = c(δte)(1 + z), and we will detect them separated by a time interval
δt0 = δte(1 + z).

The net result of these two effects—lower energy photons and a longer time interval
between photons—is that the observed flux f in an expanding (but spatially flat) universe
will be

Fexpand = L

4πr2(1 + z)2
. (24.40)

Converting from fluxes to apparent magnitudes, we can also write down the observed
apparent magnitude m in an expanding universe:

m = M + 5 log[r(1 + z)] − 5, (24.41)

where r is in parsecs. The distance modulus for a standard candle in an expanding (but
spatially flat) universe is thus

m − M = 5 log r + 5 log(1 + z) − 5, (24.42)

where r is the current proper distance 
p(t0) to the standard candle. Consider the proper
distances shown in Figure 24.4 for three different flat universes. Since the exponentially
expanding, lambda-only universe has the largest proper distance r for a given redshift z,
it will have the faintest standard candles at that redshift. Figure 24.5 shows the distance
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FIGURE 24.5 Distance modulus for an object with redshift z. The solid line
represents the Consensus Model; the dotted line, a flat, matter-only universe; and
the dot-dash line, a flat, lambda-only universe.

modulus for standard candles in our three different flat universes. At a very small redshift
(z � 1), the distance modulus reduces to

m − M ≈ 5 log

(
c

H0
z

)
− 5 ≈ 43.17 − 5 log z, (24.43)

regardless of the values of �m,0 and ��,0. It is only at z > 1 that the differences between
models becomes large.

As an example, consider a type Ia supernova with an absolute magnitude M =
−20.0 mag. If it is seen at a redshift z = 1, then its apparent magnitude in the Consensus
Model will be m = 24.1 mag. Its apparent magnitude in the flat, lambda-only model will
be m = 24.7 mag, 0.6 mag fainter than in the Consensus Model. Its apparent magnitude in
the flat, matter-only model will be m = 23.5 mag, 0.6 mag brighter than in the Consensus
Model.

Using the apparent magnitude of distant type Ia supernovae to distinguish among
different models requires accurate photometry of apparently faint sources. It’s difficult,
but it can be done. Figure 24.6 shows the results from two different surveys of type
Ia supernovae. The observational results are compared to three different models. In
Figure 24.6a, the top line is the result expected in the Consensus Model; the bottom



562 Chapter 24 History of the Universe

(a)

(b)

0.0
1.0
0.0
0.3

0.0
0.0
1.0
0.7

ΩM Ω
Λ

FIGURE 24.6 (a) Distance modulus versus redshift for type Ia supernovae. (b)
Difference between the data and the predictions for an empty (� = 0) universe.

line is the result for a flat, matter-only universe; and the middle line is for a negatively
curved universe with �m,0 = 0.3 and � = 0. The data are best fitted by the Consensus
Model; this is better seen in Figure 24.6b, which shows the difference between the data
and the predictions of the negatively curved �m,0 = 0.3 model.

Instead of fitting just three models to the supernova data, we can ask more gen-
erally, What values of �m,0 and ��,0 give the best fits to the data.3 After choosing
values for �m,0 and ��,0, the relation between distance modulus and redshift can be
computed, then compared to the supernova data. The results of fitting the model uni-
verses are shown in Figure 24.7. This is a rather busy plot that repays careful scrutiny.
Since the radiation density is negligible, the criterion for flatness is �m + �� = 1, rep-
resented in Figure 24.7 by the dashed line running diagonally downward from left to
right. Positively curved universes (labeled “Closed”) lie above and to the right; nega-
tively curved universes (labeled “Open”) lie below and to the left. The solid line that
runs diagonally upward from left to right divides universes with ä0 > 0 (labeled “Ac-
celeration”) from universes with ä0 < 0 (labeled “Deceleration”). Finally, the slightly
curved line that runs nearly horizontally from (�m = 0, �� = 0) divides the Big Chill

3 At z < 1, the role of radiation is negligible, so the supernova fluxes tell us nothing about the density of
radiation, �r,0.
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FIGURE 24.7 The values of �m,0 and ��,0 that best fit the relation between
m − M and z for type Ia supernovae. The solid and dashed lines represent two
slightly different samples of supernovae.

universes (labeled “Unbounded Expansion”) from the Big Crunch universes (labeled
“Recollapse”).4

The concentric ovals in Figure 24.7 show the region of parameter space that gives
the best fit to the available supernova data. (The smallest, innermost oval gives the best
fit, but the largest, outermost oval cannot be excluded at the 99.5% confidence level.)
Decelerating universes can be strongly ruled out by the supernova data, as can Big Crunch
universes. It is the supernova data that have led cosmologists to conclude that we live in
a universe whose expansion is accelerating, leading to an exponentially chilly future for
our universe.

Notice, however, that the supernova data cannot by themselves distinguish between
positively curved, flat, or negatively curved universes. The curvature of the universe is
constrained by looking at the angular size of distant objects, as outlined in Section 23.3.
The most distant things we can see in the universe are hot and cold spots in the CMB. The
angular size of these spots has been measured by the Wilkinson Microwave Anisotropy
Probe (WMAP) and by ground-based and balloon-borne experiments. It is the preferred

4 Your curiosity may be piqued by the wedge labeled “No Big Bang” in the upper left corner. These models,
when extrapolated backward in time, have ȧ = 0 when a > 0; that is, they started their expansion in a state
where the density was low compared to the extraordinarily high initial density we expect in a true Big Bang
universe.
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angular size of the structure in the CMB that provides the best evidence for the flatness
of the universe (� ≈ 1). It is only when we combine the CMB results (the universe is
flat) with the supernova results (the universe is accelerating) that we reach the Consensus
Model, with �m ≈ 0.3 and �� ≈ 0.7.

If the cosmological constant is truly constant with time, then we face an accelerating
future. The Local Supercluster will remain gravitationally bound (we don’t have to worry
about the Virgo Cluster and the Local Group being yanked apart), but more distant
superclusters will move away from us with exponentially increasing velocity.

24.3 THE EARLY UNIVERSE

To understand the origins of the universe, we want to look as far back in time as
possible. The oldest photons we see today are the photons of the CMB. As described in
Section 23.1, when the initially hot and dense universe became sufficiently cool, protons
and electrons combined to form neutral hydrogen atoms:

p + e− → H + γ. (24.44)

At this time, the universe became transparent, since the photons of the cosmic back-
ground radiation no longer scattered off free electrons.

As we look outward in space, we look backward in time. Thus, we (and every other
observer in the universe) are surrounded by a spherical last scattering surface, illustrated
in Figure 24.8. The last scattering surface is where photons underwent their last scattering
from a free electron before streaming freely through the newly transparent universe. The
last scattering surface is the surface of the glowing, opaque ionized gas that filled the
early universe.5

The universe became transparent, and photons underwent their last scattering, at
a temperature Tls = 3000 K. The scale factor at the time of last scattering was als =
T0/Tls = 2.725 K/3000 K = 9.1 × 10−4, corresponding to a redshift zls = 1/als − 1 =
1100. In the Consensus Model, the time of last scattering was tls = 2.5 × 10−5H−1

0 =
0.4 Myr. Thus, the CMB gives us a glimpse of what the universe was like 400,000 years
after the Big Bang.

At every point of the sky, the CMB has a blackbody spectrum. Although the average
temperature of the CMB is T0 = 2.725 K, the actual temperature varies slightly across the
celestial sphere. Color Figure 30 shows a plot of the temperature of the CMB, as derived
from WMAP data. The temperatures show a dipole distortion, with one hemisphere of the
sky being blueshifted to higher temperatures, and the other hemisphere being redshifted
to lower temperatures. This dipole distortion is simply a Doppler shift, caused by the
motion of WMAP through space.6 Once we subtract away the orbital motion of WMAP
about the Sun (v ≈ 30 km s−1), the orbital motion of the Sun about the Galactic Center

5 We can think of it as an inside-out photosphere, since the photosphere of a star is also the surface of a glowing,
opaque, ionized gas.
6 WMAP is at the Earth’s L2 point (see Figure 11.3), and not in a low Earth orbit.
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FIGURE 24.8 Observer surrounded by the “last scattering surface.”

(v ≈ 220 km s−1), and the orbital motion of the Galaxy relative to the center of mass of
the Local Group (v ≈ 80 km s−1), we find that the Local Group is moving in the direction
of Hydra, with a speed vlg ≈ 630 km s−1. Thus, the dipole distortion of the CMB is telling
us about motion of the Local Group here and now (which is undeniably interesting but
doesn’t tell us directly about the early universe).

Color Figure 31 shows the remaining low-amplitude temperature fluctuations after
the dipole Doppler distortion has been subtracted. The angular size of the hot and cold
spots in this image are what cosmologists use to determine the curvature of space. The
amplitude of the fluctuations is not large: typically, δT /T ∼ 10−5. The small temperature
fluctuations result from small density fluctuations at the time of last scattering. A pho-
ton that happens to find itself in a dense region when the universe becomes transparent
will lose energy as it climbs out of the gravitational potential well that is associated with
the dense region, and will thus become redshifted to lower temperatures. Conversely,
a photon that happens to be in a low-density region will be blueshifted to higher tem-
peratures. The low-amplitude density fluctuations that were present at t ≈ 0.4 Gyr have
grown with time to the high-amplitude density fluctuations that we see at t0 ≈ 13.5 Gyr
(superclusters, clusters, galaxies, etc.)

The opacity of the early universe draws a frustrating veil over the first 400 millennia
of the history of the universe. Nevertheless, cosmologists can still deduce indirectly what
was happening back then. For instance, we know that in the early universe, neutral
hydrogen atoms couldn’t exist because some of the cosmic background photons had
energies larger than the hydrogen ionization energy (χ = 13.6 eV). If we go farther back
in time, we should reach a time at which bound atomic nuclei could exist because some
of the cosmic background photons had energies larger than the nuclear binding energy
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(typically several MeV). Thus, just as there was a time when protons and electrons
combined to form neutral hydrogen atoms (at t ≈ 0.4 Myr), there must have been an
earlier time when protons and neutrons combined to form atomic nuclei. This time is
known as the era of Big Bang nucleosynthesis (BBN).

Consider, for simplicity, a deuterium (D) nucleus. This is the simplest of all compound
nuclei; it consists of a proton and neutron bound together with a binding energy B =
2.22 MeV. A gamma-ray photon with ε > B can photodissociate deuterium:

D + γ → p + n. (24.45)

This reaction can run in the opposite direction, too; a proton and neutron can fuse to
form a deuterium nucleus, with a gamma-ray photon carrying off the excess energy:

p + n → D + γ. (24.46)

Deuterium synthesis (equation 24.46) has obvious parallels to the radiative recombina-
tion of hydrogen (equation 24.44). In each case, two particles become bound together,
with a photon carrying away excess energy. The most striking difference between the
processes is the different energies involved. The photodissociation energy of deuterium
is B = 2.22 MeV = (1.6 × 105)(13.6 eV). The energy released when a deuterium nu-
cleus is formed is 160,000 times the energy released when a neutral hydrogen atom is
formed; thus, we expect the temperature at the time of nucleosynthesis to be 160,000
times greater than the temperature at the time of last scattering, when neutral hydrogen
formed. This implies a nucleosynthesis temperature

Tnuc = B

χ
Tls = (1.6 × 105)(3000 K) = 5 × 108 K. (24.47)

In the Consensus Model, the universe had this temperature at an age tnuc ∼ 400 s ∼
7 min.7

Once a significant amount of deuterium forms, it can be converted to heavier nuclei.
For instance, tritium (3H) is made by the reaction

D + n → 3H + γ. (24.48)

Light helium (3He) is made by the reaction

D + p → 3He + γ. (24.49)

Ordinary helium (4He) can be made by reactions such as

3H + p → 4He + γ (24.50)

and

3He + n → 4He + γ. (24.51)

7 This is a slight overestimate of the age; when Steven Weinberg entitled his book on BBN The First Three
Minutes, he was using a more accurate calculation.
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FIGURE 24.9 Mass fraction of nuclei (and free neutrons) during the time of
BBN.

Once 4He is reached, the orderly march of nucleosynthesis to larger atomic numbers hits
a roadblock. There are no stable nuclei with atomic number 5. If we try to add a proton
to 4He to make 5Li, it won’t work; 5Li is not a stable nucleus. If we try to add a neutron to
4He to make 5He, it won’t work; 5He is not a stable nucleus. We can make small amounts
of lithium by the reactions

4He + D → 6Li + γ (24.52)

and

4He + 3H → 7Li + γ, (24.53)

but then we hit another roadblock. There are no stable nuclei with atomic number 8. If
we try to fuse two 4He nuclei together to form 8Be, it won’t work; 8Be is not a stable
nucleus.8

In summary, BBN works rapidly and efficiently up to 4He, but few nuclei heavier
than helium are produced. The precise yields of the different elements and isotopes can
be computed using a computer code that takes into account the cross-sections for the
different nuclear reactions. Results of a typical BBN code are shown in Figure 24.9. At
t ≈ 1 s, almost all the baryons are in the form of free protons (labeled H in the figure)
and free neutrons (labeled n).

8 As you may recall from Section 15.3, the instability of 8Be is the main reason why the triple alpha process in
stars requires such high temperature and density; a 4He nucleus must be slammed into the 8Be nucleus during
the brief interval before it falls apart.
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Because protons have a lower rest energy than neutrons, the laws of statistical me-
chanics state that protons will be more numerous than neutrons in the early universe.
By t ≈ 100 s, when nucleosynthesis kicks into high gear, there are seven protons for
every neutron in the universe. Consider a representative group of two neutrons and 14
protons. The two neutrons swiftly combine with two of the protons to form a single
4He nucleus, leaving 12 lonely protons left over.9 At t ≈ 104 s ≈ 3 hr, the temperature
has dropped too low for further nuclear reactions and the epoch of BBN is over. At this
point, the mass fraction of hydrogen is X ≈ 12/16 ≈ 0.75 and the mass fraction of helium
is Y ≈ 4/16 ≈ 0.25. Only tiny amounts of elements other than 1H and 4He are present.

A basic prediction of BBN is that helium contributed 25% of the baryon density even
before the first generation of stars began to pollute the universe with heavy elements.
Observations of gas and stars reveal that hydrogen is invariably mixed with helium. The
helium mass fraction of the Sun is Y = 0.250, but the Sun is contaminated by helium
formed in earlier generations of stars. When we look at interstellar gas that hasn’t been
run through the stellar mill, the helium mass fraction can be as low as Y = 0.24, but not
any lower. This is in good agreement with the predictions of BBN.

24.4 THE VERY EARLY UNIVERSE

So far we have accentuated the positive when discussing the Hot Big Bang universe in
general, and the Consensus Model in particular. However, the standard Hot Big Bang
scenario, in which the universe was dominated by radiation at early times, has a pair
of problems that have puzzled cosmologists. These are the flatness problem and the
horizon problem. Let’s examine the flatness problem first.

The curvature of the universe is related to its energy content by the Friedmann
equation,

H(t)2 = 8πG

3c2
u(t) − κc2

r2
c,0

1

a(t)2
. (24.54)

If we divide each side by H(t)2, we can rewrite the Friedmann equation in the form

1 = �(t) − κc2

r2
c,0

1

a(t)2H(t)2
. (24.55)

If the density parameter is exactly equal to 1, then the universe is perfectly flat. At the
present moment, the observational results are consistent with the limits

|1 − �0| ≤ 0.1. (24.56)

9 The solitary life of the protons ends 400,000 years later, when they find electron sidekicks and become neutral
hydrogen atoms.
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Why should the value of the density parameter be so close to 1 today? We might just shrug
and say, “It’s a coincidence.” However, when you extrapolate the value of �(t) back into
the past, the closeness of � to 1 becomes more difficult to dismiss as a coincidence.

Equation (24.55) tells us

|1 − �(t)| ∝ 1

a(t)2H(t)2
. (24.57)

During the matter-dominated era, a(t) ∝ t2/3 and H(t) ≡ ȧ/a ∝ t−1. Thus, during the
matter-dominated era, the difference between � and 1 grew at the rate

|1 − �(t)|m ∝ t2/3 ∝ a(t). (24.58)

During the radiation-dominated era, a(t) ∝ t1/2 and H(t) ≡ ȧ/a ∝ t−1. Thus, during the
radiation-dominated era, the difference between � and 1 grew at the rate

|1 − �(t)|r ∝ t ∝ a(t)2. (24.59)

If we extrapolate back to the time of BBN (tnuc ∼ 3 min), we compute that the deviation
of � from one was

|1 − �(tnuc)| ≤ 10−14. (24.60)

At the time deuterium and helium were forming, the density of the universe was equal
to the critical density with an accuracy of 1 part in 100 trillion. Our very existence depends
on the astonishingly close match between the actual density and the critical density in
the early universe. If, for instance, the deviation of � from 1 at the time of Big Bang
nucleosynthesis had been 1 part in 100 thousand instead of one part in 100 trillion, the
universe would have collapsed in a Big Crunch or expanded to a low-density Big Chill
after only a few years. In either case, galaxies, stars, planets, and cosmologists would
not have had time to form.

The flatness problem is simply the statement that � was very, very close to 1 in the
early universe. It would be satisfying if we could find a physical mechanism for flattening
the universe early in its history, rather than invoking a highly implausible coincidence.

The horizon problem is simply the statement that the universe is nearly homogeneous
and isotropic on large scales. Why is this a problem? To see why large-scale homogeneity
and isotropy is puzzling in the standard Hot Big Bang scenario, consider two antipodal
points on the last scattering surface, as shown in Figure 24.10. Since the last scattering
of CMB photons took place long ago (tls ≈ 0.4 Myr ≈ 3 × 10−5t0), the current proper
distance to the last scattering surface is only slightly smaller than the horizon distance.
In the Consensus Model, the last scattering surface is at a distance 
p = 0.98
hor from
us. Thus, two antipodal points on the last scattering surface are currently separated by a
distance 1.96
hor. Since the two points are farther apart than the horizon distance, they
are not in causal contact. That is, they haven’t had time to send messages to each other.
In particular, they haven’t had time to come into thermal equilibrium with each other.
Nevertheless, the two points have the same temperature, once the dipole distortion is
subtracted, to within 1 part in 105.
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Horizon

Last scattering surface

0.98 dhor 0.98 dhor

FIGURE 24.10 The distance between antipodal points on the last scattering
surface.

How can two points that haven’t had time to swap information be so nearly identical
in their properties? It would be satisfying if we could find a physical mechanism for
homogenizing the universe early in its history, rather than invoking a highly implausible
coincidence.

The first satisfying solution to the flatness and horizon problems was provided by
Alan Guth, who put forward the inflationary theory in 1981. In a cosmological context,
“inflation” is the statement that there was a very early period when the acceleration of the
expansion was positive (ä > 0). As usually implemented, inflationary theory supposes
that the universe was temporarily dominated by a cosmological constant �i very much
larger than the cosmological constant � present today.

When the universe is dominated by a cosmological constant, it expands exponentially
(equation 24.27):

a(t) ∝ eHit , (24.61)

where

Hi =
(

8πGu�

3c2

)1/2

. (24.62)

To see how inflation can solve the flatness and horizon problems, suppose that the uni-
verse had a period of exponential growth in the middle of its early radiation-dominated
phase. For simplicity, let’s suppose the exponential expansion switched on instanta-
neously at a time ti, and lasted until some later time tf , when it switched off instanta-
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neously. In this simple case, the scale factor grows during the inflationary era (ti < t < tf )
by a factor

a(tf )

a(ti)
= eN, (24.63)

where N , the number of e-foldings of inflation, is

N ≡ Hi(tf − ti). (24.64)

If the duration of inflation, tf − ti, was long compared to the Hubble time during inflation,

H−1
i , then N was large and the growth of the scale factor was exponentially huge.
For concreteness, let’s take one popular model for inflation. According to Grand

Unified Theories of particle physics, or GUTs, there was a phase transition that took place
at a time tGUT ≈ 10−35 s, when the strong nuclear force separated from the electroweak
force. In the GUT model of inflation, exponential growth began at the GUT time,
ti ≈ tGUT ≈ 10−35 s, with a Hubble parameter Hi ≈ t−1

GUT ≈ 1035 s−1, and lasted for
N ∼ 100 e-foldings. In the GUT model, the growth in scale factor during inflation was

a(tf )

a(ti)
∼ e100 ∼ 1043, (24.65)

all happening in a time ∼ 100tGUT ∼ 10−33 s.
How does inflation resolve the flatness problem? In an exponentially expanding

universe, equation (24.57) can be written in the form

|1 − �(t)| ∝ 1

a(t)2H(t)2
∝ 1

e2Hit
∝ e−2Hit . (24.66)

If we compare � at the beginning of inflation (t = ti) to � at the end of inflation
(t = tf = ti + N/Hi), we find

|1 − �(tf )| = e−2N |1 − �(ti)|. (24.67)

If the universe were strongly curved prior to inflation, with

|1 − �(ti)| ∼ 1, (24.68)

then 100 e-foldings of inflation would flatten it like the proverbial pancake, and then
some:

|1 − �(tf )| ∼ e−200 ∼ 10−87. (24.69)

The current limits on the density parameter, |1− �0| ≤ 0.1, imply that N > 60 if inflation
took place at the GUT time.

How does inflation resolve the horizon problem? Consider the entire universe di-
rectly visible to us today, that is, the region bounded by the surface of last scattering
(Figure 24.10). Currently, the proper distance to the surface of last scattering is


p(t0) = 0.98
hor(t0) = 14,000 Mpc. (24.70)
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If inflation ended at a time tf ∼ 10−33 s, this corresponds to a scale factor af ∼ 8 × 10−27

in the Consensus Model. Thus, immediately after inflation, the portion of the universe
visible to us today was crammed into a sphere of radius


p(tf ) = af 
p(t0) (24.71)

∼ (8 × 10−27)(1.4 × 104 Mpc) ∼ 10−22 Mpc ∼ 4 m.

Immediately after inflation, all the mass–energy destined to become the hundreds of
billions of galaxies we see today was contained in a sphere a few yards in radius. This
may boggle your mind. If so, be prepared for additional boggling. If there were N ∼ 100
e-foldings of inflation, then prior to the inflationary epoch, the currently visible universe
was contained in a sphere of radius


p(ti) ∼ e−100
p(tf ) ∼ 10−43 m. (24.72)

What matters for the solution of the horizon problem is not that this distance is small
(which it certainly is!) but that it is smaller than the horizon distance at ti, the start of
inflation. Since the universe was radiation-dominated before inflation, the preinflationary
scale factor was a(t) = ai(t/ti)

2, and the horizon distance at ti was


hor(ti) = cai

∫ ti

0

dt

ai(t/ti)
2

= 2cti ∼ 6 × 10−27 m, (24.73)

assuming that inflation began at the GUT time, ti ∼ 10−35 s. This horizon distance is
over 16 orders of magnitude bigger than the size of the currently visible universe at time
ti. Thus, everything we see today had plenty of time to swap photons back and forth prior
to inflation and come to thermal equilibrium.

The detailed particle physics behind inflation is beyond the scope of this book. The
usual driving mechanism behind inflation involves a scalar field being caught in a “false
vacuum state” for a finite length of time. A false vacuum state is one for which the
potential energy of the field is not the global minimum. It takes some length of time
for the scalar field to transit to the global minimum of the potential (the true vacuum
state). During the time of transition, the energy of the scalar field plays the role of a
cosmological constant. A scalar field in a false vacuum state is sometimes compared
to a supercooled liquid. Freezing would lower the energy of the supercooled liquid, but
until some disturbance initiates the freezing, it temporarily remains in the higher-energy,
liquid state. When the freezing finally occurs, the latent heat of fusion is released and
warms the surroundings. Similarly, when a scalar field goes from a false vacuum to the
true vacuum, the energy released in going from a higher to lower potential energy warms
up the universe, returning the temperature of the universe to what it was before ∼ 100
e-foldings of inflation chilled it down.

It is tempting to extrapolate the scale factor back to t = 0, and a = 0, representing
an infinite density singularity. One shortcoming of general relativity, however, is that it
doesn’t take quantum effects into account. A complete “quantum gravity” theory has not
yet been devised. However, it is speculated that time is quantized in units of the Planck
time
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tPl =
(

G�

c5

)1/2

= 5 × 10−44 s, (24.74)

and that talking about times earlier than the Planck time may not be physically meaning-
ful. Although invoking quantum gravity prevents us from having to contemplate infinitely
dense initial conditions, the properties at t ≈ tPl were fairly mind-boggling in themselves.
At t ≈ tPl, the number density of particles would have been n ∼ 10104 m−3, and the av-
erage particle energy would have been E ∼ 1028 eV; that’s an energy comparable to the
kinetic energy of a cruising passenger jet, concentrated in a single elementary particle.
From this incredibly dense, hot state evolved the complex universe we see around us
today.

PROBLEMS

24.1 (a) Given that the current scale factor is a(t0) = 1, at what scale factor did the
temperature of the cosmic background radiation equal the temperature of the
Sun’s photosphere?

(b) At what scale factor did it equal the temperature of the Sun’s center?
(c) If the current mass density of the universe is equal to 0.3ρc,0, what was the mass

density of the universe when the temperature was equal to that of the Sun’s center?
Compare this mass density to the average density of the Sun.

24.2 Explicitly calculate the redshifts for the following:

(a) The universe goes from radiation-dominated to matter-dominated.
(b) The universe goes from matter-dominated to dark-energy-dominated.

24.3 At the time this problem was written, the highest-redshift quasar known was CFHQS
J2329-0301, which has a redshift z = 6.43.

(a) What was the scale factor a of the universe at the time the quasar light we are
observing now left the quasar?

(b) How old was the universe at the time the light left the quasar?
(c) What is the distance modulus of the quasar?

24.4 Suppose that star formation stops today, everywhere in the universe.

(a) At what time tdie will the last stars die out?
(b) What will be the scale factor a(tdie) at that time?

24.5 Estimate how high the temperature of the universe must be for proton–proton pair
production to occur. What was the approximate age of the universe when it had cooled
enough for proton–proton pair production to cease?
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TABLE A.1 Physical Constants

Name Symbol Value Units

Gravitational constant G 6.673 × 10−11 m3 kg−1 s−2

Permittivity of the vacuum εo 8.854 × 10−12 C2 N−1 m−2

Permeability of the vacuum μo 4π × 10−7 W m

Elementary charge e 1.602 × 10−19 C

Speed of light in vacuum c 2.998 × 108 m s−1

Planck constant h 6.626 × 10−34 J s

Reduced Planck constant � ≡ h/2π 1.055 × 10−34 J s

Boltzmann constant k 1.381 × 10−23 m2 kg s−2 K−1

Stefan–Boltzmann constant σSB 5.670 × 10−8 W m−2K−4

Thomson cross-section σe 6.652 × 10−29 m2

Proton mass mp 1.673 × 10−27 kg

Electron mass me 9.109 × 10−31 kg

575
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TABLE A.2 Astronomical Constants

Name Symbol Value Units

Mass of Earth M⊕ 5.974 × 1024 kg

Mass of Sun M� 1.989 × 1030 kg

Mass of Moon 7.36 × 1022 kg

Equatorial radius of Earth R⊕ 6378 km

Equatorial radius of Sun R� 6.955 × 105 km

Equatorial radius of Moon 1737 km

Mean density of Earth 5515 kg m−3

Mean density of Sun 1408 kg m−3

Mean density of Moon 3346 kg m−3

Luminosity of Sun L� 3.839 × 1026 W

Effective temperature of Sun 5778 K

Hubble constant Ho 70 ± 5 km s−1 Mpc−1

Light-year 9.461 × 1012 km

Astronomical unit AU 1.496 × 108 km

Parsec pc 3.086 × 1013 km
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TABLE A.3 The Planets

Mean Rotation Orbital Orbital
radius Mass period semimajor axis Orbital period

Name (R⊕) a (M⊕) b (days) (AU) eccentricity (years)

Planets

Mercury 0.383 0.0553 58.6 0.387 0.2056 0.241

Venus 0.950 0.8150 −243.0 0.723 0.0068 0.615

Earth 1.000 1.0000 0.997 1.000 0.0167 1.000

Mars 0.532 0.1074 1.026 1.524 0.0934 1.881

Jupiter 10.97 317.8 0.414 5.203 0.0484 11.86

Saturn 9.14 95.16 0.444 9.537 0.0539 29.45

Uranus 3.98 14.50 −0.718 19.19 0.0473 84.02

Neptune 4.18 17.20 0.671 30.07 0.0086 164.8

Dwarf Planets

Ceres 0.075 0.00016 0.378 2.767 0.0795 4.599

Pluto 0.188 0.00220 −6.387 39.45 0.2502 247.9

Haumea c 0.11 0.00070 0.163 43.13 0.1950 283.3

Makemake 0.12 ∼ 0.0007 unknown 45.43 0.1612 306.2

Eris 0.20 0.00280 ∼ 1 67.90 0.4362 559.6

a. R⊕ = 6371 km (Note: this table uses mean radius rather than equatorial radius.)
b. M⊕ = 5.974 × 1024 kg
c. Haumea is ellipsoidal due to its rapid rotation (0.15R⊕ × 0.12R⊕ × 0.08R⊕).



TABLE A.4 Major Satellites in the Solar Systema

Mean radius Mass Orbital semimajor Orbital period
Name (km) (1020 kg) axis (103 km) (days)

Earth

Moon 1737 734.8 384.4 27.32

Mars

Phobos 11.1 1.066 × 10−4 9.378 0.3189
Deimos 6.2 0.148 × 10−4 23.46 1.026

Jupiter

Amalthea 83 0.021 181.4 0.4982
Io 1822 893.2 421.7 1.769
Europa 1561 480.0 670.9 3.551
Ganymede 2631 1482 1070 7.155
Callisto 2410 1076 1883 16.69
Himalia 85 0.07 11460 250.6

Saturn

Janus 89 0.0190 151.5 0.6947
Mimas 198 0.3751 185.5 0.9424
Enceladus 252 1.079 237.9 1.370
Tethys 533 6.176 294.6 1.888
Dione 562 10.96 377.4 2.737
Rhea 764 23.07 527.1 4.518
Titan 2575 1346 1222 15.94
Hyperion 135 0.0559 1481 21.28
Iapetus 736 18.06 3561 79.32
Phoebe 107 0.0829 12960 −550.6

Uranus

Puck 81 0.029 86.00 0.7618
Miranda 236 0.66 129.4 1.413
Ariel 579 12.9 191.0 2.520
Umbriel 585 12.2 266.0 4.144
Titania 789 34.2 435.9 8.706
Oberon 761 28.8 583.5 13.46

Neptune

Galatea 88 0.037 61.95 0.4287
Larissa 97 0.049 73.55 0.5547
Proteus 210 0.50 117.6 1.122
Triton 1353 213.9 354.8 −5.877
Nereid 170 0.31 5514 360.1

Pluto

Charon 604 15 17.54 −6.387

a. Includes all natural satellites of terrestrial planets, plus all satellites of Jovian and
dwarf planets with mean radius > 80 km.
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TABLE A.5 MK Spectral Types (Main Sequence Stars)

Type MV B − V Teff BC M/M� a R/R� b log(g/g�) c

Main Sequence (luminosity class V)

O5 −5.7 −0.33 42,000 −4.40 60 12 −1.5

B0 −4.0 −0.30 30,000 −3.16 17.5 7.4 −1.4

B5 −1.2 −0.17 15,200 −1.46 5.9 3.9 −1.00

A0 +0.65 −0.02 9790 −0.30 2.9 2.9 −0.7

A5 +1.95 +0.15 8180 −0.15 2.0 1.7 −0.4

F0 +2.7 +0.30 7300 −0.09 1.6 1.5 −0.3

F5 +3.5 +0.44 6650 −0.14 1.4 1.3 −0.2

G0 +4.4 +0.58 5940 −0.18 1.05 1.1 −0.1

G2 +4.7 +0.63 5790 −0.20 1.00 1.00 0.0

G5 +5.1 +0.68 5560 −0.21 0.92 0.92 −0.1

K0 +5.9 +0.81 5150 −0.31 0.79 0.85 +0.1

K5 +7.35 +1.15 4410 −0.72 0.67 0.72 +0.25

M0 +8.8 +1.40 3840 −1.38 0.51 0.60 +0.35

M5 +12.3 +1.64 3170 −2.73 0.21 0.27 +1.0

M8 0.06 0.10 +1.2

a. M� = 1.989 × 1030 kg
b. R� = 6.955 × 105 km
c. g� = 275 m s−2
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TABLE A.6 MK Spectral Types (Giants and Supergiants)

Type MV B − V Teff BC M/M� a R/R� b log(g/g�) c

Giants (luminosity class III)

B0 20 15 −2.2

B5 7 8 −0.95

A0 4 5 −1.5

G0 1.0 6 −2.4

G5 +0.9 +0.86 5050 −0.34 1.1 10 −3.0

K0 +0.7 +1.00 4660 −0.50 1.1 15 −3.5

K5 −0.2 +1.50 4050 −1.02 1.2 25 −4.1

M0 −0.4 +1.56 3690 −1.25 1.2 40 −4.7

M5 −0.3 +1.63 3380 −2.48

Supergiants (Luminosity class I)

O5 70 30 −2.6

B0 25 30 −3.0

B5 −6.2 −0.10 13,600 −0.95 20 50 −3.8

A0 −6.3 −0.01 9980 −0.41 16 60 −4.1

A5 −6.6 +0.09 8610 −0.13 13 60 −4.2

F0 −6.6 +0.17 7460 −0.01 12 80 −4.6

F5 −6.6 +0.32 6370 −0.03 10 100 −5.0

G0 −6.4 +0.76 5370 −0.15 10 120 −5.2

G5 −6.2 +1.02 4930 −0.33 12 150 −5.3

K0 −6.0 +1.25 4550 −0.50 13 200 −5.8

K5 −5.8 +1.60 3990 −1.01 13 400 −4.1

M0 −5.6 +1.67 3620 −1.29 13 500 −7.0

M5 −5.6 +1.80 2880 −3.47

a. M� = 1.989 × 1030 kg
b. R� = 6.955 × 105 km
c. g� = 275 m s−2
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TABLE A.7 25 Closest Stars

Spectral Distance
Star α2000 δ2000 mV Type (pc)

Sun varies varies −26.72 G2 V 4.848 × 10−6

Proxima Cen 14 29 43.0 −62 40 46 11.09 M5.5 V 1.301

α Cen A 14 39 36.5 −60 50 02 0.01 G2 V 1.338

α Cen B 14 39 35.1 −60 50 14 1.34 K0 V 1.338

Barnard’s Star 17 57 48.5 +04 41 36 9.53 M4 V 1.828

Wolf 359 10 56 29.2 +07 00 53 13.44 M6 V 2.386

Lalande 21185 11 03 20.2 +35 58 12 7.47 M2 V 2.542

Sirius A 06 45 08.9 −16 42 58 −1.43 A1 V 2.631

BL Ceti 01 39 01.3 −17 57 01 12.54 M5.5 V 2.676

UV Ceti 01 39 01.3 −17 57 01 12.99 M6 V 2.676

Ross 154 18 49 49.4 −23 50 10 10.43 M3.5 V 2.968

Ross 248 23 41 54.7 +44 10 30 12.29 M5.5 V 3.165

ε Eri 03 32 55.8 −09 27 30 3.73 K2 V 3.226

Lacaille 9352 23 05 52.0 −35 51 11 7.34 M1.5 V 3.293

Ross 128 11 47 44.4 +00 48 16 11.13 M4 V 3.348

EZ Aqr A 22 38 33.4 −15 18 07 13.33 M5 V 3.454

EZ Aqr B 22 38 33.4 −15 18 07 13.27 M 3.454

EZ Aqr C 22 38 33.4 −15 18 07 14.03 M 3.454

Procyon 07 39 18.1 +05 13 30 0.38 F5 IV-V 3.496

61 Cyg A 21 06 53.9 +38 44 58 5.21 K5 V 3.496

61 Cyg B 21 06 55.3 +38 44 31 6.03 K7 V 3.496

GJ 725 A 18 42 46.7 +59 37 49 8.90 M3 V 3.534

GJ 725 B 18 42 46.9 +59 37 37 9.69 M3.5 V 3.534

GX And 00 18 22.9 +44 01 23 8.08 M1.5 V 3.564

GQ And 00 18 22.9 +44 01 23 11.06 M3.5 V 3.564
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TABLE A.8 25 Apparently Brightest Stars

Spectral Distance
Star α2000 δ2000 mV Type (pc)

Sun varies varies −26.72 G2 V 4.848 × 10−6

Sirius A 06 45 08.9 −16 42 58 −1.43 A1 V 2.631

Canopus 06 23 57.1 −52 41 44 −0.62 F0 Ib 96

Arcturus 14 15 39.7 +19 10 57 −0.05 K2 IIIp a 11.3

α Cen A 14 39 36.5 −60 50 02 0.01 G2 V 1.338

Vega 18 36 56.3 +38 47 01 0.03 A0 Vvar b 7.76

Capella 05 16 41.4 +45 59 53 0.08 M1 III 12.9

Rigel 05 14 32.3 −08 12 06 0.18 B8 Ia 240

Procyon 07 39 18.1 +05 13 30 0.38 F5 IV-V 3.496

Betelgeuse 05 55 10.3 +07 24 25 0.45 M2 Ib 130

Achernar 01 37 42.8 −57 14 12 0.45 B3 Vp 44

β Cen 14 03 49.4 −60 22 23 0.61 B1 III 160

Altair 19 50 47.0 +08 52 06 0.76 A7 IV-V 5.14

α Cru 12 26 35.9 −63 05 57 0.77 B0.5 IV 98

Aldeberan 04 35 55.2 +16 30 34 0.87 K5 III 20.0

Spica 13 25 11.6 −11 09 41 0.98 B1 V 80

Antares 16 29 24.5 −26 25 55 1.06 M1 Ib 190

Pollux 07 45 19.0 +28 01 34 1.16 K0 IIIvar 10.3

Fomalhaut 22 57 39.0 −29 37 20 1.17 A3 V 7.69

Deneb 20 41 25.9 +45 16 49 1.25 A2 Ia 1000

β Cru 12 47 43.3 −59 41 20 1.25 B0.5 III 110

α Cen B 14 39 35.1 −60 50 14 1.34 K0 V 1.338

Regulus 10 08 22.3 +11 58 02 1.36 B7 V 23.8

Adhara 06 58 37.6 −28 58 20 1.50 B2 II 130

Castor 07 34 35.9 +31 53 18 1.58 A2 V 15.8

a. p = peculiar
b. var = variable
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Duchêne, 2005, The Astrophysical Journal, v. 620,
p. 744

Chapter 20
Figure 20.1 NASA/ESA

Figure 20.2(a) Princeton University Press

Figure 20.2(b) Princeton University Press

Figure 20.2(c) Princeton University Press

Figure 20.3(a) Paul B. Eskridge, et al. 2002, The
Astrophysical Journal Supplement

Figure 20.3(b) Paul B. Eskridge, et al. 2002, The
Astrophysical Journal Supplement

Figure 20.3(c) Paul B. Eskridge, et al. 2002, The
Astrophysical Journal Supplement

Figure 20.4(a) Paul B. Eskridge, et al. 2002, The
Astrophysical Journal Supplement

Figure 20.4(b) Paul B. Eskridge, et al. 2002, The
Astrophysical Journal Supplement

Figure 20.4(c) Paul B. Eskridge, et al. 2002, The
Astrophysical Journal Supplement

Figure 20.5 John Kormendy/University of Texas at
Austin

Figure 20.6 Fred Espenak

Figure 20.7 David Malin/Anglo-Australian Observa-
tory

Figure 20.8 John Hibbard/NRAO

Figure 20.9 “The Supermassive Black Hole of M87
and the Kinematics of its Associated Gaseous Disk,”
F. Macchetto, A. Marconi, D. J. Axon, A. Capetti, W.
Sparks, & P. Crane, 1997, the Astrophysical Journal, v.
489, p. 579

Figure 20.10 John Kormendy/University of Texas

Figure 20.11 “A Relation Between Distance and Radial
Velocity Among Extra-Galactic Nebulae,” Edwin
Hubble, 1929, Proceedings of the National Academy of
Sciences, v. 15, p. 168

Chapter 21
Figure 21.1 Barbara Ryden

Figure 21.3 Sloan Digital Sky Survey

Figure 21.5(a) Misty Bentz—MDM Observatory

Figure 21.5(b) Misty Bentz—MDM Observatory

Figure 21.5(c) Misty Bentz—MDM Observatory

Figure 21.6 “The Surface Brightness of the Nebulosity
in BL Lacertae,” T. D. Kinman, 1975, The Astrophysical
Journal Letters, 197, L49

Figure 21.7 “The inner radio structure of Centaurus
A—Clues to the origin of the jet X-ray emission,” J.
O. Burns, E. D. Feigelson, & E. J. Schreier, 1983, The
Astrophysical Journal, v. 273, p. 128

Figure 21.8 NASA/The Hubble Heritage Team (STScI/
AURA)

Figure 21.10 John Bahcall (IAS)/Mike Disney (U.
Wales)/NASA

Figure 21.12 W. L. W. Sargent/California Institute of
Technology

Chapter 22
Figure 22.1 “New Reduction of the Lick Catalog of
Galaxies,” M. Seldner, B. Siebers, J. Groth, & P. J. E.
Pebbles, 1977, The Astrophysical Journal, v. 82, p. 249

Figure 22.2 “The Stellar Content of the Local Group,”
1999, IAU Symp. 192, eds. P. Whitelock & R. Cannon
(Provo: ASP), 17-38



588 Credits

Figure 22.3 “On the Clustering Tendencies among the
Nebulae. II. A Study of Encounters Between Laboratory
Models of Stellar Systems by a New Integration
Procedure,” Erik Holmberg, 1944, The Astrophysical
Journal, v. 94, p. 385

Figure 22.4 John Dubinski/University of Toronto

Figure 22.5 NASA, H. Ford (JHU), G. Illingworth
(UCSC/LO), M.Clampin (STScI), G. Hartig (STScI),
the ACS Science Team, and ESA

Figure 22.6 Kirk Borne (STScl)/NASA

Figure 22.7 “A Slice of the Universe,” V. de Lapparent,
M. J. Geller, & J. P. Huchra. 1986, The Astrophysical
Journal (Letters), v. 302, p. L1

Figure 22.8 Sloan Digital Sky Survey

Figure 22.9 “An Analytic Expression for the Luminosity
Function for Galaxies,” 1976, The Astrophysical
Journal, v. 203, p. 297

Chapter 24
Figure 24.6 “Hubble Space Telescope and Ground-
based Observations of Type la Supernova at Redshift
0.5: Cosmological Implications,” 2006, Alexander
Clocchiatti et al., The Astrophysical Journal, v. 642,
p. 1

Figure 24.7 “Hubble Space Telescope and Ground-
based Observations of Type la Supernova at Redshift
0.5: Cosmological Implications,” 2006, Alexander
Clocchiatti et al., The Astrophysical Journal, v. 642,
p. 1

Color Plates
Color Figure 1 Pekka Parviainen/Photo Researchers

Color Figure 2 Richard Pogge

Color Figure 3 Richard Pogge

Color Figure 4 Fred Espenak/Photo Researchers

Color Figure 5 Voyager 2 Team/NASA

Color Figure 5 NASA Headquarters

Color Figure 5 NASA/JPL

Color Figure 6 Image Science & Analysis Laboratory/
NASA Johnson Space Center

Color Figure 7 Lunar & Planetary Institute

Color Figure 8 Lunar & Planetary Institute

Color Figure 9 NASA/JPL/DLR

Color Figure 10 NASA/JPL/Univ. of Arizona

Color Figure 11 NASA/JPL/USGS

Color Figure 12 NASA/J. C. Casado

Color Figure 13 Nigel Sharp/NOAO/NSO/Kitt Peak
FTS/AURA/NSF

Color Figure 14 NASA/Robert Hurt

Color Figure 15 NASA/ESA/M. Robberto/HST Orion
Treasury Project Team

Color Figure 16 Hubble Heritage Team/AURA/STScL/
NASA

Color Figure 17 T. Dame (CfA, Harvard) et. Al.,
Columbia 1.2-m Radio Telescope

Color Figure 18 Nigel Sharp/NOAO/AURA/NSF

Color Figure 19 2MASS/J. Carpenter/M. Skrutskie/R.
Hurt

Color Figure 20 F. Yusef-Zadeh, M. R. Morris, D. R.
Chance/NRAO/AUI/NSF

Color Figure 21 K. Y. Lo, M. J. Clausen/NRAO/AUI/
NSF

Color Figure 22 NASA/ESA/S. Beckwith (STScl)/
HUDF Team

Color Figure 23 NASA/CXC/SAO/PSU/CMU/N. A.
Sharp/AURA/NOAO/NSF/MERLIN/VLA

Color Figure 24 R. L. Davies, et al. 2001, The
Astrophysical Journal Letters, 548, 33

Color Figure 25 R. L. Davies, et al. 2001, The
Astrophysical Journal Letters, 548, 33

Color Figure 26 H. Ford, R. Harms, Z. Tsvetanov, A.
Davidson, G. Kriss, R. Bohlin, G. Hartig, L. Dressel, A.
K. Kohhar, B. Margon

Color Figure 27 S.L. Snowden/NASA/GSFC

Color Figure 28 B. J. Mochejska/J. Kaluzny

Color Figure 29 NASA/JPL-Caltech/Z. Wang (Harvard-
Smithsonian CfA)

Color Figure 30 C. L. Bennett et al., 2001, The
Astrophysical Journal Supplement, 148, 1

Color Figure 31 WMAP Science Team



Index

aberration of starlight, 57, 281
accretion disk, 426
acoustic oscillation, 405

opacity driven, 405
active galactic nucleus (AGN),

474, 489–503
emission spectrum, 489
jets, 489
time variability, 489
unified model, 501

adaptive optics, 151, 168
adiabatic index, 358
adiabatic process, 357
Airy disk, 150
albedo, 195, 197
Alfvén point, 190
Alpha Centauri (α Cen), 308
altitude, 5
analemma, 21

martian, 28
Andromeda Galaxy (M31), 467,

471
future merger with Milky Way,

520
angstrom (Å), 113
angular velocity (ω), 451
antapex, 450
Antarctic Circle (66.5◦ S), 13
apex, 450
aphelion, 51, 69
Apollo missions, 226
apparent solar time, 20
apparent superluminal motion,

506–508
Arctic Circle (66.5◦ N), 13

Aristarchus, 31
and Earth-Sun distance, 31

Aristotle, 30
and shape of Earth, 30

asteroid, 194, 266
Earth-crossing, 268
origin of name, 268
Trojan, 269

astigmatism, 155
astronomical unit (AU), 44
asymptotic giant branch (AGB),

401
atmospheric retention, 202, 206,

290
atomic mass unit, 126
atomic transitions, 116
aurora, 189, 221
azimuth, 6

Baade, Walter, 467
background limited observation,

163
bad astronomy in literature

Hemingway, 27
Shakespeare, 15

bandwidth, 316
Barnard’s star, 446, 448
barometric equation, 215
baryon, 526
baryonic matter, 526, 554
Bessel, Friedrich Wilhelm

and Sirius, 325
and stellar parallax, 58, 308, 447

Betelgeuse (α Ori)
diameter, 319

as future supernova, 423
Big Bang model, 486
Big Bang nucleosynthesis (BBN),

566
binary star

eclipsing, 322, 329–330
spectroscopic, 322, 326–329

double-lined, 326
single-lined, 326

visual, 322–325
bipolar magnetic region, 188
blackbody radiation, 140
black hole, 423–426

definition of, 424
radius of influence, 480
supermassive, 463

accretion onto, 489
tidal disruption of star, 464
tidal disruption of you, 425

BL Lac object, 493
blue straggler, 516
bolometric correction, 317
bolometric flux (Fbol), 313
Boltzmann constant (k), 125
Boltzmann equation, 135
boson, 411
Brahe, Tycho, 50, 426
bremsstrahlung, 381
brightness

apparent. See flux
intrinsic. See luminosity

broadening
natural, 123
pressure, 127, 345, 413
rotational Doppler, 126
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broadening (continued)
thermal Doppler, 126
turbulent Doppler, 126
Zeeman, 127

broad-line region, 491, 501

calendar, 25–26
Callisto (satellite of Jupiter), 255
camera obscura, 146
cataclysmic variable, 427
celestial pole, 6
celestial sphere, 2
Centaur, 275
center of mass, 296, 325
central force, 62
centrifugal acceleration, 54
Cepheid star, 402

period–luminosity relation, 406
as standard candle, 482

Ceres (asteroid), 267
Chandrasekhar mass, 416, 430
charge-coupled device (CCD), 160
Charon (satellite of Pluto), 272
chemical differentiation, 205
Chicxulub Crater, 288
chromatic aberration, 152
chromosphere, 175
circumpolar star, 10
civil time, 23
classical Cepheid. See Cepheid star
cluster of galaxies, 511–515
collision

of galaxies, 516
of stars, 516

color excess, 379
color index, 316
column density (N ), 129, 201
Coma Cluster, 513
coma (part of comet), 277
coma (type of aberration), 155
comet, 266, 277

dust tail, 277
ion tail, 277
long-period, 278
short-period, 277

Comet Halley, 277
Comet Shoemaker-Levy 9, 279

Comet Tempel 1, 277
commensurate periods, 233
comparative planetology, 290–292
compressional strength, 252
Compton wavelength, 114
conic section, 68
conjunction, 40

inferior, 41
superior, 41

Consensus Model, 554
constellations, 3
Coordinated Universal Time

(UTC), 24
coordinates

comoving, 544
Copernicus, Nicolaus, 38
core bounce, 422
core collapse, 422
Coriolis effect, 54–56
corona, 177

F corona, 177
K corona, 177

coronal heating, 178
coronal mass ejection, 188
cosmic microwave background

(CMB), 531
cooling of, 533
spectrum of, 531
temperature of, 531

cosmic neutrino background, 553
cosmic time, 544
cosmological constant, 535, 547
cosmology

definition of, 1
Newtonian, 533–535

Crab Nebula (supernova remnant),
423

crater, 206, 223, 287
ejecta blanket, 224

Cretaceous–Tertiary extinction,
287

critical energy density (uc), 548
critical mass density (ρc), 535
cross-section (σ ), 128
Curtis, Heber, 467
curvature constant (κ), 540
curvature of field, 156

curve of growth, 131
cyclotron frequency, 250
cyclotron radiation, 251

damped Lyman alpha systems, 506
damping constant, 123
dark energy, 486
dark matter, 442, 527

in clusters, 514
day, 16

apparent solar, 19
sidereal, 17
solar, 18

declination (δ), 6
de-excitation

collisional, 120
degeneracy, 399, 410
degeneracy pressure

electron, 411
neutron, 417

Deimos (satellite of Mars), 243
density parameter (�), 549
detector

photoconductive, 160
photoemissive, 160

deuterium (D), 372, 566
distance ladder, 482
distance modulus, 313
distortion, 157

barrel, 157
pincushion, 157

diurnal circle, 7
dopplergram, 371
Doppler shift, 444
dust sublimation radius, 501
dwarf planet

definition of, 277

Earth, atmosphere, 213–219
composition, 213
layers of, 216, 217
primeval, 213
scale height, 216

Earth, interior, 209–213
asthenosphere, 212
crust, 209
inner core, 209
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lithosphere, 212
mantle, 209
outer core, 209

eclipse, 30
definition of, 102
lunar, 30, 102

partial, 104
penumbral, 104
total, 104

primary, 330
solar, 30, 102

annular, 103
partial, 102
total, 102

eclipse window, 106
ecliptic, 11

obliquity of, 12
Eddington limit, 498
Eddington luminosity, 498,

499
Eddington ratio, 499, 500
Edgeworth-Kuiper belt. See Kuiper

belt
effective wavelength, 316
Einstein coefficient, 122, 138
Einstein’s field equations, 546
electron scattering. See Thomson

scattering
electron volt (eV), 526
ellipse, 50

eccentricity, 50
foci, 50
principal focus, 69
semimajor axis, 50
semiminor axis, 50

elongation, 41
greatest, 44

emission
nonthermal, 489
spontaneous, 119
stimulated, 120

emission nebula, 381
energy transport

conductive, 353
convective, 353, 356–359
radiative, 353–356

epicycle, 35

equation of energy transport
convective, 359
radiative, 354

equation of state, 351
equation of time, 20
equator, 3
equatorial coordinate system, 8
equinox, 12

autumnal, 12
etymology of, 13
vernal, 12

origin of right ascension, 7
equivalence principle, 536
equivalent width (W ), 131
Eratosthenes, 32

and size of Earth, 32
Eris (dwarf planet), 276

discovery of, 276
Eros (asteroid), 271
escape speed, 75
Europa (satellite of Jupiter), 255
event horizon, 424
excitation

collisional, 118, 389
photoexcitation, 118

excited state, 115
exobase, 201
exoplanet, 290, 294
exoplanet detection

astrometry, 297
direct imaging, 297
lensing, 443
radial velocity, 297
transit, 300

exosphere, 201, 217
exposure time, 146
extinction, 318

atmospheric, 318
interstellar, 318, 349, 376
wavelength dependence, 376

Faber-Jackson relation, 483
Fermat’s Principle, 538
fermion, 117, 411
filament, 176. See also prominence
fine structure constant (α), 113
finger of God, 523

flatness problem, 568–569
resolved by inflation, 571

fluorescence, 381
flux (F ), 309

inverse square law, 310
focal length (F ), 146
focal plane, 148
focal ratio, 148

of human eye, 149
focus

Cassegrain, 153
Coudé, 154
Newtonian, 153
prime, 153

forbidden transition, 118, 382
Foucault pendulum, 56
freefall time (tff ), 394
free–free emission. See

bremsstrahlung
frequency (ν), 111
Friedmann equation, 535, 547
full width half maximum (FWHM),

159, 161

galactic cannibalism, 520
galaxy

active, 474
definition of, 433
dwarf elliptical, 473
dwarf irregular, 473
dwarf spheroidal, 473
elliptical, 468–470, 520

kinematically decoupled core,
478

etymology of, 433
irregular, 468, 471–472
lenticular. See galaxy, S0
radio, 495–496

compact, 496
extended, 495

S0, 471
Seyfert, 490–491
Seyfert 1, 490
Seyfert 2, 491

polarization, 503
spiral, 438, 468, 470–471, 520

apparent axis ratio, 476
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galaxy (continued)
spiral (continued)

barred, 471
Magellanic, 471
rotation, 476–477

starburst, 475
galaxy merger, 473, 504, 519
Galilean satellites, 48, 253, 254,

255
Galilei, Galileo, 47, 433

Sidereus Nuncius, 47
and the telescope, 47

Gamow factor, 364
Ganymede (satellite of Jupiter),

255
Gaspra (asteroid), 271
geocentric model, 34
geodesic, 538

null, 545
giant impact, 291
giant satellites, 253
giant star, 343
globular cluster, 435
Goldilocks effect, 238
Grand Unified Theory (GUT),

571
granules, 174
gravitational constant (G), 62
gravitational lens, 443
gravitational potential energy (U ),

360
greenhouse effect, 199
Greenwich Mean Time (GMT), 23
ground state, 115

H− ion, 173
Hadley circulation, 218
half-life, 229
Hawking radiation, 426, 504
Heisenberg uncertainty principle,

123, 411
heliocentric model

explanation of retrograde
motion, 39

proposed by Aristarchus, 31
proposed by Copernicus, 39

helioseismology, 370

helium
discovery of, 175

helium fusion, 400
triple alpha process, 368

Herschel, Caroline, 435
Herschel, William, 257, 435
Hertzsprung–Russell diagram,

346, 516
hierarchical structure, 511
high-velocity star, 445
H ii region, 381, 384–390
Hill radius, 95
Hipparchus, 14, 33
Hohmann transfer orbit, 76
horizon, 2
horizon circle, 2
horizon coordinate system, 5
horizon distance, 530, 546
horizon problem, 568, 569–570

resolved by inflation, 571
horizontal branch, 400
Hot Big Bang model, 527, 533
hot Jupiter, 304
hour, 16
hour angle (H ), 7
H–R diagram. See Hertzsprung–

Russell diagram
Hubble, Edwin, 467, 468, 484
Hubble constant (H0), 484, 530

value of, 484
Hubble diagram, 484
Hubble law, 484, 513, 530
Hubble parameter, 530
Hubble time (H−1

0 ), 486
hydrogen

metallic, 245
hydrogen fusion

CNO cycle, 367
PP chain, 366

hydrogen transitions
Balmer (to/from n = 2), 116
Brackett (to/from n = 4), 116
Humphreys (to/from n = 6),

116
Lyman (to/from n = 1), 116
Paschen (to/from n = 3), 116
Pfund (to/from n = 5), 116

hydrostatic equilibrium, 215, 336,
514

hypocenter, 210

ideal gas law, 183, 215, 336, 351
imaging camera, 159
inferior planets, 40
inflationary theory, 570
infrared (IR), 165
instability strip, 403
interference

constructive, 320
destructive, 320

interferometry, 320
radio, 166

intergalactic medium, 505
International Atomic Time (TAI),

23
International Date Line, 23
interstellar dust, 376–379
interstellar gas, 380–390

absorption by, 380
cold molecular cloud, 382

star formation in, 393
cool atomic cloud, 382
emission by, 381
hot ionized gas, 383
very hot ionized gas, 383
warm partially ionized gas, 382

ionization
collisional, 120
photoionization, 120

Io (satellite of Jupiter), 254
iron catastrophe, 206

Jeans length (rJ), 395
Johnson–Cousins system (UBVRI),

315
Juno (asteroid), 268
Jupiter

Great Red Spot, 249
zones & belts, 248

Jupiter & Saturn, 243–252

Kapteyn’s star, 444, 447, 448
Kelvin–Helmholtz time, 361
Kepler, Johannes, 50
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Kepler’s first law, 50
derivation of, 66

Kepler’s second law, 51
derivation of, 62

Kepler’s third law, 51
derivation of, 72

Kirchhoff’s laws, 122, 380, 381
Kirkwood gaps, 268
Kuiper belt, 194, 274

classic, 275

Lagrangian points, 269
lambda-dominated universe, 556
L and T dwarfs, 342–343
Larmor formula, 251
Larmor radius, 183
last scattering surface, 564
latitude, 3
launch window, 78
leap day, 26
lens, 148
lepton, 526
limb darkening, 174
limiting flux, 164
line of apsides, 96
line of nodes, 96, 102
line profile, 123
Local Bubble, 383
Local Group, 512
local noon, 22
local sidereal time (LST), 25
Local Standard of Rest (LSR), 449
local thermodynamic equilibrium

(LTE), 134, 354
sufficient conditions, 134

longitude, 3
Galactic, 452

Lorentz distribution, 123
Lorentz force, 181
luminosity class, 343–344
luminosity density of universe, 525
luminosity function

of galaxies, 523
luminosity (L), 143, 309
lunar libration, 100

diurnal, 100
in latitude, 101

in longitude, 100
Lyman alpha forest, 506

MACHO (massive compact halo
object), 442

magnetic dipole moment, 220
magnetogram, 186
magnetopause, 220
magnitude

absolute, 312
relation to luminosity, 312

absolute bolometric, 314
apparent, 311

relation to flux, 311
apparent bolometric, 314
invented by Hipparchus, 33

main sequence, 343
definition of, 346
lifetime on, 362

Makemake (dwarf planet), 276
Mars, 239–243

Olympus Mons, 239
polar caps, 241
Valles Marineris, 240

mass number (A), 111
Mathilde (asteroid), 271
matter-dominated universe, 556
Maunder minimum, 186
Maxwell-Boltzmann distribution,

124
mean free path, 130, 354, 386
mean molecular mass, 337

dependence on ionization, 337
of Sun’s photosphere, 338

mean solar time, 20
mean specific intensity, 138
Mercury, 232–235
meridian, 4

nadir, 7
observer’s, 7
zenith, 7

meteor, 284
meteorite, 286

carbonaceous chondrite, 286
iron, 286
stony, 286

meteoroid, 266, 284

meteor shower, 285
annual, 285
periodic, 285

metric, 543
Minkowski, 543
Robertson–Walker, 543

Milky Way Galaxy, 433
bulge, 436
disk, 436

thick, 436
thin, 436

halo, 437, 445
luminosity, 437
mass, 440, 441

minor planet. See asteroid
minute, 16
molecular mass (μ), 126
month, 16

anomalistic, 108
nodical, 108
sidereal, 97
synodic, 97

Moon, 221–228
highlands, 222
maria, 222

Moon formation
capture hypothesis, 227
co-creation hypothesis, 227
fission hypothesis, 227
giant impact theory, 228

nadir, 3
narrow-line region, 491, 502
Neptune

discovery of, 257
neutrino (ν), 442, 527

mass, 442
neutron (n), 526

decay of, 526
neutron star, 416–423

definition of, 417
Newton, Isaac, 61

headache from Moon’s motion,
97

Newton’s law of universal
gravitation, 61

mathematical form, 62
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Newton’s laws of motion, 61
nodes, 102
northern hemisphere chauvinism

apologia for, 9
reason why clocks run

“clockwise”, 20
nova, 427

definition of, 427
dwarf, 428
recurrent, 428

nuclear fusion
in stars, 361

nuclear winter, 287

obscuring torus, 502
Occam’s razor, 47
Olbers, Heinrich, 527
Olbers’s paradox, 527

resolution of, 531
Oort cloud, 279
Oort constant A, 455
Oort constant B, 455
Oort diagram, 452
Oort equation

first, 453
second, 454

opacity (κ), 344
Kramers’ law, 374

Oppenheimer–Volkov limit, 423
opposition, 40
optical depth (τ ), 129
orbital resonance

asteroid belt, 268
rings, 262

Orion Nebula, 381
outgassing, 207, 213

Pallas (asteroid), 268
parallax, 37

annual, 37
diurnal, 37, 100
geocentric. See parallax, diurnal
heliocentric. See parallax, annual
spectroscopic, 348, 482
stellar, 37, 58, 307, 482

parsec (pc), 59, 308
Pauli exclusion principle, 117, 410

penumbra, 102
perihelion, 51, 69
period

sidereal, 41
synodic, 41

period of heavy bombardment,
206, 224

permeability constant (μ0), 183
permitted transition, 118
phases

of Moon, 30, 97
of Venus, 49

Phobos (satellite of Mars), 243
inside Roche limit, 94

photon (γ ), 111, 527
photon-to-baryon ratio, 554
photosphere, 336

solar, 172
photosynthesis, 213
pinhole camera, 146
pixel, 161
plage, 176
Planck constant, 111

reduced (�), 113
Planck function, 140, 531

Rayleigh–Jeans limit, 141,
316

Wien limit, 141, 388
Planck time, 572
planet, 194

definition of, 276
dwarf, 194
Jovian, 194
terrestrial, 194

planetary magnetic fields, 207
planetary migration, 305
planetary nebula, 381
planetary rings, 259–263
planetesimal, 204
planet formation

accretion, 204
coalescence, 204
condensation, 203

plate scale, 149
of human eye, 150

plate tectonics, 212
plutino, 275

Pluto (dwarf planet)
discovery of, 272

point spread function (PSF), 158
Poisson probability distribution,

161
Polaris, 15, 406
polarization of starlight, 376
population I stars, 437
population II stars, 437
Poynting–Robertson effect, 281
Poynting–Robertson timescale,

283
precession of equinoxes, 14, 83

caused by torque, 84
discovered by Hipparchus,

33
Prime Meridian, 4
prominence, 176, 188
proper distance (
p), 544

in Consensus Model, 558
proper motion (μ), 445
proton (p), 526
protoplanetary disk, 203, 305
protostar, 397
Proxima Centauri, 308

parallax of, 59
Ptolemaeus, Claudius, 34

estimate of Earth’s size, 4
and geocentric model, 34

pulsar, 420
lighthouse model, 421

Python, Monty, 425

QSO. See quasar
quadrature, 40
quantum efficiency, 159

of CCD, 161
of human eye, 159
of photographic plate, 159

quantum mechanical tunneling,
363

quantum number, 113
principal (n), 118

quasar, 491–493
etymology of, 492
radio-loud, 493
radio-quiet, 493
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radar, 166, 307, 482
radiation-dominated universe, 555
radiation pressure, 280, 351
radiative transfer

equation of, 129
radioactive dating, 223, 228–230
radioactive decay, 228
radio astronomy, 165
radio line emission, 382

21 centimeter, 382
radius of curvature (rc), 540
random walk, 356, 372–373
rate of energy production (ε), 360
ratio of total to selective extinction

(R), 379
Rayleigh scattering, 219

blue sky, 219
green flash, 219
red sunsets, 219

recombination, 120
recombination coefficient, 386
reddening, 376, 379
red giant, 399
red giant branch, 399
redshift, 545
redshift map, 521
refractive index, 148
refractory material, 204
regolith, 226
retrograde motion, 11
reverberation mapping, 501
rift zone, 212
right ascension (α), 8
rille, 226
Roche limit, 93
rotation

constant orbital speed, 452
differential, 452
Keplerian, 452
rigid-body, 452

RR Lyrae star, 402
Russell–Vogt theorem, 409

Sagittarius A, 462
Sagittarius A*, 462

luminosity, 462
mass, 463

proper motion, 462
Sagittarius A West, 462
Saha equation, 135
Saros cycle, 107
saturation, 130
Saturn

ring particles, 260
rings

Cassini division, 260
discovery, 259
orbital resonances, 262

rotational flattening, 250
scale factor, 551
scale height, 216

of Sun’s photosphere, 339
scattered disk objects, 276
Schechter function, 523
Schwarzschild radius (rSch), 424,

500
second, 16

definition of, 23
seeing, astronomical, 151
seismic wave, 209

P-wave, 209
S-wave, 209

selection rule, 118
sexagesimal number system, 16
Shapley, Harlow, 435, 467
shepherd satellites, 262
sidereal time, 24
sidereal year. See year, sidereal
signal-to-noise, 163
Sirius

mass of system, 325
as visual binary, 322

Sloan Digital Sky Survey (SDSS),
522

solar activity, 181
solar cycle, 187
solar flare, 188
solar mass (M�), 73
solar neutrino, 371

problem, 372
solar wind, 178

mass loss rate, 180
solstice

etymology of, 13

summer, 12
winter, 12

sound speed (cs), 395
space

flat, 539
negatively curved, 540
positively curved, 539

space motion, 448
spacetime, 538
space velocity. See space motion
specific flux (Fλ), 141, 163, 313
specific intensity, 130, 137
spectral class, 339–343

OBAFGKM, 341
OBAFGKMLT, 342

spectral sensitivity (S), 315
spectrograph, 159
spectroheliogram, 176
spectrum, 121

absorption, 122
emission, 122

spherical aberration, 155
spheroid, oblate, 83
spicule, 176
spiral arm, 437

trailing, 439
standard atmospheric pressure, 216
standard candle, 407, 482
star

definition of, 307
main sequence, 330
mass–luminosity relation, 330
mass–radius relation, 330

star counts, 433
star formation, 393–398
statistical equilibrium, 138
Stefan-Boltzmann constant (σSB),

143
stellar structure, 350

energy generation, 359
energy transport, 353
equations of, 369
hydrostatic equilibrium, 350
mass continuity, 351

Stonehenge, 16
Strömgren radius, 386, 387
Strömgren sphere, 385
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strong nuclear force, 362
subduction zone, 212
subdwarf, 343
subsolar point, 218
Sun, 172–192

evolution of, 402
spectral classification of, 345
velocity relative to LSR, 451

Sun, atmosphere, 172–189
corona, 102

sunspot, 183
butterfly diagram, 186
magnetic field strength, 186

supercluster, 511
density of, 521

supergiant, 343
superior planets, 40
supernova, 422, 428

luminosity of, 431
type Ia, 429, 430

as standard candle, 482, 561
type Ib, 429
type II, 429

supernova remnant, 422
surface brightness (Sλ), 164
synchronous rotation

of Moon, 99
synchrotron radiation, 251, 382

and pulsars, 421

tangent point method, 457
telescope

reflector, 152
refractor, 151
Ritchey-Chrétien, 157
Schmidt, 157

temperature
equilibrium blackbody, 198
subsolar blackbody, 198

thermal inertia, 168
thermonuclear reactions, 363
Thomson scattering, 355

tidal braking, 90
tide

definition, 84
neap, 90
spring, 89

time zones, 23
Titan (satellite of Saturn), 256
Titius-Bode Rule, 266
transit, 17

lower, 17
upper, 17

trans-Neptunian object (TNO),
194, 266, 271

tritium (3H), 566
Triton (satellite of Neptune),

258
tropical year. See year, tropical
Tropic of Cancer (23.5◦ N), 13
Tropic of Capricorn (23.5◦ S), 13
true anomaly, 70
Tully-Fisher relation, 483
Tunguska event, 287
tuning fork diagram, 468
twotino, 276

ultraluminous infrared galaxy
(ULIRG), 519

ultraviolet (UV), 165
umbra, 102
Uranus

discovery of, 257
extreme axial tilt, 257

Uranus & Neptune, 256–258

V1500 Cygni (nova), 427
vacuum energy, 548
vacuum permittivity, 112
van Allen belts, 221
variable star, 329

pulsating, 329, 402
Vega (α Lyr)

apparent magnitude, 311

velocity
peculiar, 451, 487
radial, 64, 444
tangential, 64, 445

Venus, 235–239
greenhouse effect on, 236
retrograde rotation, 236

Vesta (asteroid), 268
Virgo Cluster, 512
virial theorem, 79, 478

applied to cluster of galaxies,
514

applied to galaxy, 479–480
visible light

energy range, 111
wavelength range, 111

vis viva equation, 76
void, 522

density of, 522
volatile material, 204
volcanic flooding, 206

wavelength (λ), 111
week, 16
white dwarf, 323, 401, 410–416

fade to black, 401
mass–radius relation, 412

Wien’s law, 197
Wilkinson Microwave Anisotropy

Probe (WMAP), 563
WIMP (weakly interacting massive

particle), 442
W Virginis star, 468

year, 16
sidereal, 25
tropical, 25

Zeeman splitting, 127, 184
zenith, 3
zodiac, 13
zodiacal light, 283
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